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SUMMARY
A basic estimation strategy in sample surveys is to
weight units inversely proportional to the probability of
selection and response. Response weights in this
method are usually estimated by the inverse of the
sample-weighted response rate in an adjustment cell,
that is, the sum of the sampling weights of respondents
in a cell to the sum of the sampling weights for
respondents and nonrespondents in that cell. We show
by simulations that weighting the response rates by the
sampling weights to adjust for design variables is either
incorrect or unnecessary. It is incorrect, in the sense of
yielding biased estimates of population quantities, if the
design variables are related to survey nonresponse; it is
unnecessary if the design variables are unrelated to
survey nonresponse. The correct approach is to model
nonresponse as a function of the adjustment cell and
design variables, and to estimate the response weight as
the inverse of the estimated response probability from
this model. This approach can be implemented by
creating adjustment cells that include design variables
in the crossclassification, if the number of cells created
in this way is not too large. Otherwise, response
propensity weighting can be applied.

1. INTRODUCTION
Weighting is the standard method of

nonresponse adjustment for surveys subject to unit
nonresponse, where entire interviews are missing due to
noncontact or refusal to answer the questionnaire.
Respondents and nonrespondents are classified into
adjustment cells based on covariate information
recorded for both groups, and respondents in cell c are
weighted by the inverse of the response rate in cell c.
The sampling weight for each respondent is then
multiplied by this nonresponse weight to obtain a
combined weight for subsequent analysis.

Weighting for nonresponse is a natural
extension of weighting for sample selection. The
sampling weight (say 1−

iπ ) of a sampled unit i is the
inverse of the probability of selection, and can be
interpreted as the number of units in the population that
unit i is “representing”. In particular suppose iy is the
value of a survey variable Y, and T is the population
total of Y. In the absence of nonresponse a natural
estimator of T is the Horvitz-Thompson (HT) estimator1

ii y∑
−1π , where the sum is over sampled units. The HT

estimator is an unbiased estimator of T with respect to
the randomization distribution. Although it can have
unacceptably high variance2, it is a useful all-purpose
estimator in large samples.

In the presence of nonresponse, let 1−
iπ be the

sampling weight and iw the nonresponse weight for

responding unit i. The product ii w1−π can be interpreted
as the number of units in the population represented by
unit i. An obvious extension of the HT estimator of T is
then

iii ywT ∑= −1ˆ π (1)
where the sum is over units that are sampled and
respond. This estimate is approximately design
unbiased for T, provided the respondents in cell c are a
random subsample of the sampled units in cell c. Since
covariate information for unit nonresponse adjustments
is often limited, this proviso is often a hope rather than
an expectation. However, it is often plausible that unit
nonresponse adjustment at least reduces the bias.

Note that iw is a sample quantity estimated

from data, unlike the sample weight 1−
iπ which is

determined by the sample design. This paper concerns
the form of iw for unequal probability samples, more
precisely for samples where the sampling weights are
not constant within the adjustment cells. Suppose
respondent i falls in adjustment cell c. A naive choice is

iw =1/ cφ̂ , where cφ̂ is the unweighted response rate

cφ̂ = ++ cc nr / , (2)

and +cn and +cr are the number of sampled and
responding individuals in cell c. If the sample weights

are not constant within cell c, cφ̂ is not an unbiased
estimate of the population response rate in cell c (that
is, the proportion of the population that would respond
if sampled). An (at least approximately) unbiased
estimate of this quantity is the weighted response rate

cφ̂ = ∑∑
∈

−

∈

−

cSk
k

cRk
k

11 / ππ , (3)

where cS and cR denote the set of units in cell c that are
sampled, and the set that are sampled and respond,
respectively. One might compute the nonresponse
weight in (1) as the inverse of the weighted rate in (3).

Should response rates be weighted, as in Eq.
(3), or not weighted, as in Eq. (2)? Platek and Gray3
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discusses both methods, but draw no conclusions about
which is to be preferred in practice. In a review of
Census Bureau adjustment procedures, Chapman,
Bailey and Kasprzyk4 state that “nonresponse
adjustment factors are usually either the inverse of the
survey’s unweighted nonresponse rate, or an analogous
ratio based on weighted survey counts”. Practice
appears to favor weighted response rates. A recent
enquiry to the list server for the Survey Research
Methods Section of the American Statistical
Association suggests that weighted response rates (3)
are routinely used by the major survey research
organizations. For example, the survey design for the
National Health Interview Survey5 oversamples Black
and Hispanic households relative to other of races
within Secondary Sampling Units (SSU’s), and then
computes weighted response weights (3) within
adjustment cells consisting of SSU’s. To judge from
their description, the nonresponse weights for the
National Crime Survey appear to be unweighted, but
cross-sectional weighting adjustments for the Survey of
Income and Program Participation are currently
weighted6.

