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1. Introduction

In the statistical offices of some countries some
variables are included in surveys not by asking the
respondents, but by exact matching of information
from registers files comprising the entire popula-
tion. Such data are often of high quality and may be
extremely identifying. This is however also a situa-
tion that opens an opportunity to apply methods for
disclosure control that are not otherwise accessible.
In countries where such matching is not legally or
technically feasible, samples for research are taken
from censuses or administrative files like income
and taxation registers.

Section 2 outlines the basic ideas behind a method
that here has been termed rank matching. This
method takes advantage of the situation where reg-
isters are available. This paper will only consider
the situation when all relevant variables are con-
tinuous. The idea can be extended to discrete vari-
ables, but because of space constraints, such exten-
sions will not be discussed here.

Section 3 discusses the effect of rank matching on
information loss by analysis of a simulation ex-
periment.

In section 4 the simulation and an example are used
to discuss the confidentiality protection offered by
rank matching.

Section 5 discusses problems and extensions.

2. Basic ideas

Consider a simple random sample § of size »

drawn from the finite population P . § gives rise
. T

to a dataset X with records X, =(X,,..., X ),

j=1,...,n that will here be considered as gener-
ated by a (cumulative) nonsingular superpopulation
distribution F(x) with density f(x), which has
also generated P .

Add noise to the observed Xj vectors by trans-

forming them randomly to vectors ¥, according to

a conditional density g(y|x), producing a new
set of observations with density

h(y)=[g(y]x)f(x)dx. @1

If g(y|x) represents a transition density for a
stochastic process with f(x) as a stationary den-
sity, then 4(py)= f(»). In this case the noise ad-

dition generates a new sample Y ,...,¥ with the

same parent-distribution F, being statistically equi-
valent to the original sample. If fis known, a transi-
tion density g having this property can be con-
structed by orthogonal expansions. f must be an
eigenfunction for g corresponding to the eigenvalue
1. Gouweleeuw et al. (1998) point at similar ideas
in the context of disclosure control for categorical
and discrete variables (the PRAM method), but
without reference to a superpopulation.

But f is rarely known. Therefore, an alternative
approach, based on a kind of resampling, is pro-
posed.

Let R, be the rank of X, in a sample of size n

andR, =(R,,.... R, ). The continuity assump-
tion guarantees uniqueness of the ranks. To denote

rank orders of the observations we write X Wk <

< Xy and X = (X0, X0 = Xiw) =

(X X

)
R R K

for variable & is denoted by F,. Let{l:n}=

The marginal distribution

{1,...,n} and {1:n}" be the k-dimensional Carte-
sian lattice generated by {1:n}. Furthermore, let

h(r)=P(R, =r). All marginal distributions /,
of 4 are uniform on {1:n}, but the joint distribu-
tion ~ will depend on F. We can write

F(x)= Y, F(x|rh(r) 2.2)

re (1:n}K



For the method that will here be called rank match-
ing (rm) with registers, there are now two versions.

I. Draw a new sample s, according to the same
design with the same sample size as §. §,

gives rise to a new dataset X? with records
XD =X XD j=1..n, with

j A SO U ¢
the same variables as before and generated by
the same distribution F. For variables attached
to the samples from registers, or when samples
have been drawn from censuses, this is practical
thing to do without doubling the survey. Re-

place X (= X(R/k)k) in the original sample

with the value X ((,f)k) . having the same rank on

the same variable in X'* . This produces a syn-

thetic dataset X with rows X jT = X((zzz)z;f =

(X((;jl)l,...,X((i?K)K) . This version will be
called joint rm (with registers). The distribution

of Xj. will depend on the original X, only

through its rank vector R, .

II. An alternative that is slightly easier to deal with
analytically (but not computationally) is to draw
one sample for each of the K variables in X.

Instead of the vectors X2 =(X0 ...,
J 71

@) \T (2) (2) i(2)
Xj(Z)K , wWe observe X;“H""’X@K’ A
E A Jx

...,jl(;) =1,...,n. This version will be called
independent rank matching. The synthetic data
vectors X j are otherwise formed in the same

way as in I. Mixtures of joint and independent
rank matching are possible, resampling some
variables jointly and others independently.

