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1.0 Introduction 
    Systematic sampling (either with equal or unequal 
selection probabilities) is a common sampling scheme 
within statistical organization. It is used because of its 
simplicity of implementation and its potential increase 
in efficiency.  
    A probability proportionate to size (PPS) systematic 
sample of size hn  can be selected within stratum h , by 

partitioning the units of a fixed-ordered frame ( h1F ) into 

hn zones, such that the sum of the individual measures 
of sizes (MOS) in each zone is equal across all the 
zones. The total MOS within each zone is called the 
sampling interval, hI  (i.e., the sum of unit MOS in the 

stratum divided by hn ). A uniform random number 

between 0 and the sampling interval is chosen, say hr . 
Starting with the first unit in the ordered stratum, 
cumulate the unit MOS. Each unit is assigned a 
cumulative MOS, hiC , equal to its MOS plus the 
cumulative MOS of all previously cumulated units. The 
first unit with cumulative MOS greater than or equal to 

hr is the first selected unit. Subsequent selections 
correspond to the first respective units with cumulative 
MOS greater than or equal to hh Ir + ,…, hhh Inr )1( −+ . 
Note that one unit is selected within each zone and that 
each zone acts as an “implicit stratum” ( g ), in that each 
zone represents a “subpopulation”. The “implicit strata” 
are not (real) strata because the selections are not 
independent and because some units are in multiple 
implicit strata (i.e., some units have a positive selection 
probability in multiple implicit strata). When the frame 
is ordered so the units within an “implicit stratum” are 
relatively homogeneous, one expects the systematic 
sample, as in a stratified sample, to be more efficient 
than a completely random selection within the stratum.  
     One problem with systematic sampling is that such 
samples can be viewed as a cluster sample of cluster 
sample size one. As such, unbiased variance estimation 
becomes impossible without additional assumptions. 
One common method for approximating the variance 
from systematic sampling is to treat the implicit strata as 
real strata when computing variances. Within a 
sampling stratum, this is accomplished by placing the 
sample or frame into the original frame ordering before 
sample selection and consecutively pairing the sample 
units or implicit strata. Each pair can then be treated as a 

stratum (variance-stratum) for the purpose of variance 
computation. Since many sampling schemes have 
unbiased variances estimators with two units per 
stratum, the statistician can choose the one most 
appropriate for the particular sample design and use it to 
approximate the systematic variance-stratum ( vs ) 
variances.  
    The basic assumption is that most of the efficiency of 
the systematic sample comes from the implicit 
stratification. An additional assumption is that the MOS 
are fixed, non-random quantities known for all units on 

h1F . In this setting, a sample selected from h1F will be 
termed a fixed-ordered sample design. 
    There are two main concerns with the fixed-ordered 
variance-stratum approach. The first is that the variance-
stratum variances still do not reflect the appropriate 
systematic sampling variance. As such, the variance 
may only reflect with-replacement sampling. If the 
sampling rates are high, it becomes difficult to 
determine an appropriate finite population adjustment 
(FPC). An apparent conservative approach would be to 
apply no FPC. However, it is possible for an appropriate 
FPC to be greater than 1 (see (2) below). In which case, 
applying no FPC may not be conservative. Without 
knowing the correct variance-stratum variance, the 
variance will be in error even if the variance-stratum 
assumption is correct (e.g., there may be a nonzero 
within variance-stratum correlation). The second 
concern is the variance-stratum assumption. Namely, 
the correlation between variance-strata may not be zero. 
Since systematic sampling is considered efficient, it 
seems like these concerns should lead to an 
overestimate of the variance. However, since the 
correlations can be positive and an appropriate FPC can 
be greater than 1, this need not be the case. 
     The idea behind the proposed model is to relax the 
fixed-ordered sample design assumption. Instead, it will 
be assumed that the MOS are “locally-random”. With 
this assumption, along with the assumption that the 

correlation between the thi and thj  selected PSUs is 
negligible, it becomes possible to derive an appropriate 
FPC for a PPS systematic selection procedure, provided 
that the frame is ordered in some fashion by the MOS 
before sample selection. This will be presented in the 
following sections. 
2.0 Estimates from a Systematic Sample 
 PPS systematic sampling is a common procedure used 
with complex sample designs. One way of selecting 
such a sample was provided in section 1.0. It will be 
assumed that: 1) a single stage PPS sample is selected; 2) 
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primary sample units (PSUs) with MOS larger than the 
sampling interval are added to the sample with certainty 
and excluded from the sampling procedures; 3) hn  is 
even for every stratum; and 4) before sample selection, 
the frame is ordered in some fashion by the MOS. 

