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1. INTRODUCTION

Classical sampling theory concerns inference for finite
population parameters. This enables us to work
exclusively within a sample probability space, which
we design and control. However, there are many
situations when we have to resort to postulating a
model, for example, when we would like to test or
draw conclusions for a more general population than
the finite population from which we obtained the
sample. Once we incorporate a genera population
model (or super-population) in our framework, our
inference procedures need to account for the design
(unequal probabilities, dependent selection indicators,
etc.), other survey processes (non-response,
poststratification, etc.) and the super-population model.
Rubin-Bleuer (1998, 2000) and Rubin-Bleuer &
Schiopu-Kratina (2000) have formally defined a
probability space that includes both the designed
sample space and the super-population model, which
was caled the “product space’. They described a
general methodology that combines finite population
sampling theory and classical theory of infinite
population sampling to account for the underlying
processes that produce the data.

In this paper, we further explore the structure of the
product probability space by exploiting additional
information by means of conditioning. We show that
the design-based inference and model-based inference
fit naturally into the structure of the product space as
conditional inference with an appropriately defined
probability. We also show that when the design does
not depend on the super-popul ation associated with the
finite population, the inference can be carried out in the
model space and the design can be ignored. Thisisthe
approach taken by Fuller (1975). The advantages of
considering a super-population that generates then
finite population are also explored.

We repeat afew definitions from our previous work to
make this paper self-contained. In Section 2 we define
the finite population, the design probability and the
sample estimator. In these definitions, we assume that
the populations of interest are composed by the
characteristics of interest, the prior information with

which we design the survey, and we acknowledge the
possible existence of auxiliary information. We also give
an example of a sample estimator that we use in further
developments. In Section 3 we define the super-
population and we illustrate how conditions that are
sufficient for design - based inference in finite
populations can be justified as a consequence of simple
moment conditions in the super-population, which, in
turn, can be justified by expert knowledge of the model.
In section 4 we define the product probability space and
show how some dependence-independence propertiesin
the model and the design space trandate to the product
space. Finally, in section 5, we look a some useful
conditional probabilities, which reflect the change in the
product space probability measure P, ,, due to additional
information. We also give examples of the use of the
projection of P, onto the model space.

2. FINITE POPULATIONSAND DESIGNS
Definition 2.1 A finite population U = {1,... N} of size
N consists of N units, or labels, with the associated data,
i.e. each unit {i} is associated to a unique real valued
vector (Y, X, z), i =1, ... N. The components y, € R¥
represent the characteristics of interest, x, € R' represent
the auxiliary information, and z € R™ contains prior
information available at the time of the design of the
survey on al units{i}, i =1, ... N. Here k, | and m are
positive integers. Wewrite YN = (Y, )i s XN = (X )icw,
NAAZV=(Z)y v

As in Sarndal et a (1992, p. 25 ), we assume that a
probabilistic (randomized) selection, or sampling scheme
isgiven. A sampleisthe realization of such arandomized
selection. Let N (or M if the schemeis multistage) be the
finite population size (i.e. the number of ultimate
sampling units in the population). A comprehensive
definition of asampleisthat of Haek ( 1981, p.42): it
views the sample as “afinite sequence of unitsor labels
of the finite population, which are drawn one by one until
the sampling is finished according to some stopping rule.
This sequence distinguishes the order of units, may be of
variable length and may include one unit of the finite
population several times’. This definition includes both
samples selected “without replacement” (WOR), and
“with replacement” (WR). In order for the set of al
possible samples S to be completely determined it is



necessary to know apriori al the stratum and cluster
sizes and their respective sample sizes or expected
sample sizes. If so, Siswell defined, since every label
in  the finite population must have a positive
probability of selection. Under a (WOR) scheme, a
sample can also be viewed as a subset of labels or units
from the finite population U and we may use this
conceptual view of the sample when it is more
convenient.

In the literature, a design p associated with a sampling
scheme is a probability function on the set of all
possible samples under this scheme (see Sarndal et a.
p.27, or Hajek 1981, p. 21). Our definition of a
sampling design given below is more restrictive than
the one above in that it requires measurability of p asa
function of the variables containing the prior
information.