Generally there is information loss associated with
rank matching. The theoretical transition probabil-

ity g(x | x) associated with the method is not
stationary. In the original dataset, the marginal dis-
tribution of X, given the rank vector R, can
depend on components of R, other than Rjk’ In

other words, for independent rm,
INCAEIACAYY
=F(x, |r)# F(x|r)

(2.3)

For joint rm the first equality will not be exact.

For some multivariate distributions the last inequal-
ity in (2.3) may be equality. If that is the case, the
transition function is stationary and (in expectation)
no information will be lost in the rank matching
procedure. Already rank matched data are of this
type. Repeated rank matching of an already rank
matched sample will (in expectation) not lead to
further loss of information.

Lemma 1: As n—e°, X — X  — (0 in prob-
ability. Hence, we also have Xj — X, inlaw.

Proof of the lemma is skipped. An option to rank
matching with register is half-sample rank swap-
ping (FCSM 1994, Moore 1996). Split the sample
in two random half samples. This can eventually be
done separately for different sets of variables in the
dataset. For each half sample, replace the values
with the values having the same rank on the same
variable in the other half sample. Each half sample
will then have the properties of a fully rank
matched sample with registers, half the size of the
original one. The two half samples can then be

stacked to form one synthetic dataset X" . Contrary
to rm, rank swapping, preserves the observed mar-
ginal distributions of all variables as in the original
dataset exactly. This can be desirable in some con-
texts, but may also make the sample more vulner-
able to re-identification. Rank swapping does not
preserve the rank structure of the original dataset.
For that reason and unlike rank matching, repeated
rank swapping is not stationary and leads to further
loss of information on the joint distribution. Simu-
lations presented in section 4 indicates that this
mixing of the rank structure leads to a somewhat
larger loss of information on the structures of the
joint distribution than rank matching with registers.

3. A simulation experiment

A user of a confidentiality-protected dataset will be
interested how the statistical properties of a dataset
have been affected by application of a given confi-
dentiality protection method. If rank matching or
rank swapping has protected the dataset, the infor-
mation loss will mostly be seen as a dilution of the

multivariate structures in X', such as correlations
and regressions, compared to X . This dilution will
be studied for rank matching and rank swapping in
a small simulation experiment. More extensive
simulations will be performed later.

A simulation study was performed to investigate
the joint statistical properties of a rank matched and
rank swapped dataset with 6 correlated variables



and n =1000 observations X ,...... , X, ~NwX).

All continuous variables can be transformed to a
normal scale marginally. The effects of rank match-
ing and swapping on the estimated correlations in

X" and X are shown in table 1.

Var Variable numbers
no. | 1 2 3 4 5
0.170
2 0.165 | 1.000
0.167
0.483 | 0.123
3 0.481 | 0.124 1.000
0.477 | 0.121

0.707 | 0.102 0.317
4 0.704 | 0.095 0.317 1.000
0.700 | 0.099 0.312

0.893 | 0.137 0.441 0.644
5 0.889 | 0.136 0.438 0.640 | 1.000
0.888 | 0.135 0.433 0.637

0.982 | 0.171 0.469 0.694 | 0.875
6 0.981 | 0.168 0.469 0.692 | 0.871
0.979 | 0.168 0.463 0.685 | 0.869

Table 1. Correlations between variables in a simu-
lated dataset. The upper entries are the correlations

P in the original dataset X. The middle entries
are the correlations P~ in X", and the lower en-

tries show the correlations P" in X' .

The simulation result in table 1 is a rather typical
one. Among 15 estimated pairs of correlation in

P and IA’*, using four significant digits, 13 were

smaller in P’ than in P . This indicates that some
minor dilution of the multivariate structure has
taken place. This is not surprising since it is well
known (Kruskal 1958) that for multivariate normal
variables the rank correlation itself (Spearman’s

Py ) is directly related to the original correlation
by
p=p,=(6/r)arcsin(p/2)
>2@3/m)p=0955p

where minimum is taken in the vicinity of p=0.

