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I Introduction

Around 1994, the Bureau of the Censuswas commissioned
by the Department of Health and Human Services (HHS)
to create a microdata file by combining the 1991 March
Current Population Survey (CPS) data which hasincome
componentswith the 1990 Internal Revenue Service (IRS)
1040 Income Tax Return file. The Treasury Department
allowed usto use their data for creating this file, but with
one condition. We had to mask their income component
which was composed of eight income variables. On the
other hand, HHS was going to use the file to conduct their
research on welfare reform. Thus we had to meet two
somewhat conflicting requirements (1) protect
confidentiality for the people on the file, (2) maintain
analytic properties of the unmasked data.

Additive noise approach (Kim 1986, 1990; Fuller 1993;
Kim and Winkler 1995; Winkler 1998 and Roque 2000)
can satisfy both requirements and is easy to implement.
Synthetic or simulated data approach (Kennickell 1997,
1999) meetsthe requirementswell, but requiresgood skill
toimplement. At thetimewe used additive noiseplusdata
swapping approach for masking thisfile.

Additive noise is used more often than others in masking
microdatafiles. However, there has been conjecturethat,
the multiplicative noise approach might do a better job
protectingthe confidentiality. Two formsof multiplicative
noise are considered in this paper. The first is generate
random numbers which are around mean 1, and multiply
the origina data by the noise (which will be caled
Multiplicative Noise Scheme ). The second approach is
totakealogarithmictransformationon theunmasked data,
compute a covariance matrix of the transformed data,
generate normal random numbers which follow mean 0
and c times the variance/covariance computed in the
previous step, add the noise to the transformed data and
take antilog of the noise added data (which will be called
MultiplicativeNoise Schemell). Theformer wasused by
the Energy Information Administration in the U.S.
Department of Energy. Specificaly, to mask the heating
(and cooling) degree days, h, a random number, e, is
generated from a normal distribution with mean 1 and
variance.0225. Therandom number istruncated such that
the resulting number satisfies

.01<|e-1|<.6. Then masked data were released.
In this paper, we will investigate statistical properties of
both schemes mentioned above (section |l and 111) and try

theschemesin masking|RSincomedatamentionedabove,
calculating mean and variance in an effort to recover the
original mean and variance' (section 1V). We aso try to
match the records in the masked file against those in the
unmasked file (section V).

. Multiplicative Noise Scheme

1.1. Masking Scheme
Let X; bethevauefor the
2.0 j=1,2,...p;

We will denote the noise variables €4,€,,,,€
corresponding to unmasked variablesX 4, X5, , , X
Lety; = X;€;,where€; followsnormal distributionwith
mean H;and variance Oj before truncation.  For
convenience, we will drop subscript j fromH; and Oj .
We also ignore the dot in the subscript. Note the noise is
usually doubly truncated such as
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where A and B are the lower and upper truncation points
and ®(A) stands for the cumulative probability up to A.
The above can be reexpressed as
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[1. 2.  Properties of the Masked Data
I1.2.1. Expected Valueof y, When |&; - p[<c
E(yj) = E(xj)E(ej) due to the fact X and ej are
independent.
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L After this paper was drafted, a paper (see
Muralidhar, et a) dealing with a multiplicative scheme
cameto the authors' attention. However, our current
paper is much more comprehensive



From the equation
E(y,)
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Note sincethe datadisseminator will release M, 0, A and
B, users can compute expected value of the noise. Note
Z(x) isthe ordinate of the standard normal curve and
Z(-x)=Z(x). 1f A= -B thenbiasof € is

zero, because Z(%) = Z(%). IfA+-B

the bias can be positive or negative.
The variance of noise can be calculated similarly.

V(y) = E@y) - [E(y)P

= E(x))E(e)) - [E(x)E(e)P
Now
E(e?) = K—— [%e? exp[- —— (e, - p)2lde,
whichis, after some algebra
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Since U, 0, A and B will be known to users and (the
estimate of) E(x;) can be easily calculated following the
formulain section 11.2.1. V(x;) also can be captured.
If A =-B, the variance of yjsimplifieﬁto
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Thus
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I11.1.  Masking Scheme

We define X; the same way as before.
Let

Y = Inx;

VYY) =%, Wheret isthe variance/covariance matrix of
variablesx s, X5, 4, X,,

We generate the random number following multivariate
normal distribution N (Q, c%), where cisa positive
number but less than 1. We denote the noise variables
e,e.,, e, coresponding to unmasked variables.
X1 X2 10X
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Let z; = y; + &

Thus u; = antilog of z; = exp(y; + &)