Definition 2.2 Let N be the number of ultimate
sampling units in the population. Given a sampling
scheme, let S be the set of all possible samples under
the scheme. Let C(S) consist of all subsets of S. Let
D(2)c R™ beasubset of values of the prior information.
A sampling design associated to a sampling scheme
isafunction p: C(S)x R™N - [0, 1] such that:

() p(s,-)isBore - measurableinR™" , v sc S

(i) p(-, z,,2, ... z,) isaprobability measure on C(S)
Y (z,,...2y) € D(2)c R,™

We say that (S, C(S) , p) isadesign space g

Without loss of generality, in all applications we will
take m = 1. Under atwo stage design with N primary
sampling units (psu’s) we can carry on the design with
prior information on the N psu's only. But the
definition of design can be extended to include prior
information on al sampling units.

In what follows, the subscript “d” refers to design
randomization.

Example 2.1 Stratified two-stage with probability
proportional to size (PPSWR). This type of designis
often used in household surveys and could be extended
to include several stages of sampling. The population
is stratified into L strata, each one containing N,
psu's. Let N be the number of psu's in the

L
population, N:E N, . Each psu { hi} consists of My;
h=1
Nh

ultimate units, M, =Y M,; isthe number of ultimate
i=1

L
sampling units in stratum h and M:E M,. The
h=1

“gze’ of thepsu{hi} is z, =M,;,i=1,..N,,h=1,.L.
We set ZN=M". Suppose n, >2 psu’s are selected with
replacement from the N, psu’s in the hth stratum with
probabilities p,; =M,/ M,, i=1,.N,,h=1.1L, a
each draw. The selection is done independently in each
stratum, and independent sub-samples are taken within
those psu’ s selected more than once ®

Definition 2.3 A finite population parameter 6, is a
Bordl- measurable function defined on asubset D(y,X,z)
of R«*™*N with valuesin R . An estimator of thisfinite
population parameter associated with adesign or sample
estimator is afunction 0, : Sx D(y,x,z) - R, wherethe
domain D(y,x,z) < R &*™N g, (s-) is Borel -
measurable and 6,(-, y", x", Z") is C(S) - measurablel

Example 2.2 Stratified two-stage PPSWR design. We
define here a sample estimator that we will uselater on in
the paper. This estimator was also used by Krewski &
Rao (1981) for their work on inference from stratified
samples. In the context of Example 2.1, let the prior
information be given by the psu sizes. The finite

L
population mean is 0y =y/M = EWth, where
h=1

Ny

W, = M,/M isthestratum weight, Yy, :Z;yhi/Mh is
i=

the finite population stratum mean, and y,;is the total of
psu{hi} i=1.. N,, h=1..L.Lety, beanunbiased
estimator of the total y,; for a selected psu based on
sampling at the second stage. Then a sample estimator of

~ nh ~
the stratum mean s E)h:i ) 6, where

nh i=1
N No g 4
0, :kzl #Ih'k and I,,= 1if psu{hk} isselected inthe
-1 My

h-th stratum sample at the i-th draw and O otherwise, k
=1,... n,. Finally, asample estimator of the mean 0, is

L
givenby Oy yN MM = Y wo,.
h=1

The estimator éN is design-unbiased and design-
consistent (Krewski & Rao, 1981) &

3. SUPER-POPULATIONS

The following definition is similar to the definition of
super-population given in Hajek (1981, p. 14).
Definition 3.1 Consider afinite population U of sizeN as
in Definition 2.1. A super-population associated with it
consists of a probability space (2, .7, P) and random
vectors (Y, X;, Z), Yi: Q-RY X Q-R,Z: Q-R"
such that Y; (o) =;, X; (®,) = X;, Z; (w) =z, for some
0,6Q, i=1,..N. Wedenote by YN =(Y,) i=1,..N.
Similarly, we define XN and ZV . We say that U is a



realization of, or is generated by the super-population.
A family of distributions of (YN, XN, ZV) that are
given apriori iscaled asuper-population modd. We
note that the outcome w, which generates the finite
population need not be unique g