We argue in this paper that neither of these
approaches is correct. The correct approach is to use
the inverse of the unweighted rate (2), for adjustment
cells that condition on both covariate and design
information. In essence, the argument is that (a)
adjustment cells should be created to be homogeneous
with respect to the propensity to respond; (b) if
adjustment cells are created in this way, then weighting
the nonresponse rates is unnecessary and inefficient,
that is, it adds variance to estimates; and (c) if
adjustment cells are created that are not homogeneous
with respect to the propensity to respond, then
weighting the response rates does not yield unbiased
estimates of the means of population outcomes, even
though the weighted response rates are unbiased
estimates of the population response rates within each
adjustment cell. Given (c), the right approach is not to
weight the nonresponse rates, but rather to create
adjustment cells based on a classification of the
observed variables and the survey design variables, to
control for association between survey stratifiers and
nonresponse. Section 2 provides simulations in support
of these statements. On the other hand joint
stratification on the adjustment cell variable and Z may
achieve reduced nonresponse bias at the expense of
increased variance, if the resulting adjustment cells are
too sparse; approaches to that problem are discussed in
Section 3.

2. SIMULATION STUDY
A simulation study was conducted to provide

more insights into the variance and bias of estimators
(2), (3) and alternatives, under a variety of population
structures and nonresponse mechanisms. Categorical

variables were simulated to avoid the need for
distributional assumptions such as normality.

Description of the Population: A population of size
N=10,000 was generated on a binary stratifier Z,
observed for all units of the population, a binary
adjustment cell variable X observed for the sample, and
a binary survey outcome Y observed only for unit
respondents. Also let S denote the sampling indicator,
observed for all units in the population, and R the
response indicator, observed for all units in the sample.
The joint distribution of these variables, say

],,,,[ RSYXZ , can be factorized as follows:

],,,,[ RSYXZ =

],,,|][,,|][,|][|[ SYXZRYXZSXZYXZ ;
The distributions on the right side are then defined as
follows:
(i) Distribution of Z and X.

The joint distribution of [Z,X] was
multinomial, with 3.0)0( === XZpr ,

4.0)1,0( === XZpr , 2.0)0,1( === XZpr , and

1.0)1( === XZpr , yielding the population counts in
Table 1.

Table 1. Population Counts of X and Z.

Z=0 Z=1
X=0 3064 2079
X=1 3931 926

(ii) Distribution of Y given X, Z
Values of the survey variable Y were generated

according to the logistic model:
+== 5.0),|1(log ZXYitP

))(()()( ZZXXZZXX XZZX −−+−+− γγγ (4)

for five choices of γ = ),,( XZZX γγγ chosen to reflect
different relationships between Y and X and Z. These
choices are displayed in Table 2, using conventional
generalized linear model notation.

Table 2: Models for Y given X, Z.

Model Xγ Zγ XZγ
1. [XZ]Y 2 2 2
2. [X+Z]Y 2 2 0
3. [X]Y 2 0 0
4. [Z]Y 0 2 0
5. [ φ ]Y 0 0 0

Here the additive logistic model is labeled [X+Z]Y , and
sets the interaction XZγ to zero, whereas the model
[XZ]Y sets this interaction equal to 2. Models where Y
depends on X only, Z only or neither X nor Z are
denoted by [X]Y, [Z]Y and [φ ]Y, respectively.



(iii) Distribution of S given Z, X and Y.
The sample cases were assumed to be selected

from the population using stratified random sampling,
so S is independent of X and Y given Z, that is

]|[],,|[ ZSYXZS = . The probabilities of selection

were 0π = 262/6995 (about 0.04) when Z = 0 and 1π =
50/3005 (about 0.02) when Z = 1.

(iv) Distribution of R given Z, X, Y and S:
Since the response mechanism is assumed

ignorable and the selection is by stratified random
sampling, ],|[],,,|[ XZRSYXZR = . The latter is
generated by a logistic model:

+== 5.0),|1(log ZXRitP

))(()()( ZZXXZZXX XZZX −−+−+− βββ , (5)

where β = ),,( XZZX βββ takes the same values found

in Table 2, with γ replaced by β . We also ran the
simulation with a negative interaction term, but the
results were similar. As for the distribution of Y given
X and Z, this yields five models for the distribution of R
given X and Z. For example, [X+Z]R refers to R being
additively dependent on X and Z.

