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1. INTRODUCTION
Classical sampling theory concerns inference for finite
population parameters. This enables us to work
exclusively within a sample probability space, which
we design and control. However, there are many
situations when we have to resort to postulating a
model, for example, when we would like to test or
draw conclusions for a more general population than
the finite population from which we obtained the
sample. Once we incorporate a general population
model (or super-population) in our framework, our
inference procedures need to account for the design
(unequal probabilities, dependent selection indicators,
etc.), other survey processes (non-response,
poststratification, etc.) and the super-population model.
Rubin-Bleuer (1998, 2000) and Rubin-Bleuer &
Schiopu-Kratina (2000) have formally defined a
probability space that includes both the designed
sample space and the super-population model, which
was called the “product space”. They described a
general methodology that combines finite population
sampling theory and classical theory of infinite
population sampling to account for the underlying
processes that produce the data.
In this paper, we further explore the structure of the
product probability space by exploiting additional
information by means of conditioning. We show that
the design-based inference and model-based inference
fit naturally into the structure of the product space as
conditional inference with an appropriately defined
probability. We also show that when the design does
not depend on the super-population associated with the
finite population, the inference can be carried out in the
model space and the design can be ignored. This is the
approach taken by Fuller (1975). The advantages of
considering a super-population that generates then
finite population are also explored.
We repeat a few definitions from our previous work to
make this paper self-contained. In Section 2 we define
the finite population, the design probability and the
sample estimator. In these definitions, we assume that
the populations of interest are composed by the
characteristics of interest, the prior information with

which we design the survey, and we acknowledge the
possible existence of auxiliary information. We also give
an example of a sample estimator that we use in further
developments. In Section 3 we define the super-
population and we illustrate how conditions that are
sufficient for design - based inference in finite
populations can be justified as a consequence of simple
moment conditions in the super-population, which, in
turn, can be justified by expert knowledge of the model.
In section 4 we define the product probability space and
show how some dependence-independence properties in
the model and the design space translate to the product
space. Finally, in section 5, we look at some useful
conditional probabilities, which reflect the change in the
product space probability measure P due to additionald,m

information. We also give examples of the use of the
projection of P onto the model space.d,m

2. FINITE POPULATIONS AND DESIGNS
Definition 2.1 A finite population U = {1,... N} of size
N consists of N units, or labels, with the associated data,
i.e. each unit {i} is associated to a unique real valued
vector ( y , x , z ), i = 1, ... N. The components y � �i i i i

k

represent the characteristics of interest, x � � representi
l

the auxiliary information, and z � � contains priori
m

information available at the time of the design of the
survey on all units {i}, i = 1, ... N. Here k, l and m are
positive integers. We write y = (y ) , x = (x )N N

i i=1, ..N i i=1,

and z = (z ) �..N i i=1, ..N
N

As in Särndal et al (1992, p. 25 ), we assume that a
probabilistic (randomized) selection, or sampling scheme
is given. A sample is the realization of such a randomized
selection. Let N (or M if the scheme is multistage) be the
finite population size (i.e. the number of ultimate
sampling units in the population). A comprehensive
definition of a sample is that of Hajek ( 1981, p.42): it
views the sample as “a finite sequence of units or labels
of the finite population, which are drawn one by one until
the sampling is finished according to some stopping rule.
This sequence distinguishes the order of units, may be of
variable length and may include one unit of the finite
population several times”. This definition includes both
samples selected “without replacement” (WOR), and
“with replacement” (WR). In order for the set of all
possible samples S to be completely determined it is
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necessary to know a priori all the stratum and cluster “size” of the psu {hi} is z = M , i = 1,...N , h = 1,.. L.
sizes and their respective sample sizes or expected We set z =M . Suppose n �2 psu’s are selected with
sample sizes. If so, S is well defined, since every label replacement from the N psu�s in the hth stratum with
in the finite population must have a positive probabilities p = M / M , i = 1,...N , h = 1,.. L, at
probability of selection. Under a (WOR) scheme, a each draw. The selection is done independently in each
sample can also be viewed as a subset of labels or units stratum, and independent sub-samples are taken within
from the finite population U and we may use this those psu’s selected more than once �
conceptual view of the sample when it is more
convenient.

In the literature, a design p associated with a sampling
scheme is a probability function on the set of all
possible samples under this scheme (see Särndal et al.
p.27, or Hájek 1981, p. 21). Our definition of a
sampling design given below is more restrictive than
the one above in that it requires measurability of p as a
function of the variables containing the prior
information.