We give below an application related to the work of
Krewski & Rao (1981). Consider a sequence of finite
populations with stratified, PPSWR designs (Example
2.2) and associated super-populations, withN,
clusters in stratum h and number of strata L, , h =
1,...L,, v>1. Thecluster totals y,; aretheredizations
of super-population-random vectors Y, i=1..N,
h=1...L, which are stochastically m-independent within
and across strata, and are identically distributed within
strata. Krewski & Rao (1981) give conditions for
inference on the finite population means 6, =y,/M,

LV
using the design based estimators 6, = Y. W0, of
Y h=1
Example 2.2. We show that moment conditionsin the
super-population yield the Liapunov- type conditions of
Krewski & Rao for asymptotic normality of the sample
mean (in the law of the design). The number of strata
L, - =, av - «and the number of clusters N, in

each stratum remains bounded. In the following, we
omit indexing the populations.

Proposition 3.1 We assume

M
(C,) of Krewski-Rao (1981) p.1014: W“:Vh -O(L Y,
which impliesthat no stratais of disproportionate size.
If, in addition, we assume the following model - based
conditions:

L
(M) LY E|Y,*°=0() asv - » and
h=1

I~ Vm‘th|2+5

>

h-1 h?
Rao (1981) p.1014, holds, namely:
L

<, then condition (C, ) of Krewski-

(Cl)hg W, E |0, - Y,|2?=0(1) as o, where §; is

defined in Example 2.2.
Proof

L —
Lett(w)= Y W,E,[6,; - Y,|*? & > 0.Wehaveto
h=1

show that ¢(w) stays bounded as v-«, for the ®
generating the finite population. Since for p>1,
N N

|(UN) gka <(1/N) kz; X, [P, (3.1)

(see  Chung, 1974, p.48), we  have

0. - Y, . ~ —
=R P 2)(1B, 5+ ¥, ), and hence

L _
(o) < 2V WL E (16,170 + |Y,|%). (3.2)
h=1

Now, by definition of 6,,,

Nh Nh

A + y + +

AENESESY |—th 2P < (U N X |yl®® (33
k=1 hk k=1

since M, > 1 and M, > N,, k=1,..., N,, h=1,....L.

Similarly, by (3.1) with N=N,,

_ Ny Ny
Y, [20= (U M) g;yhk\” <(UN,) kX; Y 27 (34)

Hence (3.3), (3.4) and (C,) yield

L N,
Ew) =O(1L) hZ; (V' Ny) kX; [Vl 29) (3.5

Now, (3.5) and (M,) imply that ¢(w)= O(1) as. o (seefor
example, Theorem 1.14, Shao, 1999) g

4. THE PRODUCT SPACE

Definition 4.1

Consider a finite population U of size N (number of
ultimate sampling units), generated by a super-population
(YN, XN, ZV): (Q, .7, P) - RN asin Definition 3.1.
We assume that the size N of the finite population is not
dependent on the outcome of the super-population. Let p
be adesign and let (S, C(S), p) be a probability design
space defined on the finite popul ation. Recall that given
adesign p, it is necessary to have fixed the number N (or
M) of ultimate units of the population, as well as the
number and size of strata and p.s.u.’s, secondary
sampling units, etc., for the space S of al possible
samples to be well defined (before we even know the
outcome weQ that will generate the finite population).
We define the product space as ameasurabl e space given
by Q,.,=SxQwiththeoc-field C(S)x7 1

Remark 4.1 Consider the elementary rectangles of
the form {s}xF, se S, Fe .7 . Since C(S) is a finite
collection of sets, the o-field C(S)x.#7 consists of finite
unions of elementary rectangles. More precisely, a
measurable set B # o in this o-field can be uniquely
written as the digjoint union
B=U {s}xF,, A ¢C(S),F.c.7, (4.2)
seA
whereadll saredistinct andthe K, # o g

The next result shows that adesign and sample estimator
can be viewed as measurable functions in the product
space.