There were thus a total of 5*5 = 25
combinations of population structures and nonresponse
mechanisms in the simulation study. One thousand
replicate datasets were generated for each of the 25
combinations. Table 3 displays the form of nine

estimators of the overall mean ∑ ∑= −
j k jkjkYNNY 1 ,

which were computed for each data set. The first
estimator is the weighted response rate estimator (3)
based on adjustment cells X, labeled wrr(x), and the
second estimator is the analogous unweighted response
estimator (2), labeled urr(x). The next five estimators
are maximum likelihood (ML) for the assumed models
relating Y to X and Z listed in the second column of
Table 3. These estimates all have the form

∑ ∑= j k jkjkYPY ˆˆˆ , where jkP̂ = )()( ++ jjkj nnNN is

the ML estimate of the proportion of the population
with kXjZ == , , and

1. If the model for Y is [XZ]Y , then jkŶ = jky ;

2. If the model for Y is [X+Z]Y, then jkŶ =

kj 21 ˆˆˆ ααµ ++ , predicted values from an additive

logistic model fitted to the respondent data;

3. If the model for Y is [X]Y, then jkŶ = ky+ ;

4. If the model for Y is [Z]Y, then jkŶ = +jy ;

5. If the model for Y is [φ ]Y, then jkŶ = ++y .

It is interesting to note that neither of the weighting
class estimators urr(x) and wrr(x) are ML for any of the

models used to generate the data in this simulation
study. On the other hand, the estimator that weights by
the response rates in cells based on the classification by
Z and X is ML for the saturated model [XZ]Y ; this
estimator is denoted as urr(xz) in Table 3. The last two
estimators in Table 3, wrr(x+z) and urr(x+z), both

obtain the estimate the mean of Y in cell jk as jkŶ = jky .

These estimators involve response rates that are
predictions from an additive logistic model for R on X
and Z, where for urr(x+z) the cases in the logistic
regression are weighted equally, and for wrr(x+z) the
cases are weighted by the inverse of the probability of
selection. These methods are closely related to the
response propensity stratification discussed in Section 3
below.

Table 4 shows the average root mean square
error (RMSE) of the nine estimators in Table 3 over the
1000 replicate data sets, a measure that takes into
account both precision and bias. Asymptotic properties
of ML lead us to believe that the ML estimator for a
particular assumed model will have close to the lowest
RMSE when the assumed model is the same as the
model used to generate the data. Table 5 displays the
average bias over the 1000 replicates, defined to be the
average of the difference of the estimator before
deletion of cases due to nonresponse and the estimator
based on respondents alone.

A crude summary of the performance of the
relative performance of the methods is the RMSE
averaged over all problems, shown in the last row of
Table 4. Note that the best methods all stratify on both
X and Z, and have similar average RMSE:

urr(xz) = 382, ml(x+z) = 380,
wrr(x+z)=383, urr(x+z) = 381.

The methods that stratify on X but not Z are much
worse than these methods in overall RMSE:

urr(x) = 471, wrr(x) = 471, ml(x) = 443,
with the slightly better performance of ml(x) reflecting
gains in efficiency when the model is true. The methods
that stratify on Z but not X are worst of all in overall
RMSE:

ml(z) = 507, ml(null)=528,
although as expected these methods show some gains of
efficiency in populations where Y does not depend on
X.

As expected, the ML estimate for the model
used to generate the data is always best or close to best
in these simulations. The estimate for the additive
model [X+Z]Y is theoretically biased when the data-
generating model includes the XZ interaction, but in
these simulations the bias for the overall mean of Y is
modest.

The unweighted response weight estimator
urr(x) is biased and performs poorly when both Y and
R depend on Z, since in these cases the stratification on



Z cannot be ignored. Note, however, that weighting the
response weights, as in wrr(x), does not generally
correct the bias of urr(x) in these situations: wrr(x)
performs very similarly to urr(x), and in fact as we have
seen its average RMSE over all problems is the same.
Two interesting cases where wrr(x) does improve on
urr(x) are where R depends on both X and Z and Y
depends on X but not Z (specifically the models [X]Y,
[XZ]R and [X]Y, [X+Z]R), in rows 11 and 12 of the
tables). In these cases, weighting the response rates
yields unbiased response rate estimates in the cells
defined by X, and the respondent mean of Y in these
cells is unbiased since Y depends only on X. However,
the gain in weighting the response rates in these cases is
relatively minor, and (as might be predicted) ml(x) is
superior to either method in these cases. Also, the
practical importance of these cases is debatable: Y is
likely to depend on Z as well as X, since the point of
stratifying on Z is to exploit the relationship between Y
and Z. The estimator urr(xz) that stratifies on both X
and Z is robust under all of the models, and does much
better overall than either urr(x) or wrr(x).