Next, 13 out of 15 correlations of the rank swapped

data in P" are slightly less than those in P . This
indicates that rank swapping causes a somewhat
larger dilution and information loss than rank
matching. This was expected and can be attributed
to the mixing of the rank-structure taking place.
Obviously, the effects of rank matching and rank
swapping on the estimates of correlations are insig-
nificant compared to the random variation in these
estimates.

Direct estimation of correlations on rank matched
and rank swapped data from variables that are
highly non-normal can produce adverse results as
well as it is adverse to calculate correlations from
highly non-normal data at all.

4. Inference about population units

While information loss should be considered at
superpopulation level, probability of disclosure is
definitely a finite population matter. The samples §

and s, are also (simple random) samples from the

labeled set of units P to which realizations from
the population distribution /" have been associated.
Identity disclosure is inference about the label in
this finite population. Such inference is possible
only when someone with access to the anonymous
dataset X has information about some of the vari-
able values associated to given labels.

It is clear that an individual having exact informa-
tion about the value of at least one continuous vari-
able for some unit drawn to the sample will be able
to identify that unit in the sample. If intruder’s in-
formation or the measured values of the variables
in the sample is not quite accurate, inference about
a label can never the less very often be done with
high degree of confidence.

The only information on labels associated with the
units in § still present in the rank matched dataset

X" is the rank-structure R . How an intruder can
make use of this information to make a disclosure
will depend on what kind of extra information on
the individuals she has available in her identifica-
tion file. Two cases will be considered:

a) She has access to one or more variable in X
(but not other variables in the survey) for (at
least) one unit and knows that this unit is in the
sample. The unit can be considered as a ran-
domly chosen unit from the sample.



b) She has access to the entire population register,
but does not know who were drawn to § .

Case a will be studied in a simulation experiment
presented in section 4.1.

Situation b is an extreme case, but is interesting.
This case will be considered in section 4.2 by a
small example.

4.1 Situation a, a simulated intrusion

With what confidence can an intruder identify the
original record number associated with the syn-

thetic record x 2 Assume that the intruder in her
identification file has access to an original record x
from X and knows that the owner of x is in X. To

disclose the corresponding record in X' (and X"),
she uses discriminant analysis and decides for the

following decision rule: Choose the record xj in

X' that minimizes a distance
* 2 _ * ' *
Hx—x,. Hw =(x-x,)'W(x—-x,).

A thorough discussion of the use of discriminant
analysis in the context of disclosure control is given
in Paal and Wauschkuhn (1985) and Paas (1988).
In order to test the capacity of this decision rule, W

was taken as the inverse of the diagonal of " and

-l + . . . .
2", the obvious estimates of the covariance matri-

ces based on X and X*. All 63 possible combi-
nations of one to six variables were tested and the
number of correct hits recorded. Table 2 shows that
the identifying capacity of combinations of vari-
ables increases rapidly with the number of variables
available for disclosure for both methods. The
number of correct identifications with the same
number of variables shows large variations. The
simulations indicate, as expected, that among the
combinations with the same number of variables,
those showing higher correlations produce the
smallest number of correct hits and vice versa.
Nevertheless, table 2 gives a rough indication of
how the probability of correct disclosure D, given
that the target is in the sample, P(D|i€ s), in-

creases with increasing number of variables.

Table 2 may seem discouraging, but for an intruder
not knowing that the target person is in the dataset
P(D|ies) must be multiplied by P(i€s)

which is usually small. P(D|i¢ §)=0.

The number of Number of correct hits

variables used

rank match rank swap
One (of 6 vars.) 6-41 0
Two (of 15 pairs) 137-545 93-321
Three (20 triples) 472-933 244-720
Four (15 combs.) 845-989 722-945
Five (6 combs.) 983-996 924-981
Six (1 comb.) 996 987

Table 2. Minimum and maximum numbers of

. . . . * +
correct identifications of records in X and X
with various numbers of identification variables.

