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I Introduction
Around 1994, the Bureau of the Census was commissioned
by the Department of Health and Human Services (HHS)
to create a microdata file by combining the 1991 March
Current Population Survey (CPS) data which has income
components with the 1990 Internal Revenue Service (IRS)
1040 Income Tax Return file.  The Treasury Department
allowed us to use their data for creating this file, but with
one condition.  We had to mask their income component
which was composed of eight income variables.  On the
other hand, HHS was going to use the file to conduct their
research on welfare reform.  Thus we had to meet two
somewhat conflicting requirements : (1) protect
confidentiality for the people on the file, (2) maintain
analytic properties of the unmasked data.  
Additive noise approach (Kim 1986, 1990; Fuller 1993;
Kim and Winkler 1995; Winkler 1998 and Roque 2000)
can satisfy both requirements and is easy to implement.
Synthetic or simulated data approach (Kennickell 1997,
1999) meets the requirements well, but requires good skill
to implement.  At the time we used additive noise plus data
swapping approach for masking this file.
Additive noise is used more often than others in masking
microdata files.  However, there has been conjecture that,
the multiplicative noise approach might do a better job
protecting the confidentiality. Two forms of multiplicative
noise are considered in this paper.  The first is generate
random numbers which are around mean 1, and multiply
the original data by the noise (which will be called
Multiplicative Noise Scheme I).  The second approach is
to take a logarithmic transformation on the unmasked data,
compute a covariance matrix of the transformed data,
generate normal random numbers which follow mean 0
and c times the variance/covariance computed in the
previous step, add the noise to the transformed data and
take antilog of the noise added data (which will be called
Multiplicative Noise Scheme II).  The former was used by
the Energy Information Administration in the U.S.
Department of Energy.  Specifically, to mask the heating
(and cooling) degree days, h, a random number, e, is
generated from a normal distribution with mean 1 and
variance .0225.  The random number is truncated such that
the resulting number satisfies  

.  Then masked data were released. 
In this paper, we will investigate statistical properties of
both schemes mentioned above (section II and III) and try

the schemes in masking IRS income data mentioned above,
calculating mean and variance in an effort to recover the
original mean and variance1 (section IV).  We also try to
match the records in the masked file against those in the
unmasked file (section V).
II.        Multiplicative Noise Scheme I
II.1. Masking Scheme
Let  be the value for the  person’s   variable, i = 1,
2,.., n;   j=1, 2,.. .p;
We will denote the noise variables ,
corresponding to unmasked variables .
Let , where  follows normal distribution with
mean and variance before truncation.  For
convenience, we will drop subscript j from  and . 
We also ignore the dot in the subscript. Note the noise is
usually doubly truncated such as 

. . . . (1)

where  A and B are the lower and upper truncation points
and  stands for the cumulative probability up to A.
The above can be reexpressed as 

where    

II.  2. Properties of the Masked Data
II.2.1.   Expected Value of  When 

 due to the fact  and  are
independent.

 . . (2)

1  After this paper was drafted, a paper (see
Muralidhar, et al) dealing with a multiplicative scheme
came to the authors’ attention.  However, our current
paper is much more comprehensive
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From the equation 

Note since the data disseminator will release , , A and
B, users can compute expected value of the noise.   Note
Z(x) is the ordinate of the standard normal curve and 
Z(-x) = Z(x).      If  then bias of   is

zero, because  .   If  

the bias can be positive or negative.
The variance of noise can be calculated similarly.

         
Now

 . . . . (3)

which is, after some algebra

Note if A = -B, the above reduces

.

 

            

Finally, 

 }

} . .  (4)

Since , , A and B will be known to users and (the
estimate of)   can be easily calculated following the
formula in section  II.2.1.    also can be captured.
If A = -B, the variance of simplifies to

Thus

III.        Multiplicative Noise Scheme II
III.1. Masking Scheme
We define   the same way as before.  
Let

,  where  is the variance/covariance matrix of
variables 
We generate the random number following multivariate
normal distribution , where c is a positive
number but less than 1.  We denote the noise variables

, corresponding to unmasked variables.
.

Let  

Thus  =  antilog of  

   
Note values of some variables such as rental income can be
zero.  In that case, to be able to take logarithm of the
variable, we suggest adding a number to make all values
positive.
III.  2. Properties of the Masked Data in Logarithmic

Scale
The multiplicative scheme such as   is usually
converted to the linear form by taking logarithms on both
sides, i.e., .   In an additive
regression model,  when  is exponentially distributed,

 is converted to  and  is
built.   In this case, adding noise to the log-transformed
variables makes perfect sense.  That is, the properties of the
additive noise demonstrated in Kim (1986) and Kim and
Winkler (1995) hold in log-scale.  The mean is unbiased,
the unbiased variance/covariance can be recovered and
unbaised subdomain estimates can be obtained from the
masked data in log-scale.
III.  3. Properties of the Masked Data
   III.3.1.   Expected Value of 
For convenience, we will let .  

 due to the fact  and  are
independent.  Again we will ignore the dot in the subscript.

