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 Variance estimation is an important research 
area for sampling statisticians; consequently, if  
appropriate design variables are provided in the final 
dataset, nowadays data analysts can calculate 
variance estimates for most survey statistics via 
public or custom software.  However, some data 
users are not be familiar with variance estimation 
procedures or may not have access to software to 
compute variance estimates under a complex survey 
design.  For this reason, a simple, but useful, 
approach is to develop approximate variances for 
statistics of interest.  One such technique is called the 
generalized variance function (GVF) technique.  It 
has been customary to use GVF methods based on (1) 
design effects or (2) regression models.      
 In this paper, I compare two customary 
techniques to develop generalized variance estimates.  
Moreover, I expand the regression model approach to 
allow an errors-in-variables approach to see whether 
the resultant GVF estimates perform better than 
traditional regression-based GVFs. 
 
1. Need to Summarize Variance Estimates  
 
 Large surveys produce many survey estimates 
in their reports.  These estimates with their standard 
errors result in a substantial number of pages in 
survey reports.  So it has been customary to produce 
point estimates for survey characteristics in the report 
while (1) standard errors are put in  an appendix of 
the report;   (2) average design effects are reported to 
users can approximate variance estimates especially 
for proportions; or (3) parameter estimates for GVFs 
are reported.  With (2) or (3), users summarize 
standard error estimates for the reported survey 
estimates.   
 For  sophisticated analysts, a  public-use dataset 
is a good source for details about the survey and 
obtaining unpublished estimates.  In particular, 
survey data usually provide appropriate analysis 
weights so users may calculate variance estimates 
using Taylor Series linearization or the  replication 
method.  In many cases, developing customized 
software to implement a variance estimation method 
is very time consuming, and thus many users tend to 
use variance estimation software.  That is, data users 
can calculate estimates directly from the data set 

using generalized software; however, not all data-
users have appropriate software.  Or even if users 
have some facility to estimate variances using  
existing software,  the costs of publishing variances 
for many (all) items in a report may be excessive.  
Moreover, public-use  datasets available do not 
always provide full design information needed for 
appropriate variance estimation - usually because of 
reasons of confidentiality.  In that sense, it is helpful 
and cost-effective for data-users to have a simple  
tool to obtain variance estimates.   
 Nowadays, it is becoming more common to 
release a database to the public through the internet.  
This allows users to specify variables and obtain   
estimates interactively.  Providing design-based 
variance estimates for user-specified estimates may 
be expensive and time -consuming.  Consequently, it 
is helpful to have a tool to approximate variance 
estimates for the analysts’ specific estimates in a less 
computationally intensive fashion.   
 Summarized variances can be also used for 
optimal sample design.  Sample size is usually 
determined to meet certain precision goals quantified 
from summarized variance estimates of similar or 
past surveys.  A successfully developed variance 
calculation mechanism for one survey can be used for 
another survey.  Finally, variance estimates obtained 
from  a summary method can be more stable than  
directly calculated variance estimates,  because they 
are based on a group of variables rather than an 
individual variable.   
 GVFs can provide a simple tool to calculate 
variance estimates for similar characteristics in a  
quick and simple manner.  Statistics considered for 
GVF estimation are totals, proportions, averages, and 
ratios.  In the next section, I review emp irical studies 
in which GVFs were used for variance 
approximation.   
 
2. Empirical Studies  
    
 There have been many empirical studies that 
calculate GVFs for selected statistics for many 
domains of interest in complex surveys.  See for 
example, Salvucci et al. 1993.  In particular, Salvucci 
et al. present a simple procedure that users can follow 
to calculate variances using GVFs.  Even without a 
thorough theoretical justification, one issue is the 
choice of a fitting procedure, such as ordinary least 
squares, weighted nonlinear, unweighted nonlinear, 
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and iteratively reweighted, etc.  One of the fitting 
algorithms used is the  Gauss-Newton algorithm. 
 The GVF approach can provide secondary data 
analysts variance estimates, even though it lacks 
theoretical justification (Bieler and Williams, 1990).  
John and King (1987) used modified goodness of 
model diagnostics to evaluate GVF-derived variance 
estimates, since they believe underestimation is more 
severe than overestimation. 
 There have been two approaches to 
approximating or summarizing variance estimates:  
average design effect and regression models.  These 
two approaches were evaluated for proportion 
estimates (see, for example, John and King, 1987; 
and Bieler and Williams, 1990).  Empirical studies 
have found there is no gain to use detailed models 
over the simple design effect approach.  GVFs can be 
used for other estimates not used in developing GVFs 
in the same survey or/and similar surveys.  Without a 
theoretical justification thus far, GVFs are believed to 
be more stable than directly calculated variance 
estimates.   Valliant (1992) tried to develop GVFs for 
a price index using nonparametric smoothing.  
Valliant (1987) showed theoretical justification that 
GVFs are consistent and more stable under some 
regularity conditions. 
 In the following section, I present the functional 
forms for two customary procedures:  average design 
effect and regression based approach.  Moreover, I 
introduce an errors-in-variables model to allow for 
the variability of survey estimates used as predictors.  
Then, I compare simple average design effect 
approaches with regression-based GVF approaches.  
These comparisons are specifically implemented into 
the 1999 Science and Engineers Statistical Data 
System (SESTAT) database. 
 