In X+ € e

= e 1 = -

Notevaluesof somevari abléssuch asrental incomecanbe
zero. In that case, to be able to take logarithm of the
variable, we suggest adding a number to make al values
positive.
[1l. 2. Properties of the Masked Data in L ogarithmic
Scale
The multiplicative scheme such as y = ax,’x, isusually
converted to the linear form by taking logarithms on both
sides, i.e,, Iny = Ina + BInx, + Inx,. In an additive
regression model, when x, is exponentialy distributed,
X, isconvertedto z, = Inx, andy = a + B,z, + B,X, IS
built. In this case, adding noise to the log-transformed
variablesmakesperfect sense. That is, thepropertiesof the
additive noise demonstrated in Kim (1986) and Kim and
Winkler (1995) hold in log-scale. The mean is unbiased,
the unbiased variance/covariance can be recovered and
unbaised subdomain estimates can be obtained from the
masked datain log-scale.
I11. 3. Properties of the Masked Data

[11.3.1. Expected Value of u,
For convenience, we will let o? - cV(In x;).
E(u) = E(x)E(f) due to the fact X; and fJ are
independent. Againwewill ignorethedot in the subscript.

E [exp(e)] = e°*/2

Thus E(u) = e°? E (x)

Thus on the average the mean of the masked variable is
€°” times that of the unmasked data.

Note in order to have an unbiased mean of the masked
variable, we need the variance of noise. The variance of
noisecan berecoveredfrom the masked databy first taking
log-transformation on the masked data, compute its
variance and multiply it by € . The mean of the
unmasked data can be calculatdd s follows.
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111.3.2. Variance of ﬁj
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The variance of X; can then be expressed as follows.
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Note the multiplier of E(x;x) is different from that of
E(x)E(x) in the above.
Covariance of X; and X;/can be computed as follows.
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The correlation coefficient p canebe obta| ned from the
noise added variables. As the noise was generated to
maintain the same correlation structure, the correlation
between the noise-added variableswill be on the average
the same as that between the unmasked variablesin log-
scade. Note if p = 0, the covariance formula above
reduces to

Cov (x;, )=
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Cov(u,u)) = & 2 Cov(x,x)

IV. A Numerical Example

IV.1 Datato be masked

Thedatato bemaskediseightincomefieldsfromthe 1991
IRS 1040 Tax Return File. The eight fields are i) Wage
and Salary Income, ii) Taxable Interest Income, iii)
Dividend Income, iv) Rental Income, v) Non-Taxable
Interest Income, vi) Social Security Income, vii) Tota
Income and viii) Adjusted Gross Income.

IV.2 Numerica Example of Schemel.
WetriedtheschemeEIA used. Thatis, arandom number, e,
is generated from a normal distribution with mean 1 and
variance.0225. Therandom number istruncated such that
the resulting number e, satisfies .01 < |e;-1|<.6.
This translates into ). 4 < €< 99 or i)

1.01 << 1.6. Thusthedenstyfunctlon ofe is
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Following equation (2),

E(e)=1-+ 2(4)-2(.0667)+2(- 0667) -2(-4)
P 0(4)-9(.0667)+d(-.0667)-(4)

Since Z(-x) = Z(x), the numerator becomeszero and E(e))
becomes 1. Thusthemeanisunbiased. Table 1 showsthe
meansfromtheunmasked and masked data. Asseeninthe
table, estimates of means from the masked data are all
close to those from the unmasked data.
E(e?)=V(e)+[E(e)P=.0225+1=1.0225

From equation (4),

V(y) = E(x)(0% +p2) - [E(x)Pu?
=p2V(x) + 02E(x?)

= H2V(x) + 0H{V(x) + E[()F}.

Since E(x) = E(y),
1
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Using the above expression, the standard deviation of

Wage, Taxable Interest, Dividend, Non-Taxable Interest,

Rent and Socia Security Incomeiscalculated. InTable 2,

these estimates and those from the unmasked data are
shown. The standard deviations for four items obtained

from the masked dataare closeto thosefrom theunmasked

data. However, for the remaining two items (Wage and

Non-Taxable Interest), the standard deviation of the
masked data is close to 9 percent off from that of the
unmasked data.

IV.3. Numerical Example of Schemell

The masking scheme was twice applied to the same data
set asbefore.  C value (as shown in section I11.1) of .01

and .10 was used for masking. Since many income fields
have zero entry and | ogarithm cannot be taken on zero, one
(1) was added to every entry in the data set and the
resulting datais masked. Note variance and covariance
(hence correlation) are location-invariant. However, we
subtract one (1) from the mean to retrievethe mean of the
original data. The means recovered from the masked data



arein Tables 3 and 5. The means estimated from the
masked datawith c=.01 areall very closeto thosefrom the
unmasked data. Table4 showssimilar datafor the standard
deviation. The sandard deviation is severely
underestimated for Wage and Rent (32.1 and 29.1 percent,
respectively). The estimated standard deviation for Non-
Taxable Interest and Sociad Security income is
substantially low (11.3 and 8.1 percent, respectively).
The means obtained from the masked data with c=.10 are
in fairly close range of those from the unmaskeddata. In
comparison with those from c=.01, they are much farther
off from the mean of the unmasked data. However, this
can be expected asthe new data has ten times higher noise
inthelog-scale.

