
SMALL AREA MEAN ESTIMATION BASED

ON A NESTED-ERROR REGRESSION MODEL

Paddison C. F. Wong, Statistics Canada, RHC-16K,

120 Parkdale Avenue, Ottawa, Ontario, Canada K1A 0T6

Kevin J. Keen, Department of Epidemiology and Biostatistics,

Case Western Reserve University,

Rammelkamp Center for Education and Research,

MetroHealth Medical Center, 2500 MetroHealth Drive,

Cleveland, Ohio 44109-1998

Key Words: Maximum likelihood estimator,

mixed linear model, nested-error regression

model, random intercept model

INTRODUCTION

Attempts at small-area estimation by direct survey
estimators are not successful because small sam-
ple sizes yield considerably large standard errors.
The development of efficient small-area estimation
methods is a challenging statistical problem. One
way to approach this problem is to attempt to in-
crease precision by borrowing information across
similar small areas. However, some of these esti-
mators can be heavily biased in the design-based
framework for some of the areas. There is a de-
mand for unbiased estimators with better efficiency
and a willingness to use auxiliary information to
satisfy this demand.

In the general mixed linear model context,
small-area means can be efficiently estimated
by best linear unbiased predictors if variance-
component parameters are known. If not, as is typ-
ically the case, they can be estimated and replace
the parameters in the predictors.

A brief review on the nested-error regression
model and unbiased estimation of the small-area
means is given in the next section followed by the
development of a weighted unbiased estimator of
the group-effect variance component for the ran-
dom intercept model after identifying the relation-
ship between the random intercept and nested-error
regression models. To improve the efficiency of es-
timating the small-area means, a two-stage small-
area estimator that is a linear combination of two
small-area estimators with different weights for the
estimator of the group effect is presented and a for-
mula for its mean squared error approximation is
also given. A comparison in terms of the relative
efficiencies of different small-area mean estimators
to the maximum likelihood estimator with Monte
Carlo simulations is then presented.

THE NESTED-ERROR REGRESSION MODEL

Consider the nested-error regression model with a
single random effect, νi, for the ith small area, or
small group:

yij = x′
ijβ + νi + εij , i = 1, . . . , t, j = 1, . . . , ni,

(2.1)
where yij is the observed response for the jth sam-
pled unit in the ith group, xij = (1, xij1, · · · , xijk)

′

is a (k+1)-vector of corresponding covariates, β =
(α, β1, · · · , βk)

′ is a (k + 1)-vector of unknown re-
gression coefficients, and ni is the size of the ith
group. The group effects {νi} are identically dis-
tributed with mean 0 and variance σ2

ν , the ran-
dom errors {εij} are identically distributed with
mean 0 and variance σ2

ε with {νi} and {εij} mu-
tually independent. For convenience, define matri-
ces X′ = (x11, . . . ,xtnt

) and Z = diag(1n1
, . . . ,1nt

)
where 1ni

is a ni-vector with a value of 1 for each
element. If one lets y = (y11, . . . , ytnt

)′, then the
model in (2.1) can be expressed in matrix form as

y = Xβ + Zν + ε (2.2)

with ν = (ν1, . . . , νt)
′ and ε = (ε11, . . . , εtnt

)′ which
are independently distributed with mean vector 0

and covariance matrices G = σ2
νIt and R = σ2

ε IN ,
respectively. The total number of observations in
the sample is N =

∑t
i=1 ni. For known G and

R, Henderson (1975) showed that the best linear
unbiased estimator, or predictor, (BLUE, or BLUP)
of µ = l′β +m′ν is given by

µ̂ = l′β̃ +m′GZ′V−1
(

y −Xβ̃
)

(2.3)

where β̃ =
(

X′V−1X
)−1

X′V−1y is the generalized

least squares estimator of β. Let Xi
′
be the vector

of known means of xij for the ith group and let the
sample mean vector xi = n−1

i

∑ni

j=1 xij . Define µ to

Proceedings of the Annual Meeting of the American Statistical Association, August 5-9, 2001 



be the vector of small-area means in the population
with component

µi = X
′

iβ + νi (2.4)

for the ith area. An unbiased estimator of µi is
given by

X
′

iβ̃ +m′
iGZ′V−1

(

y −Xβ̃
)

(2.5)

where mi is a t-vector of zero with the ith element
equal to 1. Note that β̃ is always a function of the
unknown parameters σ2

ν and σ2
ε . It is natural to

replace them with corresponding unbiased estima-
tors.