3. Average Design Effect (Adeff) Approach 

 
In this section, I discuss the average design 

effect technique.  The design effect is usually used to 
measure the impact on variability of survey estimates 
due to complex sampling procedures from the 
hypothesized simple random sampling.  The design 
effect can be obtained as the ratio of the design-based 
variance to the variance based on simple random 
sampling:   

   
ˆ( )ˆ( )
ˆ( )

D

S

Var
Deff

Var

θ
θ

θ
=    (3.1) 

where ˆ( )DVar θ is the design-based variance and 
ˆ( )SVar θ is the variance from a simple random 

sampling (SRS).  One can then calculate a sample-

based design effect as the ratio of two directly 
calculated variance estimators:  
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Therefore the design-based variance estimator can be 
obtained by multiplying the design effect and the 
simple random sample based variance estimator.   

 Consider estimates of proportions.  Suppose P̂  
is the proportion of persons with a certain attribute.  
Then, from (3.2), the design-based variance estimator 
can be obtained with the proportion estimate, its 
design effect, and the sample size: 
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 Given point estimates and sample sizes, if the 
design effect of a group of variables can be 
summarized, then so can variance estimates.  This 
conjecture can be formulized in the following way: 

i iDeff ADeff ε= +   (3.4) 
If this relation (3.4) holds for a set of variables, then 
the predicted average design effect estimates can be 
used to summarize variance estimates for those 
variables. 

Given average design effects, variance estimates 
can be approximated from a relatively simple 
formula.  For example, given survey estimates of 
proportions, users only need to know the sample size 
and the average design effect: 
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Or equivalently, effective sample sizes can be 
provided instead of average design effects and initial 
sample sizes: 
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=  is called the effective sample 

size and can be interpreted as the sample size that 
provides the same precision as a simple random 
sample.  In this case, the usual SRS–based formula 
can be used to obtain variance estimates. 

The average design effect approach can be also 
extended to the estimates of totals.  Suppose X 
denotes the total number of units with a certain 
attribute and T is the total population size; that is, 
X=TP.  Then, a design based variance estimator is the 
product of a design effect and the variance based on a 
simple random sample.  This is the product of the 

square of population size estimate T̂  and the simple 
random sample based variance estimate of the 
proportion: 
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Then, given both total population size and sample 
size, one can obtain variance estimates for totals 
using the average design effect approach.   
 There is a relationship between design effects 
for totals and proportions, if these estimates are 

nearly uncorrelated; that is, if ˆ ˆ( , ) 0COV P T ; .  
Under this assumption, the relative variance of 
proportions can be expressed as the difference of 
relative variances of X̂  and T̂ : 

2 2 2ˆ ˆ ˆVar( ) Var( ) Var( )P P X X T T− − −≈ − .  Then, the 
design effect for estimates of totals can be expressed 
as a factor of  the design effect for proportions: 
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Since the factor above is greater than or equal to 1, 
the design effect for total is also larger than that for 
proportion.  However, if T is known, then these two 
design effects would be same.   

 
4. Generalized Variance Function (GVF) 
Approach 

 
This section discusses another popular 

approach, the generalized variance function 
technique, that can help data users  calculate variance 
estimates for many variables in a relatively short time 
period.  The idea behind this technique is that given 
point estimates and coefficient of variation estimates, 
variance estimates or standard errors can be obtained 
from the following relationship: 
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If the coefficient of variation can be 
summarized for a set of items, so can the standard 
errors.  Algebraically, the GVF can be expressed as: 