4.2 Caseb.
Consider an intruder with access to the population

register X =(E,...,&,) where & =(£,....¢,
)" are the values of the K continuous variables for
finite population unit 7. It is then possible to extract
the population rank matrix R=(p,...,py)"
where N is the finite population size. Actually, all
information about labels contained in X and X is
contained in R and R . The rank vector p, corre-

sponding to sample unit j will however not be di-
rectly observable in the sample. Never the less, the

structure of R determines the probability structure
of the sample rank matrix R . There are (7!)*™
possible (unordered) sample rank matrices. They

. N . .
define a partition of the ( J samples in the entire
n

sample space S into subsets SR, some of which

may be empty by the configuration of R . Let p,

be the stochastic variable that maps sample rank
to a population rank for a variable. If for an ob-

served matrix R, SR is identified, then the prob-
ability P(p, = p|Sg) that a given sample unit j
corresponds to a given population unit 7/ can be cal-
culated exactly. However, it does not seem to be

feasible to do this by formula. For large N and n
efficient algorithms will be necessary to identify

the partition set S, compatible with an observed
R.




With only one variable, there is only one possible ease of notation, the ranks of the variable with

sample rank matrix and one possible S, . Then k =1 will be used as labels, both in the population
and in the sample, meaning that p,, =i and
p—=1\N-p),(N .
P(p,=p)= / rh=1J.
r—=1 |\ n—r n
For two or more variables, rather than trying to
develop formulae or asymptotics, I will present a
small example trying to illuminate the case. For
R’ Sk p(i|j)=P@, =i|R)
pd|D)=p@E|lY)=1/2
1 2 3 1 2 6|1 2 7(|3 4 6(|3 4 7 )
2|2)=p4|2)=1/2
(1 2 3] [4 3 7]’[4 5 6]’[2 3 7]’[2 3 6] PRID=pE12)
p(613)=p(7]3)=1/2
- . . p[D)=p2|1)=1/2
1 2 3 1 3 4/(2 3 4
312)=1
[312} 14 2 3]°|5 2 3] PGI12)
p(413)=1
_ o . p(1|)=3/4,p(3|)=1/4
1 2 3 1 2 3|1 2 41|11 2 5||3 45
212)=3/4,p4|2)=1/4
(2 3 1] 14 5 2]'|4 5 3~’[4 5 1}’[2 3 1] P12 PR
p[3)=p(4]3)=1/4,p(5|3)=1/2
boTz e e pAID = p211) = pG|D
1 2 3 14 7 6|[5 7 6]]|12 7 6
- . . =p@D=pG5H)=1/5
1 2 4.6 7[5 6 7
37 6I'l1 7 6 p(6]2)=p(7[3)=1
[1 3 6|1 3 7][1 46_[1 47]
14 2 7: :4 2 6] :4 3 7__ 43 6_ D= p2[1)=3/8
tse]ft s 71023 6|[237 PG = pd|D=1/8
1 2 3 14 1 7] |4 615 2 7]|5 2 6]
- 1 - - 7 r312)=p(412)=1/4
213 2 4 6|[2 4 7][25 6][257
s 3 7[5 3 6|5 1 7[5 1 6] P12 =172
35 6][35 7145 6][45 7] p6]3)=p(7]3)=1/2
2 1 712 1 6][3 1 7)[3 1 6]
- . _ L pd|D)=p2IH=1/2
1 2 3 1 3 5|1 4 5|12 3 5|2 4 5
312)=p4]2)=1/2
(321} 14 2 1]'|4 3 1]’»521_’»53 1] P312)=p12)
r(313)=1
Table 4 The partitions of & generated by the sample rank matrices and the induced disclosure

probabilities.



Example: Assume that the population rank matrix

1 23 45 6 7
R= ,
4523176

meaning that N =7 and K =2. Consider sam-
ples of size #=3. The sample space consists of
35 such samples. There are 6 possible sample rank

matrices R . The 6 sample rank matrices, their
associated partition sets and the probabilities

p(i| j)=P(@i, =i| Sy) are given in table 5.2.