  

Thus  
Thus on the average the mean of the masked variable is

 times that of the unmasked data.
Note in order to have an unbiased mean of the masked
variable, we need the variance of noise.  The variance of
noise can be recovered from the masked data by first taking
log-transformation on the masked data, compute its
variance and multiply it by .   The mean of the
unmasked data can be calculated as follows.



Let .  Then 

   

   III.3.2.  Variance of  

and

The variance of  can then be expressed as follows.

III.3.3.   Covariance of  and , j  � j’.

        
  

-   

Note the multiplier of  is different from that of
 in the above. 

Covariance of and can be computed as follows.

  

The correlation coefficient can be obtained from the
noise added variables.  As the noise was generated to
maintain the same correlation structure, the correlation
between the noise-added variables will be on the average
the same as that between the unmasked variables in log-
scale.  Note if , the covariance formula above
reduces to

IV.  A Numerical Example
IV.1  Data to be masked
The data to be masked is eight income fields from the 1991
IRS 1040 Tax Return File.  The eight fields are i) Wage
and Salary Income, ii) Taxable Interest Income, iii)
Dividend Income, iv) Rental Income, v) Non-Taxable
Interest Income, vi) Social Security Income, vii) Total
Income and viii) Adjusted Gross Income.
IV.2    Numerical Example of Scheme I.
We tried the scheme EIA used.  That is, a random number, 
is generated from a normal distribution with mean 1 and
variance .0225.  The random number is truncated such that
the resulting number  satisfies . 
This translates into i).   or  ii).

.    Thus the density function of  is

Following equation (2),

Since Z(-x) = Z(x), the numerator becomes zero and 
becomes 1. Thus the mean is unbiased.  Table 1 shows the
means from the unmasked and masked data.  As seen in the
table, estimates of means from the masked data are all
close to those from the unmasked data.

       

From equation (4),

      

.

Since  ,

     

which is

Using the above expression, the standard deviation of
Wage, Taxable Interest, Dividend, Non-Taxable Interest,
Rent and Social Security Income is calculated.  In Table 2,
these estimates and those from the unmasked data are
shown.  The standard deviations for four items obtained
from the masked data are close to those from the unmasked
data.  However, for the remaining two items (Wage and
Non-Taxable Interest), the standard deviation of the
masked data is close to 9 percent off from that of the
unmasked data.
IV.3.    Numerical Example of Scheme II
The masking scheme was twice applied to the same data
set as before.   C value (as shown in section III.1) of .01
and .10 was used for masking.  Since many income fields
have zero entry and logarithm cannot be taken on zero, one
(1) was added to every entry in the data set and the
resulting data is  masked.  Note variance and covariance
(hence correlation) are location-invariant. However, we
subtract one (1) from the mean to retrieve the mean of the
original data. The means recovered from the masked data



are in Tables 3 and 5.  The means estimated from the
masked data with c=.01 are all very close to those from the
unmasked data. Table 4 shows similar data for the standard
deviation.  The standard deviation is severely
underestimated for Wage and Rent (32.1 and 29.1 percent,
respectively).  The estimated standard deviation for Non-
Taxable Interest and Social Security income is
substantially low (11.3 and 8.1 percent, respectively).
The means obtained from the masked data with c=.10 are
in fairly close range of those from the unmasked data.  In
comparison with those from c=.01, they are much farther
off from the mean of the unmasked data.  However, this
can be expected as the new data has ten times higher noise
in the log-scale.
Except for Taxable Interest (and probably Social Security
income), the masked data has the standard deviation (with
c=.10) wildly different from the standard deviation of the
unmasked data (see Table 6).  Sometimes, the difference is
more than 50 percent of the standard deviation of the
unmasked data.

V.    Re-identification of the Records in the File
Records in the masked file were matched against those in
the unmasked file.  The re-identification rates provide an
upper bound on the re-identification rate that might be
obtained using the public-use data and external files.  Two
measures were used for matching.  The first is based on the
proportional difference between the masked and unmasked
values.  The software allows the user to specify a value
between 0.001 and 0.999 with the default being 0.20.  A
full agreement weight is adjusted downward toward the
full disagreement weight as the proportional difference
between the two values being compared increases.  The
EM algorithm is used to get the optimal probabilities for
separating matches (re-identifications) from non-matches
(non-re-identifications).  More details are given in Kim and
Winkler (1995).  The other measure is the same as the first,
but difference is in log-scale.  The former is called d-metric
and the latter l-metric.  Additionally, an efficient linear
sum assignment algorithm forces 1-1 matching in a manner
that further increases the re-identification rate (see e.g.,
Winkler 1998).  The match rate is summarized in Table 7.
Our matching rule is, roughly speaking, if the difference is
within 20 percent of the smaller of the masked and
unmasked values, it is declared a match.  The l-metric
applies this rule to the log-transformed data.  Scheme 1 has
the highest match rate using l-metric, which is 41 percent.
This is probably predictable since around 49.5 percent of
the noise multiplied to the unmasked data lies within the
range of .9 and 1.1.
It is surprising, concerning Scheme II,  to find out that
adding bigger noise does not necessarily protect the file
better.  That is, using l-metric we could re-identify the
masked records more often with c=.10 than with c=.01.
Note that the match rate for the file masked by additive

noise was 0.8 percent and with a combination of additive
noise and swapping of easily re-identified records was less
than 0.1 percent (Kim and Winkler 1995).