ESTIMATION OF VARIANCE COMPONENTS
The method of fitting constants was used in Prasad
and Rao (1990) for the estimation of σ2

ε and σ2
ν .

Their estimators are given by

σ̃2
ε =

y′ [I−M(M′M)−M′]y

N − r(M)
, (3.1)

and

σ̃2
ν =

∑t
i=1

∑ni

j=1 û
2
ij − (n− k)σ̃2

ε

n− tr
[

(X′X)
−∑t

i=1 n
2
ixi x′i

] (3.2)

where M = (X | Z), r(M) is the rank of M and
∑t

i=1

∑ni

j=1 û
2
ij = y′ [I−X(X′X)−X′]y.

With αi = α + νi, {αi} can be considered as
random intercepts identically distributed with mean
α and variance σ2

ν . Upon setting α = (α1, . . . , αt)
′

and βo = (β1, . . . , βk)
′, the model in (2.2) can be

written as a random intercept model as in

y = Xαθ + ε (3.3)

where θ = (β′
o,α

′)′ is a (k + t)-vector with Xα

is a corresponding design matrix of covariates that
satisfies (3.3). Let Dα = (0t×k | It) with 0t×k a
matrix of zeros and It a (t × t) identity matrix so
that

E [y] = Xβ = Xαθo

where θo = (β
′
o, α1′)′. An unbiased weighted esti-

mator of σ2
ν based on model (3.3) is given by

s2ν =

[

(t− 1)

(

ω −
s2ω
t ω

)]−1
{

t
∑

i=1

ωi(α̂i − α̂)2

− s2εtr
[

(

Ω −N−1
ω ωω′

)

Dα(X
′
αXα)

−1D′
α

]

}

(3.4)

with

s2ε =
y′

[

I−Xα (X
′
αXα)

−1
X′

α

]

y

N − r (Xα)
(3.5)

where ωi is the weight associated for the ith group,
ω′ = (ω1, ω2, . . . ωt), Ω = diag(ω1, ω2, . . . ωt),
Nω =

∑t
i=1 ωi, ω = t−1

∑t
i=1 ωi, s2ω = (t −

1)−1
∑t

i=1(ωi−ω)
2, and α̂ = N−1

ω

∑t
i=1 ωiα̂i, where

α̂i is the ordinary least squares estimator of αi for
the ith area and r (Xα) is the rank of Xα. Both s

2
ν

and s2ε are unbiased for σ
2
ν and σ

2
ε , respectively.

It is possible for σ̃2
ν and s2ν to be negative,

therefore, it is common practice to take instead
max(0, σ̃2

ν) and max(0, s
2
ν) as estimators of σ

2
ν . Nev-

ertheless, as sample sizes increase, both σ̃2
ν and s2ν

tend to be non-negative almost surely.

ESTIMATION OF SMALL-AREA MEANS

To estimate the small-area means using equation
(2.5), Prasad and Rao (1990) replaced σ2

ε and σ
2
ν in

G,V and β̃ with their estimators σ̃2
ε and σ̃

2
ν in (3.1)

and (3.2). Under the random intercept model (3.3),
the estimator s2ν in equation (3.4) has an advantage
in that the weights {ωi} can be modified to adjust
for differences among the small areas or equivalently
the effects of the random intercept estimators {α̂i}.
The efficiency of small-area mean estimation can be
further improved with a convex combination of two
different estimators of σ2

ν , namely s
2
ν1 and s

2
ν2 with

different weights, {ω
(1)
i } and {ω

(2)
i }, respectively, as

in equation (3.4). An estimator of the mean of the
ith small area by this approach is

µ̃ci = (1− ai) µ̃i1 + ai µ̃i2 (4.1)

where µ̃i1 and µ̃i2 are estimators of µi using s
2
ν1 and

s2ν2 respectively. Obviously the choice of ai would
affect the value of the mean squared error of µ̃ci . An
efficient estimator of µi is the one with the smallest
mean squared error. The minimum mean squared
error of µ̃ci

MSE[µ̃ci ] =
(

MSE[µ̃i1]MSE[µ̃i2]

−
{

E
[

(µ̃i1 − µi)(µ̃i2 − µi)
]}2)

/{

MSE[µ̃i1] + MSE[µ̃i2]

− 2E
[

(µ̃i1 − µi)(µ̃i2 − µi)
]}

(4.2)



Table 1. Average Relative efficiency of µ̃c

with respect to µ̃ over 20 small areas with
different distributions of random effects for ρ
between 0.00 and 0.20 with known
population mean {Xi}

ρ Norm. Dbl.Exp. Exp. Unif.