Table 4 shows a large variation of the number of
samples in each partition. The cases where

p(i]| j) =1 (boldfaced) define identity disclosure

with probability one. They make up nine samples
in three partition subsets, meaning that before sam-
pling the probability of at least one disclosure is
9/35.

5. Summary and loose ends

This paper is only a brief taste of some ideas that
need further research. It indicates that rank match-
ing can be a useful method for confidentiality pro-
tection when it can be assumed that the number of
accurately measured key-variables available to an
intruder is small, even when the intruder knows
that the target unit is in the dataset. When the num-
ber of key variables is large, rm seems not always
to be sufficient alone. A more theoretical develop-
ment of the properties of rank matching will be
given in a later paper.

There are several loose ends that can be topics for
future research. Among such I will mention rm
with nominal or ordinal discrete variables. This will
require an artificial ordering of nominal categories
and of the records with like values. The problem is
to avoid impossible and very unlikely combinations
to occur in a rank matched sample and guarantee
that cell frequencies are retained in a rank matched
sample, at least in expectation. Another topic is the
effect of rm on statistics for sub-domains. Since rm
retains sample ranks also within sub-domains I
conjecture that this will not pose big problems. A
third topic is how rank matching will behave in
more complex designs with stratification, two-stage
sampling and unequal inclusion probabilities. Here,
the formulation of the problem in terms of model
and sampling distribution may make the problem
easier to handle.

REFERENCES

Duncan, G. T. and Lambert, D. (1986): Disclosure-
Limited Data Dissemination. J. of the Am. Stat.
Assoc. vol 81 no. 393 pp 10-18

(1989): Risk of
Disclosure for Microdata. J. of Business &
Economic Statistics, Vol 7., no. 2 pp 207-217

Fuller, W. A. (1993): Masking Procedures for
Microdata Disclosure Limitation. Journal of
Official Statistics, vol 9 no. 2 pp 383-406.

Gouweleeuw, J. M., Kooman, P., Willenborg,
L.C.R.J. and de Wolf, P.-P.: Post Randomisation
for Statistical Disclosure Control: Theory and
Implementation. J. of Official Statistics, vol 14 no.
4 pp 463-478

Kruskal, W. H. (1958): Ordinal Measures of
Association. J. of the Am. Stat. Assoc. vol 53 no.
284 pp 814-861

Moore, R. (1996): Controlled Data Swapping
Techniques for Masking Public Use Microdata
Sets. U.S. Bureau of the Census (unpublished
manuscript).

Paas, G. (1988): Disclosure Risk and Disclosure
Avoidance for Microdata. J. of Business & Eco-
nomic Statistics, Vol. 6., no. 4 pp 487-500.

Paas, G. and Waushkuhn, U. (1985): Datenzugang,
Datenschutz und Anonymisierung; Analysepoten-
tial und Identifizierbarkeit von Anonymisierten
Individualdaten. Miinchen: Oldenburg Verlag.

Reiss, R.-D. (1989): Approximate Distributions of
Order Statistics. With applications to Nonparamet-
ric Statistics. Springer Verlag.

Spruill, N. L. (1982): Measures of Confidentiality.
in Statistics of Income and Related Administrative
Record Research: 1982. Washington DC: US Dept.
of Treasury, Internal Revenue Service, Statistics of
Income Div. pp 131-136.

Federal Committee on Statistical Methodology
(FCSM) (1994): Statistical Policy Working Paper
22 - Report on Statistical Disclosure Limitation
methodology.

Sullivan, G. and Fuller, W.A. (1989): The Use of
Measurement Error to avoid Disclosure. Proceed-
ings of the Section on Survey Research Methods.

American Statistical Association, pp. 802-807.

Willenborg, L. and de Waal, T. (1996): Statistical
Disclosure Control in Practice. Lecture Notes in
Statistics no. 111. Springer Verlag.