2.1 Estimating a Total syT̂  

    An unbiased estimate, syT̂ , for the total is ∑∑
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where H is the number of sampling strata, hn is the 

number of sampled PSUs in sampling stratum h , ix  is 

the value for some variable for selected PSU i , and ip is 

the selection probability for the PSU (i.e., ip is the MOS 

for PSU i divided by the stratum sampling interval). 

2.2 Estimating the Variance, )ˆ( syTV , of syT̂ , 

)ˆ( syTV can be express as: 
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 where: hijρ is the correlation between ii px / and 

jj px / (i.e., the correlation between the thi and thj  PSUs 

selected in the systematic selection process). 
    Of course, without further assumptions, none of the 
above quantities have unbiased estimates. 
2.3 “Locally-random” Assumption 
    The MOS im and jm for PSUs i and j are “locally-

random”, if there exists a partitioning of the frame, 
denoted by kP , such that i and j kP∈ imply im and 

jm are generated from some random distribution with 

mean kji µµµ == and variance 222
kji σσσ == . 

Assuming PSUs are ordered in some way by im , before 
sample selection, the “locally-random” assumption means 
that PSUs within kP can be considered to be in a random 
order. This randomization can be used to determine a 
variance estimator with an appropriate FPC for a 
systematic PPS sample design. 
    There are a number of ways to justify the “locally-
random” assumption. In most survey measurements, iy , 
it is expected that there exists some response variance. 
This can be represented by assuming αα µ ey ii += , 

where iµ is a constant; and αe is a random variable with 

mean zero and variance 2
iσ  which represents the error 

measurement from the thα repeated measurement. Since 

im comes from or is based on some sort of frame 

collection, there is no reason to expect im to be free of 

measurement error. So the model αα µ ey ii += would 
seem appropriate. This justifies the random assumption. 

The equality of the iµ and iσ  within each partition is just 
a local homogeneity assumption, which is often make 
when estimating variances. 
    The “locally-random” assumption can also be justified 
in term of a super-population model, instead of a 
response error model. 
2.4 Defining kP  

    The first step in determining kP  is to place h1F  into its 
original order, and form implicit strata and variance-strata 
as described section 1.0. To facilitate the theoretical 
development, it is desirable for each PSU to be in only 
one variance-stratum.  However, this is not directly true, 
since some PSUs have a positive selection probability in 
two variance-strata. To eliminate this problem, PSUs with 
positive selection probability in two variance-strata will 
be converted into two new PSUs each completely 
contained within each of the respective variance-stratum. 
    Let PSU i  have a positive selection probability in 
variance-stratum k and variance-stratum 1+k . The 
selection probability of the new PSU, 1+ikp , from PSU i , 

associated with variance-stratum 1+k , is hhhi IkIC /)( − , 

where hiC is the cumulative MOS for PSU i , defined in 

section 1.0 and hI  is the stratum sampling interval, (i.e., 

1+ikp  is the part of ip that is contained in variance-

stratum 1+k ). Then, ikp = 1+− iki pp  (e.g., if ip =0.3 and 

0.2 of the probability is in variance-stratum 1+k then 

ikp =0.1 and 1+ikp =0.2). 
    Some PSUs are now physically on the frame twice. 
Since the frame ordering of the PSUs is not changing, this 
modification does not change any of the possible samples 
or their selection probabilities. So, estimates and their 
respective variances have not changed. 
    We now make the “locally-random” assumption within 
the kP ’s defined to be the variance-strata described above. 

(i.e., it is assumed that within each kP , the original 

h1F ordering represents one realization of the MOS 
randomization process described in section 2.3.) 
2.5 A Discussion of hijρ  

    It has been assumed that there are multiple realization 
of a frame, either through a response variance model or 
super-population model. For any fixed frame 
realization, denoted by r , the correlation between 

ii px / and jj px / , r
hijρ has a value. Under the “locally-

random” assumption, the stratum covariance, )(xCh , 

equals ∑ ∑∑
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realizations and assuming each frame realization are 
equally likely. This is just the average covariance taken 



 

  

across all possible randomizations.  This averaging 
should reduce the number of extreme positive and 
extreme negative covariances and make the zero 
covariance assumption more acceptable.  