Proposition 4.1 Consider a super-population
associated with afinite population U, asin Definition
3.1. Let p beadesign on the finite population asin
Definition 2.2 with domain D(z). Let us assume that
the range of the Z of Definition 3.1 is contained in
the domain, i.e., R(Z")c D(2). Let 7(Z") =c(Z") be
the sub o - field of .7 generated by Z". Then the
design can be viewed as a C(S) x .7(Z") - measurable
function p, ,, defined by:
Pym (S ) =p(s, Z(w)), e Q, s€ S (4.2
Similarly, consider the sample estimator
04:SxD(Y, X, 2) -~ R,
and let us assume that the range
R(YN, XN, Z< D(y, X, 2). Let.7, =7 (YN, XN, ZV) =
o(YN, XN, ZV) bethesub s - field of .7 generated by
YN, XN and ZN. Then the sample estimator can be
viewed asan C(S) x.7 - measurable function given
by:
By (S ©) = 04(S, YN (@), XM (0), ZY(0)), 0 Q,s5€ S
(4.3)
.Proof: Since both p(s,) and 64(s,") are Borel functions
on R™N and RN regpectively, their composition
with random vectors (YV, XN, ZV) renders them
measurable with respect to the minimum sigma fields
o(Z) and o(YN, XN, ZV), respectively (see for
example Chow and Teicher (1997) Theorem 4, p.17) g

We next define a probability measure on the product
space (Sx Q, C () x.7).

Definition 4.2 We define the measure Py , first on
elementary rectangles of the product ¢ - field, and then
on general measurable sets expressed in their reduced
form:

Pam({st xF)a f Pom(s ©)dP,se S, Fe 7
F

Pd,,m( U {S} X Fs) A Z fpd,m(sv (D) d Pv AGC(S)7 Fs
seA seA F,

e~ , F+0o.

P, 1S additive by definition, and hence c-additive
because al setsin C (S) x.# can be expressed as a
finite union of elementary rectanglesll

Proposition 4.2 If B=SxF, Fe .7, thenP, (B)
= P(F). In particular, Py (S * Q)=1.

Remark 4.2 The c-additivity of P, , and Proposition
4.2 imply that P, ., is a probability measure on the
product space.

Example 4.1 Stochastic dependencein the product
space. Let YN and p denote, respectively, the super-
population and design of Definition 4.1with Y

composed of N independent not necessarily identically
distributed random variables and p a design associated
with a"Simple Random Sample Without Replacement"
(SRSWOR) or a "Simple Random Sample with
Replacement” (SRSWR) scheme of sample sizen.

Let usdenote by y ={y., ies}thevauesof yN associated
with the units i in a sample s € S. We define the k-th
draw-selection indicators { 1%,,...,1} by IX,=1if uniti is
selected in the sample at the k-th draw and zero
otherwise, for k=1,..., n. Then y ; can be written as the
sequence of n units

N N N
Ys=( Z; Y 14(9), Z; Y 12.(9),..., Z; Y 1 (9))-

Each coordinate of the sequence (representing adraw) is
they-value of aunit of thefinite population. If the design
isWR then I, and I'; are d-stochastically independent for
kI and al i,j, whereasiif the design is WOR the I, and I,
are d-stochastically dependent and if 1¥,=1 then I', =0 for
al I#k. The y ( can be viewed as a group of random

N

variables Z, in - Q 40 Z, (s0)2 Y Y, (@) 1%(9). Then
i=1

whether thedesign pis SRSWOR or SRSWR, the Z, are

stochastically dependent random variables in the product

space, even though the original super-popul ation random

variables YN were stochastically independent in

(Q, .7, P): we have, for k#I,

Pim( Z (S®)<x, Z, (50)<Z)
#Pyn(Ze (S0)<X Pyn( Z, ($0)<2).