Definition 2.2 Let N be the number of ultimate
sampling units in the population. Given a sampling
scheme, let S be the set of all possible samples under
the scheme. Let C(S) consist of all subsets of S. Let
D(z)� � be a subset of values of the prior information.m

A sampling design associated to a sampling scheme
is a function p : C(S)× � � [0 , 1] such that:m×N

(i) p(s, - ) is Borel - measurable in � , 	 s� Sm×N

(ii) p( - , z , z , ... z ) is a probability measure on C(S)1 2 N

	 (z ,...z ) � D(z)� �1 N +
m×N

We say that (S, C(S) , p) is a design space �

Without loss of generality, in all applications we will
take m = 1. Under a two stage design with N primary
sampling units (psu’s) we can carry on the design with
prior information on the N psu’s only. But the
definition of design can be extended to include prior
information on all sampling units.
In what follows, the subscript “d” refers to design
randomization.

Example 2.1 Stratified two-stage with probability
proportional to size (PPSWR). This type of design is
often used in household surveys and could be extended
to include several stages of sampling. The population
is stratified into L strata, each one containing Nh

psu’s. Let be the number of psu’s in the

population, . Each psu {hi} consists of Mhi

ultimate units, is the number of ultimate

sampling units in stratum h and . The

hi h i h
N N

h

h

h i h i h h

Definition 2.3 A finite population parameter θ is aN

Borel- measurable function defined on a subset D(y,x,z)
of � with values in � . An estimator of this finite(k+l+m)×N

population parameter associated with a design or sample
estimator is a function : S × D(y,x,z) � �, where the
domain D(y,x,z) � � , (s,
) is Borel -(k+l+m)×N

measurable and (
, y , x , z ) is C(S) - measurable�N N N

Example 2.2 Stratified two-stage PPSWR design. We
define here a sample estimator that we will use later on in
the paper. This estimator was also used by Krewski &
Rao (1981) for their work on inference from stratified
samples. In the context of Example 2.1, let the prior
information be given by the psu sizes. The finite

population mean is where

is the stratum weight, is

the finite population stratum mean, and is the total of
psu {hi} i = 1,.. , h = 1,...L. Let be an unbiased
estimator of the total for a selected psu based on
sampling at the second stage. Then a sample estimator of

the stratum mean is , where

and = 1 if psu {hk} is selected in the

h-th stratum sample at the i-th draw and 0 otherwise, k
= 1,... . Finally, a sample estimator of the mean is

given by .

The estimator is design-unbiased and design-
consistent (Krewski & Rao, 1981) �

3. SUPER-POPULATIONS
The following definition is similar to the definition of
super-population given in Hàjek (1981, p. 14).
Definition 3.1 Consider a finite population U of size N as
in Definition 2.1. A super-population associated with it
consists of a probability space (Ω, �, P) and random
vectors (Y , X , Z ), Y : Ω � � , X : Ω � � , Z : Ω � �i i i i i i ,

k l m

such that Y (ω ) = y , X (ω ) = x , Z (ω ) = z , for somei 0 i i 0 i i 0 i

ω �Ω, i = 1,...N . We denote by Y = (Y ) i=1,...N.0 i
N

Similarly, we define X and Z . We say that U is aN N
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realization of, or is generated by the super-population.
A family of distributions of (Y , X , Z ) that areN N N

given a priori is called a super-population model. We
note that the outcome ω which generates the finite0

population need not be unique �

We give below an application related to the work of
Krewski & Rao (1981). Consider a sequence of finite
populations with stratified, PPSWR designs (Example
2.2) and associated super-populations, with
clusters in stratum h and number of strata , h =
1,... . The cluster totals are the realizations
of super-population-random vectors , i=1...N ,h

h=1...L, which are stochastically m-independent within
and across strata, and are identically distributed within
strata. Krewski & Rao (1981) give conditions for
inference on the finite population means

using the design based estimators of

Example 2.2. We show that moment conditions in the
super-population yield the Liapunov- type conditions of
Krewski & Rao for asymptotic normality of the sample
mean (in the law of the design). The number of strata

� 
, as ν � 
 and the number of clusters in

each stratum remains bounded. In the following, we
omit indexing the populations.

