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Abstract

There have been recent advances in the area
of probability proportional to size sampling. Rela-
tively new methods are PoMix sampling and Pareto
sampling. Both are advocated as potential standard
methods for conducting unequal probability sam-
pling without replacement, with inclusion probabil-
ities proportional to a known size measure. This
paper is a comparison of these two designs and
model based stratified sampling. From both an effi-
ciency and practical point of view, we discuss various
strategies (design and estimator combinations) that
a survey statistician can choose from.

1. Introduction

In sampling from finite populations the topic of
how to use auxiliary information is frequently dis-
cussed. Here our discussion is restricted to auxiliary
information used in connection with sample selection
and estimation. Roughly, we may divide the ways
survey theory deals with auxiliary variables into two
different categories: (i) Use of auxiliary variables at
the sampling design stage, (e.g. for stratification or
probability proportional-to-size sampling). (ii) Use
of auxiliary variables at the estimation stage, for
example through Generalized regression estimation
(GREG), calibration and imputation methods. This
paper treats the recent increased focus on proba-
bility proportional-to-size without replacement sam-
pling, (7wps sampling), and we aim to highlight some
issues concerning the interaction of using auxiliary
information at the sampling stage and at the esti-
mation stage.

The question the survey statistician seeks to an-
swer is: Which strategy, (combination of design and
estimator), should be used to obtain as precise esti-
mates as possible? If we ignore non-sampling errors,
this question is reduced to finding the strategy that
minimizes sampling errors, which in turn, (if unbi-
ased point estimators are considered), means finding
the strategy that yields the smallest point estima-
tor variance. However, this search for efficiency and
optimality must be balanced by considerations that
make the chosen strategy simple to implement, e.g.
simple sample selection schemes and computing al-
gorithms.

Constructing a mps sampling scheme with de-
sirable properties is one way of using the strength
of an auxiliary variable to find an efficient sampling
design. Relatively new 7mps designs are PoMix de-
signs proposed by Kroger, Séirndal and Teikari (1999,
2000), and order sampling designs like Pareto mps
and sequential Poisson 7ps (see Rosén (1997), Saave-
dra (1995) and Ohlsson (1995) respectively). From
a strategy perspective a comparison between the re-
sults given in these papers is needed. Furthermore,
in situations when the survey statistician considers
using these schemes, he/she should also pay atten-
tion to other alternative strategies. Omne such al-
ternative that we choose to consider here is model-
based stratified simple random sampling (mb-STSI)
proposed by Wright (1983).

1.1 Background and notation

The setup is a situation where direct ele-
ment sampling from a finite population, U =
{1,...,k,..., N}, is possible. Our objective is to es-
timate a population total, t, = >, i, Yk, of a study
variable y. We have access to () auxiliary variables,
whose values ug, (¢ =1,...,Q), are known for ev-
ery element k£ in the population, and we want to
make the best possible use of this information.

For every element in the population we have an
auxiliary vector u, = (uyg,... ,qu)/7 and with a
suitable function A(-), we can create a strictly pos-
itive size variable z = h(ug), (k=1,...,N), and
use it in a wps sampling design denoted 7ps(z).
Hence, we use z to compute first order inclusion
probabilities 7, = nz/t,, (henceforth m, < 1 is
assumed for every k € U), and select a (set) sample
s C U of size n,, where E(n,) = n.

To use the auxiliary variables in the estimation
stage we can use GREG estimation. The @) auxiliary
variables are then used to form another set of vari-
ables, x1,.. ..,xy, le. for k =1,...,N, we
have a known vector xi = (Z1k, -, Zjky - - - x_]k)l.

The GREG estimator for ¢, can be defined as
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where ¢, is suitably chosen constant.