ˆ{ ( )} ( ; )g CV f=θ θ βθ θ β   (4.1) 
where θθ  is a vector of population parameters (e.g., 
totals) to be estimated; ββ  is a vector of model 

parameters; and θ̂θ  is a survey estimator where 
ˆE( )θθ Ñ θθ .  That is, a function of the coefficient of 

variation or equivalent measures can be expressed as 
a function of population characteristics θθ  and model 
parameters ββ .  Here the final functional form for g  
and f are usually determined based on empirical data 
plots. 
 To use GVF functional relationship (4.1), 
directly calculated variance estimates and point 
estimates are needed in place of the unknown values. 
Then, through standard procedure, the model can be 

fitted.   The resultant GVF-derived estimates can be 
expressed as: 

1
GVF

ˆ ˆ ˆ ˆˆ ( ) { ( ; )}V g f−=θ θ θ βθ θ θ β  

where β̂β  is the estimated parameter.  Consequently, 

once model parameter estimates β̂β  are obtained, 

users can simply put the survey estimates θ̂θ  into the 
GVF functional form to derive variance estimates. 
 For the GVF approach, let us start with totals.  
For estimates of totals, variance approximation can 
begin with the conjecture that the square of the 
coefficient of variation of the estimator is a 
decreasing function of the expectation of the 
estimator (see, for example, Valliant, 1987 and 
references cited therein): 2 1ˆ ˆ( ) ( )CV X E X −∝ .  That is, 
the square of the coefficient of variation is linearly 
related to the inverse of  the total or equivalently the 
variance is a quadratic function of  the total: 

2 1ˆ( )CV X Xα β −= +                        (4.2) 
2ˆ( )Var X X Xα β= +                        (4.3)               

where CV is the coefficient of variation of X̂ , an 
estimator of a characteristic X, and α  and β  are 
unknown parameters.  While acknowledging little 
theoretical justification of the above models, they 
have been supported theoretically under some 
conditions.  In fact, this relationship makes sense 
since estimates of totals might be regarded as 
binomial distribution under simple random sampling.  
Suppose X is distributed as a Bernoulli with a 
probability P to have a value 1 and 1-P  a value  of 
zero.  Then, the total of the characteristic, X̂ , can be 
regarded as a Binomial distribution with a probability 
of success, P.  The total number of population 
characteristics can be guessed as X=NP.  Since its 
variance under the binomial assumption is NP(1-P), 
it can be shown that the square of the coefficient of 
variation is a decreasing function of the total.  So this 
provides a rough justification for model (4.2) or (4.3) 
for totals.  Usually, a direct model fit to this 
relationship results in heteroscadiscity of error terms.  
A simple log-transformation on both response and 
predictor variables would stabilize the error variance: 

ˆlog[ ( )] log( )Var X Xα β= +               (4.4) 
I use this model (4.4) with the SESTAT data sets 
presented later.  Then, the GVF-derived standard 
error estimates based on (4.4) are a function of 
estimated model coefficients and total estimates: 

ˆ( / 2 )ˆ ˆˆ( ) exp( /2 )GVFse X X βα=  (4.5) 
With good GVF models for totals, one can also 

calculate GVF-derived variance estimates for  
proportions if the same assumptions are made.   That 



 

is, if the covariance terms between P̂  and T̂ are 
negligible, then the relative variance of estimates of 
proportions can be expressed as the simple difference 
of two relative variances of X̂  and T̂ : 

2 2 2ˆ ˆ ˆ ˆ ˆVar( ) Var( ) Var( ) if Cov( , ) 0P P X X T T P T− − −≈ − ≈
Then, the final form of GVF-derived standard error 
estimates for proportion estimates would be another 
function of model parameter estimates, estimated 
proportions, and population totals: 
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So given the model parameter estimates, users 
only need to insert estimates into the GVF functional 
form to obtain standard errors for totals or percentage 
values. 

 
5. Errors-in-Variables Model 
 
 Given the model in (4.4), Section 4 discusses to 
fit the following model 

·̂ ˆ[Var( )] log( )Log X Xα β= +  

where ˆlog( )X  and ·̂[Var( )]Log X  are estimated from 
the data.  Usual regression approach assumes that  

ˆlog( )X  values are constant.  However, they are also 
subject to sampling errors with the following first and 
second moments: 

2ˆ ˆlog( ) [log( ), V ( )]X X C X∼& . 

By allowing the variance of ˆlog( )X , a direct 
application of Fuller (1987, p.187) with equal 
weights gives the estimators, 
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In the application presented later, this errors-in-
variables approach did not make much difference in 
terms of predictability. 
 