2.6 Estimating )ˆ( syTV and )ˆ( syTv  

    To estimate )ˆ( syTV , two assumption are made: 1) the 

“locally-random” assumption, described in 2.3, within 
the partitioning described in 2.4; and 2) )(xCh =0 or is 
small enough to be ignore. 
     With these assumptions, results from Kaufman (1999) 

provide an estimate for )ˆ( syTV  and )ˆ( syTv . Namely, 
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     If i is a PSU in variance-strata k that has been 
changed into two PSUs because of positive selection 
probability in multiple variance-strata, it is assumed that 

o
iiii ppxx /×′= , where ix′ is the original data collected 

from PSU i  and ip is the new selection probability for 
the variance-stratum. As defined in section 2.4, 

ip would be either ikp or 1+ikp , depending on the 

variance-stratum. o
ip is the original selection probability 

for i before the PSU was converted into two PSUs (i.e., 
o
ip = 1++ ikik pp ). 
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∈

=
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iivs pxT /ˆ is the sample estimate of vsT . 

     If i is a PSU in variance-strata k that has been 
changed into two PSUs then 

ii px / = ix′ )/( o
ii pp )/1( ip = o

ii px /′ . Hence, )ˆ( syTv can 

be estimated without knowing ikp or 1+ikp . 
    The second term of the product in (2) is the balanced 
half-sample variance estimate (BHR) for the variance-
stratum. Therefore, any differences between (2) and 
BHR can be attributed to the first term (scaling term). 
    The scaling term acts as an FPC. If the gN ’s are all 

equal in a stratum then this term resembles the simple 
random sample FPC. However, when the stratum PSUs 

are skewed in either direction, this term can be greater 
that 1. In this situation, the BHR estimator should be 
expected to underestimate the variance.  
    When using the “locally-random” assumption, it is 
best to start with an initial ordering that will minimize 
the scaling factor. It is minimized when the number of 
PSUs in the respective implicit strata are equalized (i.e., 
equalizing the values of the MOS). Sorting the MOS in 
a serpentine manner can equalize the values of the MOS 
in a variance-stratum; thereby equalizing the number of 
PSUs within the implicit strata for a variance stratum.  
2.7 Summary 
    With respect to the estimating the variance under the 
“locally-random” assumption, with this assumption 
along with assuming )(xCh =0, the above arguments 
provides an appropriate variance estimator for PPS 
systematic sampling, including an appropriate FPC. With 
respect to the estimating the variance under the fixed-
ordered design variance-stratum assumption, as described 
in the introduction, even if the assumption is correct, the 
variances may still not be appropriate, because of an 
incorrect variance-stratum variance estimator. 
3.0 Simulation 
     To compare the “locally-random” assumption with 
the fixed-ordered design variance-stratum assumption, a 
simulation study is presented comparing the BHR, 
under the fixed-order variance-stratum assumption; and 
the bootstrap variance estimator, under the “locally-
random” assumption. The simulations will model the 
NCES’s National Study of Postsecondary Faculty 
(NSOPF) Institution survey sample design. The frame 
will initially be ordered according to a variation of the 
NSOPF sample design. Under the fixed-ordered design 
assumption, the frame will not be randomized, while 
under the “locally-random” assumption, the frame will 
be randomly ordered, given the NSOPF frame ordering. 

)(xCr
h and )(xCh under the variance-stratum and “locally-

random” assumption, respectively, will be realistic 
representations of the survey. 
    To be able to compute estimates for any selected 
sample, frame variables will be used in the simulation. 
3.1 Sample Design 
    The first-stage sampling frame for NSOPF consisted 
of the 3,396 postsecondary institutions that were public 
or private not-for-profit Title IV participating 
institutions and provided formal degree programs of at 
least two years' duration. The 3,396 institutions in the 
NSOPF frame were stratified based on the highest 
degrees they offered and the amount of federal research 
dollars they received. Before sample selection, the 
frame was ordered by the previous NSOPF round’s 
stratification, state and control number. A PPS 
systematic sample of 960 institutions was then selected 
using total faculty as the MOS. In order to fit this design 
into the framework of this paper, the frame ordering was 



 

