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1 Introduction

The objective of this research is to propose a prob-
abilistic framework for inference in finite popula-
tion sampling. There are a few seminal works, like
[9], [7], [3], and [1]. They make a clear separation
of two sources of randomness for inference in finite
population sampling. The first source is the ran-
domness produced by the sampling design and the
second source is the randomness produced by the
model of the characteristic of interest. Those semi-
nal works also give an operative form to combine the
two sources of randomness. Induced by this inferen-
tial approach, a formal method to combine the two
sources of randomness will be proposed where all the
statistical statements in finite population sampling
will be well defined.

To propose a probabilistic framework for inference
in finite population sampling, the design approach
and the model approach inference will be first pre-
sented. Then, a formal method to combine the two
approaches will be proposed. This combination will
be the result of the construction of a product prob-
ability space. The elements of this product proba-
bility space will be the probability space induced by
the sampling design as well as the probability space
induced by the model of the characteristic of interest.

2 Preliminaries

First, the notation used throughout this work will be
presented. A finite population of size N is represented
by

U=1{1,...,N},

where N is not necessarily known. The characteris-
tics of interest of each element of the population are
represented by

2 =421, .28}

Here we suppose that 2 € R; K =1,... ,N. Some
times the characteristics of interest are modeled by
the set of random variables

Zy={Z,... . Zxn}.

These variables are defined over the probability space
(Q,A,Q). Here *Zy; models 24" means that 2, is a
possible value of Z;,.

The probability space (§2, A, Q) or the join proba-
bility distribution function of Z;, is known as a model
(superpopulation model in [7], [5], and [3]), for the
characteristics of interest 274.

It is important to note that the behavior of 2;, does
not change if we select a sample from U, so the model
does not have to depend in any sense on the method
of sample selection.

A sample is a subset, say s, of the population U.
To generate the samples of U we utilize a sampling
scheme. This is a sequence of experiments with the
objective to select elements of the population U into



the sample. The resulting probability of selecting
these elements will be the sampling design. More
details on sampling schemes are in the Section 1.2
of [4]. More accurate, if S is a set of samples of U,
then a sampling design is a probability function, say
P, over the o—field 2°. For practical purposes this
probability function P has to be equal to the result-
ing probability of the sampling scheme above. Also
for practical purposes, the natural set of samples S
is {sCU:P({s}) > 0}. If S has that last property,
it is called the set of possible samples of U under the
sample design P. Thus, it can be formed a discrete
probability space with the design P and the set of
samples S, (S, 2S,P)7 where the sampling scheme
plays the role of the associated experiment.

If we only use the probability space (S, 2S,P) as
source of uncertainty for inference in sampling, then
it is called the design-based inference approach (see
[9]). On the other hand, if we only use the model as
the source of uncertainty for inference in sampling,
then it is called the model-based inference approach.
This term is used in [9] and [6]. In [1], the term
prediction-based inference is used instead of model-
based inference.

Now, the principal objective of this work is to
present a formal method to combine the two sources
of uncertainty.

Before, observe that any function from S to R is a
random variable given the structure of the probability
space (S, 29, P). A special class of random variables
is

A (8) =01l k & s,
A (8) #0il k € s,

where s € S and k € U. A particular case of these
random variables is

0 si

Ik(s):{ 1 si

for all s € S and k € U. The last set of random
variables is used in the Horvitz-Thompson type esti-
mators.

k¢ s,
k € s,

Now, suppose that the prediction of the total T’

given by

T:ZZk

keld

is required. Then, a natural predictor of T is

T\ = Z N Zke.

keld

(2.1)

However, its expected value among other statistical
characteristics can not be formally calculated. This
is due to the random variables 7Z;; and the random
variables Ay = {A1,... ,An} are defined over differ-
ent probability spaces.

In the next section a method to combine the two
probability spaces will be shown. Then, a form to
redefine the random variables Z;; and N\, over the
resulting probability space will be shown too.

3 General probability frame-
work for inference in sam-

pling

In this section a formal combination of the two
sources of uncertainty will be presented.

First, the product probability space
(S x 2,25 x A, P x Q) is formed. Here S x
is the Cartesian product of S and €, 2% x A
denotes the smallest sigma field generated by the
Cartesian products {A xB: Ac2%and B e A},
and P x () is a probability function such that
(PxQ)(AxB) = P(A)Q(B), where A € 2%
and B € A. This product probability space will
be the source of uncertainty for inference in finite
population sampling.

The definition of the product probability P x Q
corresponds to the non-informative sampling design
concept (see [9] and the Chapter 1 of [2]). If the sam-
pling design is informative, we need define the proba-
bility function over 2% x A in a different manner than
above (examples of informative sampling designs can
be seen in [10]). A proposal in this direction is given
in [8].



Now, the random variables 7;; and Ay are rede-
fined on this new probability space. Let Ay, : Sx ) —

R and Z; : S x ) — R be random variables such that
Ak ((5,w)) = Mg ()
and
Z ((3,w)) = Zk (W),
for all (s,w) € S x Q and k € U. Note that it is used

the same name for the redefined variables and they
are numerically equal to the original ones.

In the previous section was pointed out that the
model of Z;; does not have to depend in any sense on
the method of the sample selection. This condition
is reflected in the following proposition as a direct
consequence of the above redefinition.