6. Application to Scientist and Engineers 

Statistical Data System (SESTAT) 
 
 So far, I have discussed two approaches to 
approximate or summarize variances, particularly for 
proportions and totals.  In this section, I provide 
examples of the application of these methods.  The 

dataset considered for this study comes from the 
Scientist and Engineers Statistical Data System 
(SESTAT).  The population of this data system 
consists of all residents of the United States with 
Bachelor’s degree or higher who are 
noninstitutionalized, age 75 or less, and either trained 
as or working as a scientist or engineer.  This data set 
has very complex survey design features in that it 
consists of three independent survey components, the 
National Survey of College Graduates, the National 
Survey of Recent College Graduates, and the Survey 
of  Doctorate Recipients.  Because of its complexity 
and lack of design information available for public 
data, GVFs have been made available to the public.  
For detailed information, see the homepage for 
SESTAT (http://sestat.nsf.gov). A total of 12 
domains and 97 variables were considered for this 
study. 
 Models can be fit by domains and/or by type of 
outcomes.  Figure 1 shows design effect distributions 
within domain and across domains.  Before 
calculating average design effects, this  plot would be 
used to help decide whether to use one value for all 
variables or domain-specific values.  As seen in the 
plot, there is nontrivial variation within and across 
domains.  Consequently, with distributional variation 
across domains, domain-specific average design 
effects were used.  From the twelve domains, I chose 
two domains for further investigation: total number 
of scientists and engineers and the total number of 
scientists and engineers with bachelor’s degrees.   
 Goodness of fit measures need to be considered.  
For the regression type GVF approach,  2R  can be 
used as a quick check for model validity.  For both 
approaches, evaluating standard errors calculated 
using the  variance summarization techniques, a 
simple but useful diagnostic statistic called the 
relative standard error was used: 
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This is the relative difference between directly 
calculated standard error and approximated standard 
errors.  As an ad-hoc criterion, 20% RSE is frequently 
used as a cut point to determine whether summary-
based variance estimates are acceptable. 
 Figure 2 shows proportions of relative standard 
errors with less than 20% for the average design 
effect approach for the 12 domains considered.  A 
little over 80% of variables have less than 20% of 
RSE when using the average design effect based 
standard errors as presented in the blue line.  I also 
separated variables into two groups based on the 
estimated proportion;  one group is for moderate P 
values between 0.1 and 0.9 and the other is out of 
range.  There is clear distinction between these two 



 

categories.    For moderate P values, the average 
design effect approach works pretty well.  However, 
not surprisingly, there is substantial variation for 
small P values.  From this result, one might say  users 
ought to be cautious about using the average design 
effect procedure for small P.  Since the variance of 
small P values is unstable, it appears to be better to 
use aggregated variance measures based on average 
design effects.  
 For the regression approach, a log-transformed 
model was fitted for the 12 domains and all models 
were fit reasonably well with less systematic error 
patterns and large 2R .  All models have greater than 
80% of 2R .  Using the formula in (4.5), standard 
errors can be predicted.   
 Figures 3 and 4 show plots of relative standard 
errors for the two predicted standard error models: 
one is from average design effect approach, the other 
one is for the GVF approach.  Figure 3 illustrates the  
proportion case and indicates the average design 
effects approach gives an overestimation, while the 
GVF approach shows  a little better prediction though 
it tends to have a little underestimation.  For total 
estimates (Figure 4), since we used the same average 
design effects obtained from proportion estimates, the 
magnitude of overestimation of standard errors based 
average design effects seems to be reduced, and for 
some domains, it even underestimates.  The GVF 
approach seems to work better with less relative 
standard errors.  Unlike the proportion case, it  gives 
conservative variances, and this is good. 
 
7. Discussion 
 
 For large surveys, it is better to attempt separate 
variance summarization for the key domains.  In 
general, the two methods considered perform well for 
most proportions and totals with P between 0.1 and 
0.9.  Conversely, estimates with extreme P values 
show wild patterns; so it is inappropriate to use 
summarized variance estimates blindly. It is more  
useful to use aggregated ones that produce more 
reliable standard errors.  A close relationship exists 
between totals and proportions.  So with almost the 
same information, users can obtain variance estimates 
for totals and proportions.  Finally, in fitting the 
GVF, I also tried to account for the variability of 
predictors, which are estimated values as opposed to 
constants.  However, with a large sample size, we 
have seen this made little difference.   
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Figure 1: Design Effect Distributions Within and 
Across Domains 
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Figure 2: Proportions of RSE less than 20% 
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Figure 3: Average RSEs for Proportions from Three 
Approaches  
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Figure 4: Average RSEs for Totals from Three 
Approaches  
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