1.2 A brief review of theoretical results on
“optimal” choice of strategy

Although a 7ps sampling design combined with
the 7 estimator, or a non-7mps sampling design com-
bined with GREG estimation can be a good strategy,
a natural alternative when we seek an efficient use
of the auxiliary information, would be to combine
wps sampling with GREG estimation. Theoretical
results that support this exist, e.g. see (a) Result
12.2.1 in Sdrndal, Swensson and Wretman (1992)
and (b) Theorem 1 or Theorem 4.1 respectively in
Cassel et. al. (1976, 1977), (for a modification of the
latter see also Theorem 2.1 in Rosén (2000).) It is
interesting to note that, although these two results
are derived from different angles of approach, the
practical advice they carry is similar. Both results
address the strategy issue in terms of an underlying
superpopulation model, £, which we can write as

i = x,8 + e,
with
Ee(er) =0
Ve(er) = o3
Eg(é‘ksl) == 0; k ;ﬁ l

where, (for k = 1,...,N) 0% are, (often through a
function of ug), known constants.

Both result (a) and result (b) above advocate
a strategy with GREG estimation combined with a
nps(o) design, ie. mp X Ok, T = NOR/ Y [ Ok
Rosén (2000) seems to suggest using the GREG es-
timator (1) and (2) with ¢; = o2, while Sérndal et.
al. (1992) do not impose the restriction ¢, = o%.

Although these results should be considered
when planning a survey, their potential benefit are
based on our belief about the structure of the popu-
lation for one single study variable! Therefore, they
are of limited use, unless we study or have knowl-
edge of the likely side effects on efficiency that a cer-
tain choice has for all our important study variables.
The choice of size measure z, is especially delicate.
It is only made once and this choice affects the effi-
ciency of all the estimators. For example, if 0% = zy,
(k=1,...,N), for one important variable, then our
‘optimal’ strategy would be a mps(y/z) design com-
bined with fgreg with ¢, = zg, but for other vari-
ables where 02 # z,, selecting the mps(y/z) design
would not be ‘optimal’. Although we can use differ-
ent cp-weighting in fgmg for those variables, using
the 7ps(y/z) in the sampling stage might severely
jeopardize the efficiency of the estimates. A way
to study the effect of choosing a 7ps(o) design with

non-optimal (r% is presented in Holmberg and Swens-
son (2001).

Besides the fact that for some variables there
will be unavoidable losses in efficiency, due to ‘non-
optimal’ inclusion probabilities, other deviations be-
tween an assumed model and reality also affect how
well a chosen strategy works. The practising survey
statistician must also carefully choose the auxiliary
vector x; and at the same time keep estimation as
simple as possible, (the latter primarily to make pro-
duction run smoothly). Based on a common design,
we ideally seek one simple and robust strategy for
every study variable, where only moderately large
losses in efficiency are made if model assumptions
are poorly fulfilled. In the following we present parts
of an ongoing study to compare aspects of different
strategy choices.

2. 7ps sampling designs

Many sample selection schemes which imple-
ment wps sampling designs have been proposed over
the years. However, if we exclude random size de-
signs, it has turned out to be hard to devise a scheme
for arbitrary sample size n that has a number of de-
sirable properties, e.g. (a) the actual selection of
the sample is relatively simple, (b) all first-order in-
clusion probabilities are strictly proportional to the
size variable, (¢) the design admits (at least approx-
imately) unbiased estimation of the design variances
Vp(tr) and Vi (£ greq)- If we also want to use the tech-
nique of permanent random numbers (PRN) in the
sample selection, (which is desirable in large survey
organizations), it will be even harder.

We will give a very brief account of, and a few
comments on, Pareto mps sampling, and Poisson
mixture (PoMiz) sampling. These designs will be
compared to Wright’s model-based stratified simple
random sampling as it is outlined in chapter 12 of
Sérndal et al (1992). All these designs have sim-
ple algorithms for sample selection, there are sug-
gested solutions for variance estimation and they
may be alternatives for the practitioner when the
use of the PRN technique is desirable. With regard
to desirable property (b) above, this is only approx-
imately fulfilled. Since mb-STSI is well described in
the references, this section focuses on the link be-
tween Pareto mps and fixed size PoMix based on a
Pareto mps sampling scheme. Thus, although appli-
cable to a wide range of mps sampling schemes, here
we will present PoMix merely as a transformation of
the target inclusion probabilities of Pareto mps.