The estimators that base the estimated
response rates on an additive logistic model, namely
wrr(x+z) and urr(x+z), perform well, though neither are
ML for any of the generating models. Unlike wrr(x) and
urr(x), wrr(x+z) and urr(x+z) both take the design
variable into account by obtaining separate estimates of
the response rate for cells that stratify both on X and Z.
Their performance is similar to ml(x+z) and urr(xz),
with wrr(x+z) doing slightly worse overall. Weighting
the logistic regressions does not appear to offer any
advantage here.

3. GENERAL STRATEGIES FOR CREATING
ADJUSTMENT CELLS.

For the relatively simple situations simulated
in Section 2, with just two strata and two values of X,
adjustment cells can be created based on the joint
distribution of Z and X. In more realistic settings, the
crossclassification of the survey design variables and
observed survey variables yields too many adjustment
cells, some of which may contain sampled cases but no
respondents. For example in the Health Interview
Survey5, weighted response weights are calculated
within second stage sampling unit (SSU), a variable
that has many levels. Joint classification by Z and X
would correspond to stratifying households within SSU
according to race, which would yield many small
adjustment cells, including perhaps some with no
respondents. Thus a strategy is needed for reducing the
number of adjustment cells. Two such strategies are
discussed in this section.

Let D denote the complete set of variables
recorded for both respondents and nonrespondents,
including design variables and any survey variables

measured for both groups. (For unit nonresponse survey
variables are usually entirely absent for
nonrespondents, but in panel surveys variables from
earlier surveys may be available). We say that
nonresponse is ignorable if the distribution of the
incomplete survey variables is the same for respondents
and nonrespondents with the same value of D.
Formally, if R is an indicator for response or
nonresponse, Y is the set of survey variables missing for
nonrespondents, then nonresponse is ignorable if

R C Y | D (6)
where C denotes independence. Adjustments for
nonignorable nonresponse are usually highly
speculative, and all the methods discussed in this article
effectively assume that nonresponse is ignorable. Thus
we assume that (6) holds.

We have noted that adjustment cells defined
by each distinct value of D may be too small and yield
weights that are undefined or too unstable. Thus the
problem becomes to define adjustment cells based on D
that remove nonresponse bias, whilst avoiding sparse
cells that lead to unstable weights, and resulting
estimates with large variance. Two sensible objectives
in defining adjustment cells are (a) to choose cells that
are homogeneous with respect to outcome variables Y,
and (b) to choose cells that are homogeneous with
respect to the probability of response. Theory
supporting both these choices is presented in Little7,
who considers two methods for creating adjustment
cells when D is extensive: (i) predictive mean
stratification, motivated by objective (a), groups units
according to predicted means of Y given D, estimated
for example by regression of Y on D based on the
responding cases; (ii) response propensity stratification,
motivated by objective (b), groups units according to
their estimated probabilities of response, computed for
example by logistic regression of the response indicator
R on D based on sampled cases. Little7 showed that if

)(ˆ DY denotes the predicted mean of Y given D, and

)(ˆ Dp denotes the predicted probability of response
given D, then (with some additional conditions
described in the paper), (6) implies that

Y C R | )(ˆ DY , (7)
and

Y C R | )(ˆ Dp . (8)
In particular assuming ignorable nonresponse and

ignoring the effects of estimating )(ˆ DY and )(ˆ Dp ,
weighting based on either of these methods of
stratification removes nonresponse bias in estimating
population means. Of these two methods, only response
propensity stratification also removes bias of estimates
of means for subclasses of the population7. This theory
supports the idea of basing weights based on a model
for the propensity to respond on D, where the latter



includes the design variables that determine the
sampling weight. This approach is closely related to the
urr(x+z) method in the simulation study, which was
competitive with the best methods. Weighting the
logistic regression by the sampling weight, as in
wrr(x+z), did not offer any advantage in our
simulations, and by analogy with the simpler case of
stratification on x alone, we do not expect any
advantages of weighting in more complex situations.
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Table 4. 10000*RMSE of 1000 Replicate Samples (n=312).

*ML estimate of ∑ ∑= −
j k jkjkYNNY 1

.

Lowest RMSE Shaded in Grey.