0.00 1.0636 1.1007 1.1287 1.0522
0.05 1.0186 1.0289 1.0368 1.0146
0.10 1.0094 1.0135 1.0170 1.0079
0.15 1.0052 1.0074 1.0086 1.0042
0.20 1.0023 1.0041 1.0049 1.0013

is attained when

ai =
{

MSE[µ̃i1]− E
[

(µ̃i1 − µi)(µ̃i2 − µi)
]}

/{

MSE[µ̃i1] + MSE[µ̃i2]

− 2E
[

(µ̃i1 − µi)(µ̃i2 − µi)
]}

.

(4.3)

RESULTS OF MONTE CARLO STUDY
A Monte Carlo simulation that mimics the data
set of Battese et al. (1988) under the nested-error
regression model with a single covariate, yij =
α+βxij+νi+ εij , was conducted to study the rela-
tive efficiency of the two-stage estimator combining
s2ν1 and s

2
ν2 with respect to the one with σ̃

2
ν . Let yij

equal acreage of corn cultivation and xij equal the
number of pixels of corn cultivation for the jth unit
of county i from satellite imagery. The three coun-
ties with only 1 unit were pooled together as done
in Prasad and Rao (1990). The number of small
areas t was increased to 20 from 10 by duplication
as also done by Prasad and Rao (1990). The value
of the intercept α and the slope β were set to the
estimates obtained by Battese et al. (1988), that is,
5.5 and 0.388, respectively. Ten thousand indepen-
dent sets of νi and εij with zero means and different
intraclass correlation ρ = σ2

ν/(σ
2
ν + σ2

ε ) from 0.00
to 0.95 were generated to obtain 10,000 sets of yij
using the covariate values of Battese et al. (1988)
for each of 4 distributional assumptions: normal,
double-exponential, exponential and uniform. The

weights {ω
(1)
i } for the estimator s2ν1 in µ̃i1 are equal

to 1. This is the uniform weighting scheme which is
thought to be best for a large intraclass correlation ρ
and shown to be such in Keen (1996) in a similar sit-

uation but without covariates. The weights {ω
(2)
i }

for the estimator s2ν2 in µ̃i2 are equal to ni(ni − 1)
in a pairwise weighting scheme which is thought to
be best for a small intraclass correlation ρ based on
the simulations in Keen (1996) without covariates.

This latter scheme implicitly deletes single-member
families.

From equation (2.5), one obtains the two-stage
estimators of the small-area means, µ̃c with equa-
tion (4.1) and µ̃ by the approach of Prasad and Rao
(1990). These estimators involve the population
means of the covariates {xij} which are assumed
to be known or available from censuses. The aver-
age relative efficiencies are summarized in Table 1
based on different distributions for 0.00 ≤ ρ ≤ 0.20.
The proposed estimator µ̃c is more efficient than µ̃
as the intraclass correlation decreases. The average
relative efficiency in favor of the proposed estimator
over 20 small areas can be as high as 112.87% with
{Xi} for the exponential distribution at ρ = 0.00.
Similar pattern of efficiency can be found for the
other distributions considered.

Figure 1 summarizes the comparison of µ̃c to
µ̃ when {Xi} are used for the full range of ρ. The
estimator µ̃c is more efficient than µ̃ for small intra-
class correlations. For other values of ρ, it is equally
efficient as µ̃. This is not only true for the normal
distribution, it is also true for other 3 distributions
under studied. For some small areas, the relative ef-
ficiency can be as high as 128% for the exponential
distribution and 140% for the double-exponential
distribution. Evidently, µ̃c has a better efficiency
profile than the existing estimator µ̃.

Let µ̂Vm be the BLUP in which the unknown
variance components are replaced by their maxi-
mum likelihood estimators (MLE’s). Figure 2 is
the comparison of µ̃c and µ̃ with µ̂Vm in the case
of normality. Note that µ̃c is more efficient than
the MLE for all values of the intraclass correlation
whereas µ̃ is only more efficient than the MLE when
ρ ≥ 0.20.