2.1 Pareto mps

The Pareto 7mps design has the following sample
selection scheme: (i) For every element k € U, com-
pute target inclusion probabilities A\, = nzg/t.. (ii)
Generate N independent standard uniform random
variables 01,02,...,0y and compute ranking vari-
ablest:6;6(17/\;6)/(176;6))\;6 (k:L,N)
(iii) The elements with the n smallest () then con-
stitute the sample s.

To estimate the population total ¢,,, Rosén con-

siders £y = e — 4k . Tk which is very close
—8 Ak Las Ty Ak

to the 7 estimator, if \; are very close to 7 for

(k=1,...,N). The variance of t, is, unless n and

N are very small, and/or the pattern of \; is unfa-
vorable, well approximated by

AV(H) = =Y A @)
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Pareto mps has several advantages: (i) The sampling
scheme is very simple. (ii) It enables control of the
sample size. (iil) For order sampling designs with
fixed distribution shape, Rosén (1997) shows that
Pareto wps is optimal, in the sense of having the
smallest asymptotic variance of £y. (iv) A variance
estimator is suggested by Rosén

— > (=X (4)
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If N and n are reasonably large, the \j, are close
to the true 7, and the bias of y, the approximation
error of (3) and the bias of the variance estimator
(4) are negligible. Aires and Rosén (2000) provide
guidelines for when we can expect the bias of # to
be small for different size and shape patterns of the
size measures. Hence, assuming that the A\, are close
approximations of g, the Pareto mps has several
advantages. Still, only limited studies exist for a
strategy combining Pareto sampling with the GREG
estimator, (see Rosén (2000) and Holmberg (2000)).
We therefore need ideas for GREG estimation under
the Pareto 7ps.

2.2 GREG Estimation under Pareto 7ps

Since the exact inclusion probabilities for
Pareto mps normally are unknown, we cannot de-
rive the GREG estimator exactly. However we can
form a related ‘quasi GREG-estimator’ by replacing
the Tk by /\k:; ie.
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with g = 1 + (t, — fm)l'i‘_lxk/ck where T—1 =
N\ =1

(ZkES ﬁ) . (If \g is a close approximation to
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71, for every k € U, £ygreq Will be close to £ g.c4.)
We also require that there is a simple and ad-
equate way of estimating the variance V,(f;greq)-
Combining Result 6.6.1 in Sérndal et al. and equa-
tion (4) suggests the variance estimator
N n

V(tqgrey) n—1 Zs(l - )‘k) (5)
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where e, = yr, — XIk]A3>\. It should be noted, that the
above suggestions are based on several approxima-
tions. The effect of these approximations are not
fully explored. However, the studies shown here, in
Rosén (2000) and Holmberg (2000), indicate that
this approach is practically feasible.

2.3 PoMix sampling

At the sampling stage the surveyor has full dis-
posal over the size measures z. For a possible gain in
precision of the point estimators the size measures
and thereby the inclusion probabilities may be trans-
formed. When considering the Pareto nps design,
there are two reasons why it is wise to take a closer
look at the size measures. Firstly, as pointed out
by Aires and Rosén, if the shape pattern of the size
measures does not meet certain criteria, we can get a
bias which is unacceptably large. Secondly, by mod-
ifying the size measures we can in certain situations
also get a more efficient design. We give a tentative
explanation for this second statement linked to the
distribution of zj (or Ag). The finite populations for
which 7ps sampling is suggested are often skewed to
the right with respect to z, (e.g. business popula-
tions where z is some measure of company size.). It
is well known that elements with very small inclusion
probabilities can cause problems. We risk abnormal
estimates and a high sample to sample variability for
our estimators, since /\,;1 of these small elements,
are large, this will especially be the case if there
are many such elements in the population and if the
design is such, that the probability is large that at
least some of them will be included in the sample.
A method which still keeps the advantages of the
mps design, but where we automatically avoid the
risk of elements with abnormal weights is desirable.
Although the overall effect on precision is uncertain,
time can be saved, because elements with this prop-
erty often have to be singled out and treated in some



special way as extremes. Slightly smoothing the size
measures before selecting a Pareto mps sample can
be a way to achieve this. Such smoothing is offered
by the Pomix approach.