Proposition 3.1 We assume

( ) of Krewski-Rao (1981) p.1014: ,

which implies that no strata is of disproportionate size.
If, in addition, we assume the following model - based
conditions:

( ) as ν � 
, and

, then condition ( ) of Krewski-

Rao (1981) p.1014, holds, namely:

( ) a.s. ω, where is

defined in Example 2.2.
Proof

Let (ω) = . We have to

show that (ω) stays bounded as ν�
, for the ω
generating the finite population. Since for p>1,

(3.1)

(see Chung, 1974, p.48), we have

, and hence

(ω) � (3.2)

Now, by definition of ,

� (3.3)

since M � 1 and M � N , k=1,..., N , h=1,...,L.hk h h h

Similarly, by (3.1) with N=N ,h

(3.4)

Hence (3.3), (3.4) and (C ) yield3

(ω) = (3.5)

Now, (3.5) and (M ) imply that (ω)= O(1) a.s. ω (see for1

example, Theorem 1.14, Shao, 1999) �

4. THE PRODUCT SPACE
Definition 4.1
Consider a finite population U of size N (number of
ultimate sampling units), generated by a super-population
(Y , X , Z ): (Ω , � , P) � � as in Definition 3.1.N N N (k+l+m)×N

We assume that the size N of the finite population is not
dependent on the outcome of the super-population. Let p
be a design and let (S, C(S), p) be a probability design
space defined on the finite population. Recall that given
a design p, it is necessary to have fixed the number N (or
M) of ultimate units of the population, as well as the
number and size of strata and p.s.u.’s, secondary
sampling units, etc., for the space S of all possible
samples to be well defined (before we even know the
outcome ω�Ω that will generate the finite population).
We define the product space as a measurable space given
by Ω = S × Ω with the σ-field C(S)×��d,m

Remark 4.1 Consider the elementary rectangles of
the form {s}×F, s� S , F� � . Since C(S) is a finite
collection of sets, the σ-field C(S)×� consists of finite
unions of elementary rectangles. More precisely, a
measurable set B � � in this σ-field can be uniquely
written as the disjoint union

{s}× F , A � C(S) , F � �, (4.1)s s

where all s are distinct and the F � � �s

The next result shows that a design and sample estimator
can be viewed as measurable functions in the product
space.
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Proposition 4.1 Consider a super-population
associated with a finite population U, as in Definition
3.1. Let p be a design on the finite population as in
Definition 2.2 with domain D(z). Let us assume that
the range of the Z of Definition 3.1 is contained inN

the domain, i.e., R(Z )� D(z). Let �(Z ) = σ(Z ) beN N N

the sub σ - field of � generated by Z . Then theN

design can be viewed as a C(S) × �(Z ) - measurableN

function p defined by:d , m

p (s, ω) = p(s, Z(ω)), ω � Ω, s� S (4.2)d,m

Similarly, consider the sample estimator
θ : S × D(y, x, z) � �,d

and let us assume that the range
R(Y , X , Z )� D(y, x, z). Let � =�(Y , X , Z ) =N N N N N N

N

σ(Y , X , Z ) be the sub σ - field of � generated byN N N

Y , X and Z . Then the sample estimator can beN N N

viewed as an C(S) ×� - measurable function givenN

by:
θ (s, ω) = θ (s, Y (ω), X (ω), Z (ω)), ω� Ω , s � Sd,m d

N N N

(4.3)
.Proof: Since both p(s,
) and θ (s,
) are Borel functionsd

on � and � respectively, their compositionm×N (k+l+m)×N

with random vectors (Y , X , Z ) renders themN N N

measurable with respect to the minimum sigma fields
σ(Z ) and σ(Y , X , Z ), respectively (see forN N N N

example Chow and Teicher (1997) Theorem 4, p.17) �

We next define a probability measure on the product
space (S × Ω , C (S) ×� ).
Definition 4. 2 We define the measure P first ond ,m

elementary rectangles of the product σ - field, and then
on general measurable sets expressed in their reduced
form :
P ({s} × F ) � p (s, ω) d P, s � S , F ��d ,m d,m

P ( {s} × F ) � p (s, ω) d P, A�C(S), Fd,, m s d,m s

�� , F � � .s

P is additive by definition, and hence σ-additive ����d,m

because all sets in C (S) ×� can be expressed as a
finite union of elementary rectangles �

Proposition 4.2 If B = S × F, F �� , then P (B)d , m

= P(F). In particular, P (S × Ω)=1.d , m

Remark 4.2 The σ-additivity of P and Propositiond , m

4.2 imply that P is a probability measure on thed , m

product space.