VI.    Concluding Remarks
Two forms of multiplicative noise have been examined.
The first is based on generating random numbers which are
around 1, and multiplying the original data by the noise.
The second approach is to take a logarithmic
transformation, compute a covariance matrix of the
transformed data,  generate random number which follows
mean 0 and variance/covariance c times the
variance/covariance computed in the previous step, add the
noise to the transformed data and take antilog of the noise
added data.  Both schemes were tried on IRS income data.

The numerical examples shows that the first scheme has,
in general, means closer to the means of the unmasked
data.  Means using Scheme II with c=.01 are always closer
to the means of the unmasked data than those from Scheme
II with c=.10.
Among three schemes above, except Dividend, Scheme I
has the best standard deviations.  Comparing Scheme II
with c=.01 to Scheme II with c=.10, we can notice that
Scheme II with c=.01 is better except Social Security
income.  
In terms of mean and variance, Scheme I looks best among
the three schemes considered.   The variance for some
items for Scheme II is too unreliable.    In terms of match
rate, Scheme I is worst.  This may be to a limited degree
overcome if we use normally distributed random numbers
having a mean more than 20 percent from 1.  However, the
resulting numbers would be more different than the current
ones from the unmasked, which some users might not like.
Normal assumption was made for the unmasked data.
Lognormal may be more realistic one.  We also can
develop the scheme without distributional assumption.
Covariance formula is available for Scheme II, but not for
Scheme I.  So our future task is investigate schemes under
the alternative (or no) assumption.
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Appendix
Table 1.   Mean of Masked (Based on Scheme I) and Unmasked Data, n=59,315

  Wage Taxab Int  Dividend     Rent N_Tax Int    SS Inc

Masked  23,821    1,825       583     1,189        337       945

Unmasked  23,799    1,825       587     1,190        342       947

Table 2  Standard Deviation of Masked (Based on Scheme I) and Unmasked Data

  Wage Taxab Int  Dividend     Rent N_Tax Int    SS Inc

Masked   40,423    8,069    6,131   22,089   15,568    3,202

Unmasked   44,221    7,982    6,378   21,986   17,007    3,205

Table 3.   Mean of Masked (Based on Scheme II) and Unmasked Data, c=.01

  Wage Taxab Int  Dividend     Rent N_Tax Int    SS Inc

Masked  23,787    1,846       588     1,162        337       952

Unmasked  23,799    1,825       587     1,190        342       947

Table 4  Standard Deviation of Masked (Based on Scheme II) and Unmasked Data, c=.01

  Wage Taxab Int  Dividend     Rent N_Tax Int   SS Inc

Masked   29,887    8,101    6,262  15,600   15,080    2,944

Unmasked   44,221    7,982    6,378   21,986   17,007    3,205

Difference   -32.4 %     1.5 %    -1.8 %   -29.1 %   -11.3 %    -8.1 %

Table 5.   Mean of Masked (Based on Scheme II) and Unmasked Data, c=.10



  Wage Taxab Int  Dividend     Rent N_Tax Int    SS Inc

Masked  24,266    1,901       581     1,137        322       957

Unmasked  23,799    1,825       587     1,190        342       947

Table 6  Standard Deviation of Masked (Based on Scheme II) and Unmasked Data, c=.10

  Wage Taxab Int  Dividend     Rent N_TAX Int    SS Inc

Masked  74,732    8,122    4,936  10,388   10,324    3,000

Unmasked   44,221    7,982    6,378   21,986   17,007    3,205

Difference    69.0 %     1.8 %   -22.6 %   -52.8 %   -39.3 %    -6.4 %

Table 7. Match  Rate

        d-metric            l-metric

                  Scheme I              -               41 %

 Scheme II  with c = .01             8  %                 8 %

 Scheme II  with c = .10             4  %               10 %

Table 8.  Comparison of Means for the Schemes

  Wage Taxab Int  Dividend     Rent N_Tax Int  SS Inc

     Scheme I   23,821    1,825       583     1,189        337     945

Scheme II, c=.01   23,787    1,846       588     1,162        337     952

Scheme II, c=.10   24,266    1,901       581     1,137        322     957

    Unmasked   23,799    1,825       587     1,190        342     947

Table 9.  Comparison of Standard Deviations for the Schemes

  Wage Taxab Int  Dividend     Rent N_Tax Int  SS Inc

     Scheme I   40,423    8,069    6,131   22,089   15,568    3,202

Scheme II, c=.01   29,887    8,101    6,262  15,600   15,080    2,944

Scheme II, c=.10   74,732    8,122    4,936  10,388   10,324    3,000

    Unmasked   44,221    7,982    6,378   21,986   17,007    3,205

This paper reports the results of research and analysis undertaken by Census Bureau staff.  It has undergone a Census
Bureau review more limited in scope than given to official Census Bureau publications.  This report is released to inform
interested parties of ongoing research and to encourage discussion of work in progress.