A fixed size PoMix transformation based on the
Pareto mps sampling scheme is attained in the fol-
lowing way: For a given n, and for every k € U,
make the linear transformation )\Ik =w+A(1-w/f)
of the target inclusion probabilities in the Pareto
mps scheme of section 2.1. Here w is a parameter in
the interval (0 < w < f), (called Bernoulli width
in Kroger et al.) and f = n/N. As before, A\
(0 < Mg < 1) is the original Pareto mps target in-
clusion probabilities.

It is easy to see that when w = 0 we have the
‘original’ Pareto mps design, and that the design re-
duces to simple random sampling when w = f. Con-
sequently, as w moves from 0 to f, the variance and
the range of /\I,c7 will decrease. In fact, since Ay is the
original target inclusion probabilities of the Pareto
mps, it follows from choosing w > 0 and applying the
proposed transformation that:

Ae = Mefor{keU: N\ <X, M/N = f}
e < Mefor{keU: >, M/N=f}

Thus, the elements in Pareto mps with a target in-
clusion probability less than or equal to the sampling
fraction, will have an increased modified target in-
clusion probability, and the elements with a target
inclusion probability larger than the sampling frac-
tion will have a decreased modified target inclusion
probability.

If the finite population is skewed to the right
with respect to A\, the proportion of elements with
an increased target inclusion probability due to
transformation will be larger than the number of el-
ements with a decreased ditto. If the shape pattern
of the size measures is such that we suspect the bias
of £y (and fg4re) to be non-negligible, (see Aires
and Rosén), this modification can automatically, if
not adjust, so at least reduce this bias by changing
the shape of the target inclusion probabilities. Fur-
thermore by increasing the smallest A\, the risk of
abnormal estimates due to extreme weights become
less and the estimator variance could decrease.

A perspective which deserves attention, not re-
garded in Kroger et. al, concerns the properties of
Pomix sampling when A\ o« o, (i.e. according to
the theoretical results for ‘optimal’ strategies men-
tioned in section (1.2).)

At the estimation stage we can for this fixed size
PoMix design, apply the same principles for GREG
estimation as described in section 2.2. In PoMix sam-

pling you have to decide what value of w to choose.
The survey statistician who considers PoMix has to
make this choice on grounds of rough guidelines and
practical experience. In the comparisons of the next
section we will use the value w = 0.3f tentatively
suggested by Kroger et. al.

3. A simple comparison of strategies

A small numerical example illustrates some is-
sues when a strategy involving a 7ps design is to
be chosen. We have a finite population, Holmberg
and Swensson (2001), of N = 1000 elements, two
study variables y; and yo, and one auxiliary vari-
able highly correlated with the y-variables. The lat-
ter is used both as size variable z, and as regressor
x in the GREG estimator. The relationship is such
that it reasonable to believe, that for y; as well as
y2 the finite population scatterplot is well described
by a model E¢(yx) = Bk, Ve(er) = Ve(yr) = 0% =
cx) = cz], and E¢(ege;) = 0, where 7 is a constant
reflecting the degree of heteroscedasticity.

In 7ps sampling, statisticians often use (due to
tradition, belief, or analytical neglect of previous
surveys) designs with inclusion probabilities propor-
tional to /z or z. But, if we strive for a wps(o)
design, recommended by the results mentioned in
section (1.2), we then implicitly assume v = 1 and
v = 2. For the designs described and the design mb-
STSI, we will compare this practice, with the re-
sults we get when exploiting better knowledge of ~.
As estimators we use fy, variants of f,g,¢, in the
GREG family for the Pareto  TPS based schemes and
their counterparts t. and tgreg for mb-STSI. For
tqgreg and tgreg the following constants cj are used:
(tl Ck = Ik_) (t2 C = )\k/(l - )\k)) (tg C = wk)
and (f4 : ¢, = 1). If we knew the true value of v,
t; would, in combination with a 7ps(z] /2 ) design,
be an efficient strategy choice accordlng the theo-
retical results; £y is used by Kroger et al. (1999);
t5 simplifies to the well known ratio estimator with
gk =ty /fw and i, is a simple regression estimator. In
our population the ML estimate of v according to the
method suggested by Harvey (1976) is 4; = 1.09 ~ 1
for y1, and 4, = 1.45 = 1.5 for ys. Depending on
which variable y; or yo that is considered to be the
most important, reasonable approaches for the sur-
vey statistician who seeks an efficient strategy, would
then be to apply a WpS(Z;/Z) or a wps(zk/ ) design.
As benchmark designs we consider mps(z}) (assum-
ing v = 2) and simple random sampling, (SRS). This
gives in total twelve different designs that, together
with the studied estimators add up to 60 different
strategies. In other words, for each of three differ-
ent sampling schemes, (original Pareto mps (w = 0),