Example 4.1 Stochastic dependence in the product
space. Let Y and p denote, respectively, the super-N

population and design of Definition 4.1with YN

composed of N independent not necessarily identically
distributed random variables and p a design associated
with a "Simple Random Sample Without Replacement"
(SRSWOR) or a "Simple Random Sample with
Replacement" (SRSWR) scheme of sample size n.
Let us denote by y ={y , i�s }the values of y associateds i

N

with the units i in a sample s � S. We define the k-th
draw-selection indicators {I ,...,I } by I =1 if unit i isk k k

1 N i

selected in the sample at the k-th draw and zero
otherwise, for k=1,..., n. Then y can be written as thes

sequence of n units

y = ( y I (s), y I (s),..., y I (s)).s i i i i i i
1 2 n

Each coordinate of the sequence (representing a draw) is
the y-value of a unit of the finite population. If the design
is WR then I and I are d-stochastically independent fork l

i j

k�l and all i,j, whereas if the design is WOR the I and Ik l
i j

are d-stochastically dependent and if I =1 then I =0 fork l
i i

all l�k. The y can be viewed as a group of randoms

variables Z in Ω : Z (s,ω)� Y (ω) I (s). Thenk d,m k i i
k

whether the design p is SRSWOR or SRSWR, the Z arek

stochastically dependent random variables in the product
space, even though the original super-population random
variables Y were stochastically independent inN

(Ω, �, P): we have, for k�l,
P ( Z (s,ω)�x , Z (s,ω)�z )d,m k l

�P (Z (s,ω)�x )P ( Z (s,ω)�z ).d,m k d,m l

I ndeed ,underWOR, ,

.

Whereas under WR ,

5. CONDITIONAL PROBABILITIES
Let B � C(S)×�, and ω � Ω. We denote by B(ω) the ω -
section of B, i.e., B(ω) = {s � S � (s,ω) � B}.
Definition 5.1 Let {s}× F � C(S) × � wheres N

� = σ(Y , X , Z ) as in Proposition 4.1 , s �S and ωN
N N N *

� Ω. We define the set function :
P (B, (s , ω)) = p (B(ω), ω) = p (s, ω)d | m d, m d, m

*

Note that P is constant for s �S �d | m
*
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The set function P defined above is the (regular) thend | m

conditional probability measure on the product space,
given the marginal σ - field S ×� , as shown byN

Proposition 5.1. The σ - field S ×� summarizes ourN

knowledge of the model. The conditional density pd | m

(s,ω) turns out to be p , since the sampling designd , m

is a probability on the design space (S, C (S), p), that
is, we “recover” the design probability we started out
with. For pertinent definitions and examples the reader
is sent to Chow and Teicher (1997) pp. 223-224. One
advantage of regular conditional probabilities is that
conditional expectations may be then envisaged as
ordinary expectations relative to the conditional
probability measure (Chow and Teicher (1997),
Theorem 1, Section 7.2).

Proposition 5.1. Conditioning on the model. The set
function
P (. , .) : (C(S)×� ) × (S×Ω) �[0,1]d | m N

of Definition 5.1, is the (regular)conditional probability
measure on C(S) × � given the σ - field S ×� , andN N

P (B, s ,ω ) d P = P (B � S×F ) , for anyd | m 0 0 d,m d , m

F �� and s �S, ω �Ω.N 0 0

Remark 5.1 If in Definition 5.1 we replace � byN

�, such that � � � then we can replace � by �N N

everywhere in Proposition 5.1�

Remark 5.2 Proposition 5.1 implies that if we know
the model, then conditioning on the model (i.e. on the
σ - field S ×� ) yields a probability measure that isN

equal to the design probability measure applied to the
projections of sub-sets of S×Ω onto S.

Before we establish a sampling scheme, we usually
know what we call “prior” information, i.e., values
z =(z ,...z ) that are used for the design. Say, forN

1 N

example, the z are the cluster sizes of a CanadianN

population existing right now. Let F = {ω � Ω: Z (ω)=z i

z , i = 1,...N} We may select the sample withi

probability proportional to those sizes, but we might
want to learn about a more general population than the
finite population living in those clusters now. In this
case, we would use the prior information by
conditioning on the σ - field generated by the event
S×F and use the conditional probability measurez

P (
 | to do inference.d , m

Proposition 5.2. Conditioning on the prior
information. P (
 | is a regular conditionald , m

probability measure. Moreover, it is constant on S×Fz

: for {s}× F � C(S)×� , and s ,ω ) �S×Fs N 0 0 z

P (B| s ,ω ) = ,d , m 0 0

if P(F )>0 and equal to P (B if P(F )=0.z d , m z

Proof: P (
 | is a regular probability measure, andd , m

has the above expression, because the σ - field is
generated by a partition of S × Ω (see Example 1, section
7.2, Chow and Teicher (1997)).