  

changed. In this simulation study, the frame was ordered 
by the previous NSOPF round’s stratification, state and 
MOS using a serpentine ordering as the state changes. 
The second stage sample of faculty is not used in this 
simulation, so it will not be described. 
    With almost 30% of the institutions in sample, this 
design provides a good check for an appropriate FPC. 
3.2 Simulating the “Locally-random” Model 
    In practice, the original frame ordering is used for 
sample selection, but it is assumed that within variance-
strata the original ordering of PSUs is one realization of 
the random model described in section 3.2. It is not 
necessary to specify the random ordering model. It is 
sufficient to know that there exists an underlying model. 
However, to do a simulation, it is necessary to specify the 
random ordering model, because the simulations need to 
use realizations from that model. The “locally-random” 
model is specified as a set, R , which includes all 
possible random orderings, from which the original 
ordering is a member. R  is defined as follows: First the 
frame is partitioned as specified in section 2.4, including 
the step which converts a PSU with positive selection 
probability in multiple variance-strata into two PSUs. 
This new frame is denoted by h2F . R is the set of all 
possible ordered frames that can be produced from all 
independent variance-stratum randomization of h2F . The 
first step in each simulation is to select a simulation 

sample from a randomly chosen RF ∈�

h2 . 

3.3 Bootstrap Variance (Locally-random Frame) 
    Kaufman (1999) provides a bootstrap variance 

estimator )ˆ( syTV ∗  for (2) and it is used to estimate the 

locally-random assumption variance. 
3.4 BHR Variances 
     The r th school half-sample replicate is formed using 
the usual textbook methodology (Wolter, 1985) with 2 
PSUs per stratum. When ≥hn 2, PSUs are placed in 
variance-strata (see section 1.0), which are used as real 
strata for estimating variances. This is the BHR without 
FPC (BHR No FPC) variance. A second BHR variance 
estimate (BHR Prob FPC) adjusts the first variance 
estimator by hP−1 , where Ph is the average of the 
selection probabilities for the selected units within 
stratum h . A third BHR variance estimate (BHR 
Random FPC) adjusts the first variance estimator by the 
variance-stratum scaling terms provide in (2). A fourth 
BHR variance estimate (BHR SRS FPC) adjusts the first 
variance estimator by hh Nn /1− . These BHR estimators 
are used to estimate the fixed-ordered frame variance. 
 3.5 Comparison Statistics 
    Below the statistics used to compare the “locally-
random” assumption and the fixed-ordered design 
variance-stratum assumption variances are described. 
 

3.5.1 Total Relative Covariance (TRC ) 
The total relative covariance for the estimated total of 

x , syT̂ is estimated in the simulation by: 
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the sample estimated total  for implicit stratum g , and 

gsyT   is the average of the s
gsyT  

ˆ s over the sn simulations. 

When sy =1 then s is selected from h1F  and when 

sy =2 then s is selected from s
h
�

2F , the randomly 

selected frame for s . 
3.5.2 Relative Error including TRC 

Rel. Error ( )[ ] 1001)ˆ(/)ˆ( ⋅−+= sysy
e TVTRCTV , where 

)ˆ( sy
e TV is the average of the variance estimates 

( )ˆ( s
sy

e TV ) across the simulation samples denoted by s . 

When sy =1, the BHR procedure ( 1=e ) is used and 

when sy =2 the bootstrap procedure ( =e 2) is used. 
    For averages, the relative error and total relative 
covariance are computed as described above, by 

replacing s
syT̂ and s

gsyT  
ˆ with the respective averages. 

3.6 Number of Replicates and Simulations 
    Forty-four and forty-five replicates have been used in 
the BHR and bootstrap variances, respectively. Total 
relative covariances are computed using 3,000 
simulations and Bootstrap and BHR variances are 
computed using 500 simulations. 
4.0 Results 
    Table 1 provides the percent distribution of total 
relative covariance for the eighteen estimates used in the 
simulation. It is clearly incorrect to assume the 
covariances are zero. Most of the time, the covariances 
are negative, which indicates that the variances should 
be overestimates. For the fixed-ordered design (row 1), 
16.7% of the time the covariances are smaller than –
30% with the smallest being –63%. In many situations, 
these would represent an unacceptably large 
overestimation. Since each covariance produced from 
the randomly-ordered design (row 2) is an average of all 
possible fixed-ordered design covariances, one would 



 