N
Indeed,underWOR, Pd’m(Zk(s,m)gx):%Z P(Y;<X),
i=1

N
Pd,m(Zk(s,m),Zl(s,o))sz):%2 Y P(Y, <0P(Y,<2).
i=1 j#i

N
Whereas under WR Pd’m(Zk(s,m)gx):%Z P(Y,<X),
i1

Pd,m(zk(svﬂ)) Z(sw)<2)=

%{ZNj y P(Yi<x)P(Yj<z)+_Nl P(Y,<min(x2))) W

i=1 j#i i=

5. CONDITIONAL PROBABILITIES

Let B € C(§x.7, and w € Q. Wedenoteby B(w) thew -

section of B, i.e,, B(w) = {se S| (so) € B}.

Definition 5.1 Let B=U {s}x F, e C(S) x .#, where
seA

Fn=0o(YN, XN, Z¥ asin Proposition 4.1, s eSand o

€ Q. We define the set function :

I:)d|m (B! (S*! (D)) = pd,m(B((D)! (D) = Z pd,m (S! (D)

seB(w)
Notethat P, isconstant for s eS g



The set function P4, ,, defined above is the (regular)
conditional probability measure on the product space,
given the margina o - field S x.#, as shown by
Proposition 5.1. The ¢ - field S x .7, summarizes our
knowledge of the model. The conditiona density pq,,
(s,m) turnsout to be py ,, since the sampling design
isaprobability on the design space (S, C (), p), that
is, we “recover” the design probability we started out
with. For pertinent definitions and exampl es the reader
is sent to Chow and Teicher (1997) pp. 223-224. One
advantage of regular conditional probabilities is that
conditional expectations may be then envisaged as
ordinary expectations relative to the conditional
probability measure (Chow and Teicher (1997),
Theorem 1, Section 7.2).

Proposition 5.1. Conditioning on the modél. The set
function

Pajm (1) 1 (C(§x7y) % (SxQ) —[0,1]

of Definition 5.1, is the (regular)conditional probability
measure on C(S) x .7, giventhe s - field Sx.#, and

f Pdlm(B!(S) !(DO)) d Pd,m = Pd,m (B N SXF) 1 fOf any
SxF

Fe. 7yands €S, o, Q.

Remark 5.1 If in Definition 5.1 we replace .4, by
-7, such that .# < . then we can replace .7, by .+
everywhere in Proposition 5.18

Remark 5.2 Proposition 5.1 implies that if we know
the model, then conditioning on the model (i.e. on the
o - field Sx.#) yields a probability measure that is
equal to the design probability measure applied to the
projections of sub-sets of SxQ onto S.

Before we establish a sampling scheme, we usually
know what we call “prior” information, i.e., values
N=(z,,...z\) that are used for the design. Say, for
example, the zV are the cluster sizes of a Canadian
population existing right now. Let F,={w € Q: Z (0)=
z, i =1..N} We may sdlect the sample with
probability proportional to those sizes, but we might
want to learn about a more general population than the
finite population living in those clusters now. In this
case, we would use the prior information by
conditioning on the ¢ - field 4 generated by the event
SxF, and use the conditional probability measure

Py m(- | ¥ ) todo inference.

Proposition 5.2. Conditioning on the prior
information. P, ., (- | ¥ ) is a regular conditional
probability measure. Moreover, it is constant on SxF,
:for B=U {s}x F,e C(§x.7, , and (s, ,0,) €SXF,

seA

then
Py, m (Bl (S ) :ZA P m(SZ2) P(FJF),

if P(F,)>0and equal to P, ,(B) if P(F,)=0.

Proof: Py (- | ¢ ) isaregular probability measure, and
has the above expression, because the ¢ - field ¥ is
generated by apartition of S x Q (see Example 1, section
7.2, Chow and Teicher (1997)).

Remark 5.3. Other authors aso work with conditional
probability measures to do analytic inference with survey
data. Sverchkov & Pfeffermann (2000) have a different
conception of the selection probabilities (depending on
YN and XM as well as ZV ). However, their “ parametric
distribution of the sample data’, which they use to do
inference, can be thought of as the conditional probability
measure given a sample and the auxiliary data, i.e.,

Py m(* |4 ) wheretheo - field b is generated by the event
{s} x F,where sis afixed sample and

F,={oeQ: X (w)=x, i=1..N}.