CONCLUSIONS AND FUTURE DIRECTIONS

The convex combination, which is implicitly a
shrinkage approach, has more flexibility in adjust-
ing for the impact of random effects on the small
areas by adaptively balancing two different weight-
ing schemes. The new results from the Monte Carlo
simulations show that the proposed estimator is
asymptotically more efficient than the maximum
likelihood estimator assuming a normal distribu-
tion. More importantly, no matter whether the pop-
ulation means of the covariates are known or not,
the proposed estimator µ̃c is more efficient than µ̃
of Prasad and Rao (1990) when the intraclass cor-
relation ρ is less than 0.20 for all four distributions
studied in terms of their mean squared errors. De-
spite whether {νi} or {εij} has more impact on the



response, µ̃c should be the choice among the esti-
mators studied for small-area estimation.

We further propose to extend the application
of this new technique for estimating the small-area
means by convex combination of two unbiased esti-
mators to other mixed models, including the nonlin-
ear models. Results obtained by using the sample
counterparts xij , when the population means of the
covariates Xij are unknown, will also be studied.
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APPENDIX: TECHNICAL DETAILS
A.1 Proof of the Unbiasedness of s2

ε

Note that the estimator of σ2
ε in equation (3.5) can

be written as
s2ε = y′Ay

where

A =
I−Xα (X

′
αXα)

−1
X′

α

N − r (Xα)
. (A.1)

The expectation of s2ε is then given by

E [s
2
ε ] = tr[AV] + θ′oX

′
αAXαθo (A.2)

where V = Var [y] = σ2
ε I + σ2

νXαD
′
αDαX

′
α and

θo = (β
′
o, α1′)′. Note that θ′oX

′
αAXαθo = 0 and it

is easy to verify tr[AV] = σ2
ε .
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Figure 1. Boxplots of relative efficiencies of µ̃c with respect to µ̃ over 20 areas
for intraclass correlation coefficient from 0.00 to 0.95 with 4 distributions of random
effects assuming the population mean of the covariates in each area is known.
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Figure 2. Boxplots of relative efficiencies of a) µ̃c with respect to µ̂Vm and b) µ̃
with respect to µ̂Vm over 20 areas for intraclass correlation coefficient from 0.00 to
0.95 with normal distribution of random effects assuming the population mean of the
covariates in each area is known.

A.2 Proof of the Unbiasedness of s2
ν

For convenience, write Ω∗ =

(

Ω −N−1
ω ωω′

)

and

D∗ = Dα(X
′
αXα)

−1. Rewrite
∑t

i=1 ωi(α̂i − α̂)2 =
y′Cy where C = XαD

′
∗Ω∗D∗X

′
α. With the ex-

pression of s2ν in equation (3.4), the expectation of
s2ν is given by

E
[

s2ν
]

=
E [y′Cy]− σ2

ε tr [Ω∗DαD
′
∗]

(t− 1)
[

ω −
s2w
t ω

] (A.3)

because s2ε is an unbiased estimator of σ
2
ε . The ex-

pectation of y′Cy is given by

E
[

y′Cy
]

= θo
′X′

αCXαθo + tr [CV]

= σ2
ε tr [Ω∗DαD

′
∗]

+ σ2
ν tr [CXαD

′
αDαX

′
α]

(A.4)

because θ′oX
′
αCXαθ is equal to 0. Note that

σ2
ν tr [CXαD

′
αDαX

′
α] can be written as σ2

ν(t −
1)

[

ω − (s2ω/t ω)
]

and therefore s2ν is unbiased.

A.3 Optimal Choice of ai

Let µ̃ci = (1− ai) µ̃i1+ ai µ̃i2 and the mean squared

error can be written as

MSE
[

µ̃ci
]

= E

[

(

(1− ai) µ̃i1 + ai µ̃i2 − µi

)2
]

= 2ai(1− ai) E
[

(µ̃i1 − µi)(µ̃i2 − µi)
]

+ (1− ai)
2MSE [µ̃i1] + a2

i MSE [µ̃i2] .
(A.5)

Set the derivative of MSE[µ̃ci ] with respect to ai to
zero and it can be shown that the MSE[µ̃ci ] is at its
minimum with

ai =
{

MSE[µ̃i1]− E
[

(µ̃i1 − µi)(µ̃i2 − µi)
]}

/{

MSE[µ̃i1] + MSE[µ̃i2]

− 2E
[

(µ̃i1 − µi)(µ̃i2 − µi)
]}

.

(A.6)
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