  

expect fewer extreme relative covariances. This is true 
with no covariance less than  -30%. 
    Some of the covariances are positive. From row 1, 
16.6% of the covariances are positive. The largest is 
56%, which in most situation, will produce too large of 
a variance underestimation. From row 2, 5.6% of the 
covariances are positive. Again, as expected, the 
magnitude of the extreme covariances is reduced with 
the randomly-ordered design. The largest total relative 
covariance being 24%.  
    To determine the best FPC, it is necessary to include 
the total covariance term into the relative error estimate, 
because the total covariance term clearly can not be 
closely approximated by zero. Table 2 provides the 
percent distribution of the relative errors for the five 
variance estimators including the total covariance term. 
    The randomly-ordered design variances accurately 
estimate the true variance. Since there are no extreme 
estimates, the FPC is clearly appropriate. 
    For the fixed-ordered design, the No FPC adjusted 
variances overestimate the variance 72.2% of the time. 
It’s not surprising that the overestimation can be large 
when 30% of the frame is in sample. What is surprising 
is that some of the variances are still underestimated, 
27.8% of the time, even with the total covariance 
included in the relative error. Table 3 provides each of 
these individual estimates. The largest underestimate is 
almost –15%. This would indicate that the variance 
estimator based on a fixed-ordered design has some 
additional sources of error, such as the exclusion of an 
appropriate FPC that can be greater than one.  
    Including an FPC that can be greater than one, like 
the Random FPC, is empirically justified in table 3. By 
comparing the Random FPC and No FPC adjusted 
variances, it can be seen that the Random FPC adjusted 
variances reduce the underestimation in all but one case, 
while the SRS and Prob FPC adjusted variances always 
make the underestimation a great deal worst. The 
Random FPC adjusted variances produce a large 
increase in the absolute error only once, while the SRS 
and Prob FPC adjusted variances are always worst. 
    For the fixed-ordered design, table 2 shows that the 
Prob FPC adjusted variances underestimate the variance 
almost 78% of the time and produce a large 
underestimate almost 56% of the time. This indicates 
that the Prob FPC adjustment tends to produce too large 
of a variance reduction. 
    For a fixed-ordered design, the Random FPC adjusted 
variances performs well. There are no large 
underestimates and large overestimates are produced 
almost 28% of the time. This indicates that the random 
FPC seems to be reasonable, even though some of the 
FPCs are greater than 1. 
    For the fixed-ordered design, the SRS FPC adjusted 
variances produce a large underestimate 33% of the 
time and produce a large overestimate 5.6% of the time. 

     Of the four FPC adjusted variances using a fixed-
ordered design, the Random FPC adjusted variance 
seems to perform the best. This may indicate, when 
selecting PPS systematic samples, that an FPC greater 
than 1 can be reasonable, even though the frame is not 
randomly-ordered. 
5.0 Conclusions 
    There are a number of conclusions that can be drawn 
for these results. The first is that it is not necessarily 
wise to assume the total covariances are zero. Assuming 
they are zero can produce unacceptably large 
overestimates, as well as unacceptably large 
underestimates. However, it would be difficult to 
eliminate this assumption altogether without allowing 
for the possibility of negative variances. What seems 
reasonable is to design surveys to eliminate or reduce 
the number of extreme covariances. When the “locally-
random” assumption is appropriate, the number of 
extreme covariances is reduced. Section 6.0 provides 
sample designs suggestions that can make the “locally-
random” assumption more appropriate, thereby reducing 
the expected number of extreme covariances.  
    A second conclusion is when the “locally-random” 
assumption is appropriate and the total covariance is 
included into the relative errors, variances are correctly 
estimated with the randomly-ordered variance estimator. 
So, the scaling factor in (2) produces an appropriate 
FPC for the PPS systematic selection process. 
    The third conclusion is that when the “locally-
random” assumption is not appropriate, the four FPCs 
used in this study produce mixed results. None of the 
FPCs evaluated work 100% of the time. This is not 
surprising because there is no theoretical justification 
for any of them. However, the Random FPC seems to 
work best for this particular sample design. 
    A fourth conclusion is when: 1) the “locally-random” 
assumption is not appropriate, 2) no FPC adjustments 
are made to the variance estimator, and 3) covariances 
have been added back in, variances can still be 
reasonably sized underestimates. This could indicate 
that an appropriate FPC may be greater than 1 at times. 
6.0 Sample Design Implications 
    To improve variance estimation based on these 
results, a number of survey design modifications can be 
suggested. The main objective is to make the ordered 
frame look more “locally-random”, while reducing the 
scaling factor in (2).  These objectives can be 
accomplished by making the frame look more 
continuous with respect to the MOS, as one looks at the 
ordered frame from top to bottom within each stratum. 
If this can be accomplished, the MOS will be roughly 
equal within variance strata, which will make the 
“locally random” assumption more appropriate, and 
reduce the scaling factor. To do this: 1) make the MOS 
the last variable in the frame ordering process; 2) order 
the MOS in a serpentine manner, as other ordering 