Table 5. 10000*(Average Bias) of 1000 Replicate Samples (n=312)

Estimator, and Assumed Model where Applicable
Generated Model

for Y and R
[ ]Y [ ]R

urr(xz) wrr(x) urr(x) ml(x) ml(z) ml(null) ml(x+z) wrr(x+z) urr(x+z)
[ XZ]Y [ X]Y [ Z]Y [ φ ]Y [ X+Z]Y

1 XZ XZ -11* 288 246 -163 539 366 -7 -56 -6
2 XZ X+Z 2* 392 288 -34 595 495 -56 1 2
3 XZ X 1* -1 -1 -358 630 308 52 -1 0
4 XZ Z -1* 365 335 -108 -1 -78 -1 -3 -1
5 XZ φ 8* 6 7 -362 7 -254 7 5 6
6 X+Z XZ -18 393 354 -207 597 386 -18* -116 -54
7 X+Z X+Z 0 656 568 57 759 619 -2* -5 -1
8 X+Z X -7 -10 -7 -525 663 269 -5* -12 -9
9 X+Z Z -5 473 446 -151 -10 -121 -5* -7 -5
10 X+Z φ 5 1 3 -516 7 -381 4* 2 4
11 X XZ 17 16 -53 17* 684 799 17 -21 31
12 X X+Z 3 4 -178 2* 761 893 -1 1 3
13 X X -3 -4 -6 -3* 748 927 -1 -5 -4
14 X Z -12 -9 -58 -13* -5 39 -12 -11 -12
15 X φ 0 0 2 -8* 0 146 0 0 1
16 Z XZ 1 423 444 -213 0* -368 2 -33 -22
17 Z X+Z 1 592 662 -20 1* -291 0 0 1
18 Z X -9 -25 -23 -545 -14* -665 -10 -11 10
19 Z Z -3 514 527 -157 -3* -167 -3 -4 -3
20 Z φ 1 -3 -1 -531 0* -552 0 -2 0
21 φ XZ -5 -9 -10 -4 -3 0* -6 -6 -6
22 φ X+Z -25 -21 -22 -28 -20 -23* -28 -27 -26
23 φ X -8 -6 -6 -2 -4 0* -4 -8 -8
24 φ Z 14 11 11 17 14 16* 14 14 14
25 φ φ 0 0 0 2 0 2* 0 0 0

Mean -2 162 141 -154 238 95 -3 -12 -3
Mean of
Absolute

Average Bias 6 169 170 162 243 327 10 14 9

*ML estimate of ∑ ∑= −
j k jkjkYNNY 1

.

Smallest Absolute Average Bias Shaded in Grey.

Estimator, and Assumed Model where Applicable
Generated Model

for Y and R
[ ]Y [ ]R

urr(xz) wrr(x) urr(x) ml(x) ml(z) ml(null) ml(x+z) wrr(x+z) urr(x+z)
[ XZ]Y [ X]Y [ Z]Y [ φ ]Y [ X+Z]Y

1 XZ XZ 398* 513 494 438 655 526 398 399 391
2 XZ X+Z 406* 582 534 410 704 618 410 406 405
3 XZ X 419* 421 419 528 730 462 412 418 419
4 XZ Z 364* 527 511 384 376 385 366 363 366
5 XZ φ 361* 365 365 502 364 430 361 361 362
6 X+Z XZ 381 562 536 441 696 531 382* 400 381
7 X+Z X+Z 387 770 706 403 838 715 384* 390 387
8 X+Z X 392 406 399 646 750 437 388* 393 391
9 X+Z Z 367 608 588 404 378 402 367* 368 366

10 X+Z φ 334 346 343 612 349 513 334* 334 333
11 X XZ 397 421 434 391* 779 875 395 398 395
12 X X+Z 397 419 474 390* 838 956 391 398 396
13 X X 425 423 424 394* 842 986 422 424 425
14 X Z 346 368 376 346* 369 369 346 348 346
15 X φ 364 362 363 343* 380 381 363 363 364
16 Z XZ 360 558 577 437 338* 515 358 368 362
17 Z X+Z 381 696 762 385 344* 466 376 382 381
18 Z X 375 390 393 674 350* 757 372 372 372
19 Z Z 348 617 628 393 346* 398 347 348 348
20 Z φ 338 353 353 640 337* 658 337 337 337
21 φ XZ 409 433 439 406 390 383* 408 412 408
22 φ X+Z 408 437 455 403 372 364* 404 409 408
23 φ X 421 415 415 383 401 354* 416 417 417
24 φ Z 388 415 416 386 388 386* 388 388 388
25 φ φ 374 371 371 341 372 341* 372 372 372

Mean 382 471 471 443 507 528 380 383 381