We calculate next the conditional probability given the
“orthogonal” marginal field of the product space, namely
C(S) x Q. Conditioning on the field C(S) x Q represents
exploiting the control we have over the design. We
denote by P,, 4 the conditional probability P, ,given the
fildC(S) xQ N

Proposition 5.3. Conditioning on thedesign. P, isa
(regular) conditional probability measure and for sets B
€ C(S)x Q, expressed inits reduced form, B= U {s}x F,
A €C(S),Fe.7 seA

Prja (B, (S 0) = [ (S, ® ) dP/ f p(s, ©)dP, (5.1)
Q

Fo

if 5, € A and 0 otherwise. If, in particular, p(s, ® ) does
not depend on o, then P, 4 (B,(s; ) ) = P( FSJ NA(Sy)-
Herel, istheindicator function of the set A.

Proof: as for Proposition 5.2, P, 4 is a conditional
probability measure and Equation (5.1) holds, because the
conditioning field is the field generated by the partition of
SxQgivenby {sx Q,seS}g

Thus, if the design isindependent of the redization of the
super-population, inference in this conditional probability
coincides with inference in the super-population and the
design randomization can be ignored. Such is the case of
SRSWOR and SRSWR.

Example 5.1 Projection of the sample onto the model
space by means of P, 4. In the context of example 4.1,
under SRSWOR, when we project the Z, - variables back
into the model space by means of the conditiona
probability P, they recover the original independence



of the YN : a WOR design implies that there are no
repetitions of the Y's in the sample, so the sampleisa
subset of the original YN. But under SRSWR the Z,'s
projected onto the model space lose their original
independence. Indeed, for s,€S and k=1, whether under
SRSWOR or SRSWR, we have:

N
Pra(Z(50)<x3) :Z; P(Y,<X)I ¥(s,)and

Pmld(Zk(s,m)sx,ZI (sw)<zsy)=
N

N
YD P(Y=xY,<2l K(s)! ' (s) by proposition 5.3.

i-1 j-1

Now, under SRSWOR, IX(s,) 1'(s,)=0 for every s,eS,
and hence the terms in the double sum above with i=j
disappear. Since the YN are independent, for i#j
P(Y<x,Y,;<2)=P(Y<x)P(Y<2), which yields
independence of the Z,'s:

Pmld(Zk(s,a)) <XZ(s0)<zs)=

Pmld(Zk(s,m)sx;so) Pm|d(ZI (sw)<zsy). (5.2

Under SRSWR however, there are samples s,eS for
which I%(s) I'(s)=1for somei's, and for those samples,
the double sum above contains terms where i=j , for
whichwehave P(Y,<x,Y,<2)=P(Y,<min(x,2)) . Thus, for

those samples,
Pmld(Zk(s,m) <X,Z(s)<zs)=

2 P(Yisx Y=l () (%) +

j#i

N N
i=1 j#i

XNj P(Y,<min(x2)! (! 'i(sy) -
i=1

This means that under SRSWR, for the samples s,
where we selected repeated i- labels, we cannot attain
the equality (5.2 ) and thus the Z, (s,0) are m-
dependent random variablesll

Example 5.2 Asymptotic normality of the sum of
sample units when projected by Py 4. Consider a
sequence of super-populations associated with finite
populations as in Definition 3.1. We assume that Yvi
,i=1,..N,v>1areiid rv.’son(Q,.7, P)with0
mean and finite second moment ¢?+#0. The design is
SRSWOR of size n , v = 1.. Then
(6®n,) YY" Y, ] convergence in the m - distribution to
ies,
astandard normal r.v. N(0,1) .

Indeed, by Proposition 5.3, the survey design can be
ignored and we can view the selection of the sample s,
asanonrandom selection of n, labelsfrom N, which

creates the array:

{Y;},ies,v>1
In order to apply Theorem 27.2 pp. 359-360 , Billingsley
(1995) to thisarray of i.i.d. r.v., we note that Lindeberg
condition is satisfied for such arrays because the i.i.d.
rv.'s Y2, =1,..N,,v > 1 areuniformly integrable (see

vi?

(27.9) of Billingsley (1995) g
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