 

  

variables switch values (This may imply categorizing 
continuous variables before ordering the frame.); and 3) 
reduce the number of ordering variables. All this can be 
done without physically randomizing the frame.  
    With respect to the fixed-ordered sample design used 
in this simulation, the above discussion suggests that 
state be eliminated from the frame ordering or maybe 
replaced by some sort of regional groupings. This was 
not tested in a simulation. However, in a preliminary 
simulation analysis, the unmodified ordering described 
in section 3.3 (i.e., no serpentine ordering of the MOS), 
was used. In those preliminary simulations, not 
presented here, the number of extreme total covariance 
terms increased by 74% compared to the fixed-ordered 
sample design simulation results presented here. So the 
serpentine ordering of the MOS is helpful. 
    An additional option is to physically impose the 
“locally-random” assumption by first randomly selecting 

an RF ∈�

h2 as described in section 3.1 and then selecting 

the sample from �

h2F . In this situation, the frame is 
“locally-random”, so formula (2) provides the correct 

variance, assuming the total covariance is zero. Even if 
the total covariance is not zero, the number of extreme 
relative errors will be reduced. Since the variance strata 
are formed using the h1F ordering, much of the original 
efficiency is maintained. The drawback is that it 
becomes possible to select some PSUs multiple times.  
It may then be necessary to increase the sample size in 
the strata to yield the original expected sample size; or 
one could randomize only PSUs that are selectable from 
a single variance stratum and avoid the multiple 
selection issue. 
7.0 References 
      Cochran, W. (1977) Sampling Techniques. New 
York: John Wiley and Sons. 
      Kaufman, Steven (1999). “Using the Bootstrap to 
Estimate the Variance from a Single Systematic PPS 
Sample,” Proceedings for the Section on Survey 
Methods, American Statistical Association, pp. 683-688. 
Alexandria, Va.: American Statistical Association. 
     Wolter, K. M. (1985). Introduction to Variance 
Estimation. New York: Springer-Verlag. 

 
Table 1 -- %Distribution of the relative total covariance 

Design Relative 
covariance

%30−≤  

-30%<Relative 
covariance<0% 

0% ≤ Relative 
covariance<15% 

Relative 
covariance

%15≥  

Minimum Maximum 

Fixed-ordered 16.7 66.7 11.0 5.6 -63 56 

Randomly-ordered 0.0 94.4 0.0 5.6 -27 24 
 
Table 2 -- % Distribution of relative error including the total covariance term 

Design Relative 
error 15−≤ % 

-15% 
<Relative 
error<0% 

0% ≤ Relative 
error<30% 

Relative 
error 30≥ % 

Minimum Maximum 

Randomly-ordered 0 22.2 77.8 0 -11 14 

      
5.6 22.2 16.6 55.6 -15 84 
0 27.8 44.4 27.8 -14 49 

33.3 16.6 44.4 5.6 -34 30 

Fixed-ordered 
No FPC 

Random FPC 
SRS FPC 
Prob FPC 55.6 22.2 22.2 0.0 -46 6 

 
Table 3 -- Relative error (%) including total covariance term 

Fixed-ordered design (Balanced half-sample 
replication) 

 
Variables 

 
 

Randomly-
ordered 
design 
(bootstrap) 

No FPC Random 
FPC 

SRS 
FPC 

Prob FPC 

Number of Faculty on 11/12 Month Schedule  3.6 -7.3 -2.8 -21.0 -31.1 
Salary Outlay of Faculty on 11/12 month Schedule 5.5 -9.7 -7.2 -24.9 -36.8 
Salary Outlay of Faculty on 9/10 month Schedule 6.9 -5.1 -5.0 -21.8 -32.9 

Number of Full-time Faculty 14.1 -14.5 18.4 -33.8 -46.1 
Number of Men Faculty 5.0 -2.3 -14.0 -29.1 -45.1 

 