Pareto mps with PoMix transformation (w = 0.3f),
and mb-STSI with 10 strata), we study four differ-
ent transformations of the auxiliary variable as a size
variable, five estimators for the Pareto mps based
sampling schemes each, and five for mb-STSI.).

Table 1 shows the estimated estimator vari-
ances, S2(f;) of the strategies, (where p denotes the
designs under counsideration and i the estimator), rel-
ative to the estimator variance for SRS combined
with the m-estimator, SZ,¢(fr). The estimates,
Sg(fi), are based on 10000 independent samples of
size n = 100 for each design, and the table cells
contain the ratio R = S%,q(tx)/S2(t). SZpg(ts) is
5.51FE6 for y; and 3.87TE8 for y, and the higher the
value of R the higher is the strategy effect compared
to SRS and the m-estimator. The ratio of the cell val-
ues can be used to compare two different strategies.
For example by comparing Pareto wps(z,i/ 2) and #;
with mb-STSI WpS(Z;/Z) and £, we see that the es-

timator variance of the Pareto wps(z,i/ ?) strategy is
4.7%, (100 * 163.6/156.2) higher for y; and 19.9%,
(100 * 61.4/51.2), higher for ys.

Not surprisingly we note, that the GREG es-
timators are superior to the 7 or (\) estimator for
all designs, and for both y; and ys, (Pareto mps(zy)
where the point estimator expressions are the same
is the exception.) The effect of using the auxiliary
variable in the design can be studied by comparing
the strategies based on 7ps(1) with the other de-
signs using WpS(Zz/ 2). Hence the table reveals that a
strategy which uses the auxiliary information in both
the design as well as in the estimation is preferable.
The survey statistician is then left with 32 possible
strategy choices, £, — f4 and one of the ﬂ'ps(z;/ 2)
alternatives. The choice of GREG estimator seems
to be of minor importance so we concentrate our
discussion on the choice of design. This choice de-
pends on which of the variables y; and y, that is
most important and the knowledge of the ~ values.
Presuming that y; is the key variable of a survey
and that information saying ;=1 exists, then ac-
cording to the theoretical results we should choose

one of the WpS(lec/ 2) designs. When comparing the

Pareto, PoMix and mb-STSI FpS(lec/ %) we see that
mb-STSI is more efficient than Pareto FpS(lec/ %) (ap-
proximately 4% smaller estimator variance for all the
GREG estimators). Pareto 7rps(2,1€/ #) is in turn more
efficient than PoMix 7rps(2,1€/ %). On the other hand, if
y2 is the key variable and with the guess that v,=1.5,
we should according to the theoretical results choose
a WpS(Zz/ %) design. Then again mb-STSI would be
the design resulting in the smallest GREG estimator

variance. Over the studied GREG estimators, the es-
timator variances for the Pareto and PoMix designs
are similar and roughly 18%, (100 * 65/55), larger
than 82,67, (f1)-

However, if we regard estimates of both vari-
ables equally important, the choice of sampling de-
sign is more delicate. In this population it turns out
that if we sum our measure R, over both variables
y1 and yo in each cell, the strategy which gives the
most efficient estimates is the mb-STSI ﬂps(zi/ D)
design combined with %4, (boldfaced in the table).
This strategy is not the most efficient for estimating
ty, but the relative loss is very small.