Remark 5.3. Other authors also work with conditional
probability measures to do analytic inference with survey
data. Sverchkov & Pfeffermann (2000) have a different
conception of the selection probabilities (depending on
Y and X as well as Z ). However, their “parametricN N N

distribution of the sample data”, which they use to do
inference, can be thought of as the conditional probability
measure given a sample and the auxiliary data, i.e.,
P (
 | where the σ - field is generated by the eventd , m

{s}× F where s is a fixed sample andx

F = {ω � Ω: X (ω)= x , i = 1,...N}.x i i

We calculate next the conditional probability given the
“orthogonal” marginal field of the product space, namely
C(S) × Ω. Conditioning on the field C(S) × Ω represents
exploiting the control we have over the design. We
denote by P the conditional probability P given them�d m,d

field C(S) × Ω �

Proposition 5.3. Conditioning on the design. P is am�d

(regular) conditional probability measure and for sets B
� C(S)× Ω, expressed in its reduced form, {s}× Fs

A � C(S) , F ��,s

P (B, (s ω )) = p(s , ω ) dP� p(s , ω ) dP, (5.1)m�d 0 0 0 0

if s � A and 0 otherwise. If, in particular, p(s, ω ) does0

not depend on ω, then P (B,(s ω ) ) = P( )I (s ).m�d 0 0 A 0

Here I is the indicator function of the set A.A

Proof: as for Proposition 5.2, P is a conditionalm�d

probability measure and Equation (5.1) holds, because the
conditioning field is the field generated by the partition of
S× Ω given by {s x Ω, s �S}�

Thus, if the design is independent of the realization of the
super-population, inference in this conditional probability
coincides with inference in the super-population and the
design randomization can be ignored. Such is the case of
SRSWOR and SRSWR.

Example 5.1 Projection of the sample onto the model
space by means of P . In the context of example 4.1,m����d

under SRSWOR, when we project the Z - variables backk

into the model space by means of the conditional
probability P , they recover the original independencem|d
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P(Yi�min(x,z))I k

i(s0)I
l
i(s0)

Yνi
Nν , ν�1

σ2�0
nν

(σ2nν)
�1/2[�

i�sν

Yνi]

sν
nν Nν

Yνi i � sν , ν � 1

Y 2
νi i �1,...Nν ,ν � 1

of the Y : a WOR design implies that there are no creates the array:N

repetitions of the Y 's in the sample, so the sample is a { } , .i

subset of the original Y . But under SRSWR the Z 's In order to apply Theorem 27.2 pp. 359-360 , BillingsleyN
k

projected onto the model space lose their original (1995) to this array of i.i.d. r.v., we note that Lindeberg
independence. Indeed, for s �S and k�l, whether under condition is satisfied for such arrays because the i.i.d.0

SRSWOR or SRSWR, we have: r.v.’s , are uniformly integrable (see

and

by proposition 5.3.

Now, under SRSWOR, I (s ) I (s )�0 for every s �S,k l
i 0 i 0 0

and hence the terms in the double sum above with i=j
disappear. Since the Y are independent, for i�jN

P(Y�x,Y�z)=P(Y�x)P(Y�z), which yieldsi j i j

independence of the Z ’s:k

. (5.2)

Under SRSWR however, there are samples s �S for0

which I (s ) I (s )=1for some i's, and for those samples,k l
i 0 i 0

the double sum above contains terms where i=j , for
which we have . Thus, for

those samples,

.

This means that under SRSWR, for the samples s0

where we selected repeated i- labels, we cannot attain
the equality (5.2 ) and thus the Z (s ,ω) are m-k 0

dependent random variables �

Example 5.2 Asymptotic normality of the sum of
sample units when projected by P . Consider am����d.

sequence of super-populations associated with finite
populations as in Definition 3.1. We assume that
, i = 1, ... are i.i.d. r.v.’s on (Ω, �, P) with 0
mean and finite second moment . The design is
SRSWOR of size , ν = 1,.... Then

convergence in the m - distribution to

a standard normal r.v. N(0,1) .

Indeed, by Proposition 5.3, the survey design can be
ignored and we can view the selection of the sample
as a nonrandom selection of labels from , which

(27.9) of Billingsley (1995) �
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