Proposition 1 The set of random wvariables Z; is
stochastically independent of the set of random vari-
ables Ny

Proof. First, if A € 2% and B € A, then the
events A x  and S x B are independent, since

(PxQ)(AxQNSxB)=(PxQ)(AxB)

Secondly, if B and B’ are two Borel subsets of R,
then for all j € U,

A H(B) =

and, for allk € U,

{s€S: \j(s)eB} xQ

Z'(B)=9x{weQ: Z,(w) € B'}.
Note that the same name for the original and rede-
fined variables again is used.

Finally if n,m < N are two integers,
A,... A,,Bq,... ,B,, are Borel subsets of R,
and {i1,... yin},{j1,--- ,Jm} C U, then using the

two above results

(P x Q) (lﬂ)\ )W

—(PxQ) )
pr( )

This equation shows that the set of redefined random
variables Z;; is stochastically independent of the set
of redefined random variables Ny. W

N,

o)

||Dg 6\3

Returning to the predictor of T given by the ex-
pression (2.1), the bias of this predictor is

D E(Zi) (E(w) - 1),

keU

where the expected values are calculated with respect
to the product probability function P x(). Therefore,
if £ (A;) =1, for all k € U, then T) is unbiased.

References [6], [2], [9], and [5] define a design-
unbiased predictor, say f, of T'. There, this predictor
is a design-unbiased predictor of T"if, and only if, for a
given design P, Ep (a =tforall (z1,... ,2x) € RY,
where t and 7 are the values of T' and f, respectively,
for each (21,...,2n). There, Ep also means expec-
tation with respect to the sampling design P.

Here this property is equivalent to

E(f—T‘Zl,... ,ZN) —0a e [PxO.
This means that the design-unbiased predictors in [6],
[2], [9] and [5] are equivalent to the model-conditional
unbiased predictors here.

In the previous references [6], [2], [9], and [5] also
define a model-unbiased predictor. There, T is a
model-unbiased predictor of T' if, and only if, for a

given model Q), Eg (T— T) =0forall s e S Eg

means expectation with respect to the probability
function (). Here this property is equivalent to

E(f—T‘)\l,... ,)\N) —0a e [PxO.



This means that the model-unbiased predictors in
the sampling literature are equivalent to the design-
conditional unbiased predictors here.

Moreover, [2] and [9] define a QP-unbiased predic-
tor. There T is a (QP-unbiased predictor of T' if, and
only if, for a given P and @, EqFEp (f— T) =0.
Here a QP-unbiased predictor is only an unbiased
predictor. In the Chapter 4 of [2] is pointed out
that a design-unbiased or model-unbiased predictor
is a QP-unbiased predictor. Similarly here, it is easy
to see that a model-conditional or design-conditional
unbiased predictor is an unbiased predictor, since

E(f—T) - E[E (f—T‘Zl,... ,ZN)}

- E[E(:F—T‘Al,... ,AN)}.

Another term coined in [5] is the anticipated vari-
ance. This is defined as

EoEp [(f—T)T — [Eabr (f—T)r.

Here the anticipated variance
Var (f — T) and it can be expressed by

is equivalent to

Var (T-7) = msE (T) - B2(T),

where B (f) is the bias of the predictor 7. In [5] and

[1] they use this quantity to evaluate the efficiency of
predictors.

Observe that the anticipated variance can be ex-
pressed as

Var (f—T) = Var [E (f—T‘ T ,ZN)}
+E [Var (f—T‘ T ,ZN)}
= Var [E (f—T‘ Ap.. ,AN)}
+E [Var (f—T‘ AL, .. ,AN)}.
If T is a model-conditional unbiased predictor, then
Var (f—T) - E [Var (f—T‘ T ,ZN)}

- E [Var (ﬂ T ,ZN)}

A similar statement can be found in [5]. Under the
same condition, the anticipated variance is equal to

MSE(T) = B(T%)+B(1?) - 28 (T7)
B(T?) + B (1?)
_9E [TE (f‘ T ,ZN)}

= B(7%)-B(1%).

(3.1)

Furthermore, if Tisa design-conditional unbiased
predictor, then

Var (f—T) :E[Var (f—T‘)\l,... ,AN)}.

As was the case before, a similar statement can be
found in [5]. Also under the same condition, the an-

ticipated variance is the M SE (f) but it has not the

same expression like (3.1).

One particular case of the predictor (2.1) of T is
the Horvitz-Thompson predictor of T. This predictor
is defined by

T = Z EZIW

T
ke 'k

provided that 7, > O for all £ € U. This is a model-
conditional unbiased predictor, since F (Ij) = 7, for
all £k € U. However, it is not necessarily a design-
conditional unbiased predictor.

The MSFE of the predictor T is equal to:

> %E (Z2)+> Z;kaE (ZjZ) — E (T7).

keU jEREU

It is not difficult to show that an unbiased estima-
tor of this M SFE is given by



provided that 7, = E (I;1;) > 0 for all j # k € U.

The objective in presenting the above statistical
statements is to demonstrate the utility of the prod-
uct probability space proposed in this section.

4 Conclusions

The principal point of the probability framework
presented here is as follows. If the two sources
of randomness for inference in finite population
sampling are required, first the combination of
the two approaches has to be formalized. This
was made proposing the product probability space
(S x 2,25 x A, P x Q) and redefining the random
variables Z;; and )y. Then the calculation of any
statistical characteristic can be made in the formal
way. Examples of these statistical characteristics are
the bias and anticipated variance of any predictor of

T.
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