From the table we also note that by using a
‘standard’ 7ps(z;) design, we would loose in effi-
ciency, either for estimates of t,, or for estimates
of ty2. The results for PoMix however, seem to be

similar to those of PoMix ﬂ'ps(z,i'/ %). This latter ob-
servation was the only notable difference between
the Monte Carlo results shown here, and the results
of a Monte Carlo study with a sample size of n = 50,
in which case the PoMix mps(z;) showed higher es-

timator variances than PoMix wps(zz/ 4).
4. Summary and conclusions

This study highlights that we have practically
working methods (i.e. simple to implement, allow
PRN, and have nice variance estimation properties)
to combine GREG estimation and 7ps designs, and
that considerable gains in efficiency can be made
by doing so. The efficiency gain is supported by
a Monte Carlo study and a review of two theoretical
results. Recent developments in 7ps sampling pro-
pose the use of the Pareto nps or fixed-size PoMix
designs. However, from an efficiency point of view,
the mb-STSI proposed by Wright seems to work at
least as well. Also adding that Pareto mps can be
sensitive to high skewness and extremely small val-
ues of 1, and that PoMix is sensitive for the choice
of the Bernoulli width parameter, w, the relative at-
tractiveness of mb-STSI increases.

We also want to stress that, in practical work,
more attention should be payed to o; and thereby
the use of mps(oy) design rather than just using a
plain untransformed size measure zj, to determine in-
clusion probabilities. In the light of the theoretical
results, we also note that a mps(oy,) design makes the
PoMix design (or PoMix modification of Pareto 7ps)
unnecessary from an efficiency perspective. How-
ever, since there are usually several study variables
involved and only one o0, can be used in the de-
sign, and since there usually are deviations from a
presumed model, PoMix might be useful. As our
Monte Carlo studies show, it might be more efficient



Table 1: Strategy effects measured as the ratio S%Rs(fﬂ)/Sg(fi).

Estimators
Designs Uayss Pays liy s by, oy, t2y, U3y, t3y, tay, s tay,
Pareto 1,1 110.7, 37.6  110.7,37.6 111.1, 31.7 110.7, 37.6
ﬂ'ps(l) PoMix 1,1 110.7, 37.6  110.7,37.6 111.1, 31.7 110.7, 37.6
mb-STSI 6.3, 5.7 109.9, 40.6  109.9, 40.6  109.5, 39.3 109.9, 40.6
Pareto 5.7, 4.8 156.2, 51.2 156.7, 54.0 156.2, 51.2 156.9, 56.6
mps(zi/?)  PoMix  3.3,3.0 153.4, 48.3 153.9,52.4 153.4, 483  153.9, 54.4
mb-STSI  24.8, 19.5 163.6, 61.4 163.6,61.9 163.6, 61.4  163.6, 62.4
Pareto 23.8, 14.1 142.0, 50.7  146.2, 53.5  145.9, 53.1 146.6, 55.8
mps(z2/*) PoMix 67,57 162.3,49.4 165.1,55.7 164.7,53.4  165.5, 58.5
mb-STSI  33.3,23.9 163.4, 65.2 164.4,65.6 164.3,65.6 164.5, 65.7
Pareto 106.9, 47.5 106.9, 47.5 106.9, 47.5 106.9, 47.5 106.9, 47.5
mps(zk) PoMix 14.7, 10.5 140.8, 49.9 163.8, 56.4 163.6, 55.8 164.2, 59.2
mb-STSI  25.5, 23.9 137.2, 60.4 152.0, 63.0 151.7, 63.0 151.5, 63.0
than Pareto wps and it can automatically take care Harvey, A.C. (1976). Estimating Regression
of some unfavorable shape patterns that might lead Models with Multiplicative Heteroscedasticity.

to bias in Pareto 7ps. In conclusion, more work is
needed to study which GREG plus 7ps strategy that
works best in an overall sense. This paper suggests
that mb-STSI is a serious competitor to the newer
mps designs. Work to find out which strategy is least
sensitive to deviations from model assumptions is
currently in progress.
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