Except for Taxable Interest (and probably Social Security
income), the masked data has the standard deviation (with
¢=.10) wildly different from the standarddeviation of the
unmasked data(see Table 6). Sometimes, thedifferenceis
more than 50 percent of the standard deviation of the
unmasked data.

V. Re-identification of the Recordsin the File
Records in the masked file were matched against thosein
the unmasked file. The re-identification rates provide an
upper bound on the re-identification rate that might be
obtained using the public-usedataand external files. Two
measureswere used for matching. Thefirstisbased onthe
proportional differencebetween themasked and unmasked
values. The software alows the user to specify a value
between 0.001 and 0.999 with the default being 0.20. A
full agreement weight is adjusted downward toward the
full disagreement weight as the proportional difference
between the two values being compared increases. The
EM algorithmis used to get the optimal probabilities for
separating matches (re-identifications) from non-matches
(non-re-identifications). MoredetailsaregiveninKimand
Winkler (1995). Theother measureisthe sameasthefirgt,
but differenceisinlog-scale. Theformer iscalled d-metric
and the latter I-metric. Additiondly, an efficient linear
sumassignmentalgorithmforces1-1 matchinginamanner
that further increases the re-identification rate (see e.g.,
Winkler 1998). The match rateis summarizedin Table 7.
Our matchingruleis, roughly speaking, if thedifferenceis
within 20 percent of the smaler of the masked and
unmasked values, it is declared a match. The |-metric
appliesthisruletothelog-transformeddata. Scheme 1 has
the highest match rate using I-metric, whichis 41 percent.
Thisis probably predictable since around 49.5 percent of
the noise multiplied to the unmasked data lies within the
range of .9 and 1.1.

It is surprising, concerning Scheme |1, to find out that
adding bigger noise does not necessarily protect the file
better. That is, using I-metric we could re-identify the
masked records more often with ¢=.10 than with c=.01.
Note that the match rate for the file masked by additive

noise was 0.8 percent and with a combination of additive
noise and swapping of easily re-identifiedrecordswas|ess
than 0.1 percent (Kim and Winkler 1995).

VI. Concluding Remarks

Two forms of multiplicative noise have been examined.
Thefirstisbased on generatingrandom numberswhich are
around 1, and multiplying the original data by the noise.
The second approach is to take a logarithmic
transformation, compute a covariance matrix of the
transformeddata, generate random number which follows
mean 0 and variance/covariance ¢ times the
variance/covariancecomputedin the previousstep, addthe
noiseto the transformed data and take antilog of the noise
added data. Both schemesweretried on IRSincome data.

The numerical examples shows that the first scheme has,
in general, means closer to the means of the unmasked
data. Meansusing Schemell with c=.01 are aways closer
tothemeansof the unmasked datathan thosefrom Scheme
Il with c=.10.

Among three schemes above, except Dividend, Scheme |
has the best standard deviations. Comparing Scheme |1
with ¢=.01 to Scheme Il with c=.10, we can notice that
Scheme Il with c=.01 is better except Socia Security
income.

Intermsof mean and variance, Schemel looksbest among
the three schemes considered. The variance for some
itemsfor Scheme Il istoo unreliable. In terms of match
rate, Scheme | isworst. Thismay beto alimited degree
overcomeif we use normally distributed random numbers
havingamean more than 20 percent from 1. However, the
resulting numberswould be moredifferentthanthecurrent
onesfrom the unmasked, which someusersmight not like.
Normal assumption was made for the unmasked data.
Lognormal may be more realistic one. We aso can
develop the scheme without distributional assumption.
Covarianceformulaisavailablefor Schemell, but not for
Schemel. So our futuretask isinvestigate schemes under
the aternative (or no) assumption.
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Appendix
Tablel. Mean of Masked (Based on Scheme I) and Unmasked Data, n=59,315
Wage Taxab Int Dividend Rent N_Tax Int SSinc
Masked 23,821 1,825 583 1,189 337 945
Unmasked 23,799 1,825 587 1,190 342 947
Table 2 Standard Deviation of Masked (Based on Scheme |) and Unmasked Data
Wage Taxab Int Dividend Rent N_Tax Int SSinc
Masked 40,423 8,069 6,131 22,089 15,568 3,202
Unmasked 44,221 7,982 6,378 21,986 17,007 3,205
Table3. Mean of Masked (Based on Scheme |1) and Unmasked Data, c=.01
Wage Taxab Int Dividend Rent N_Tax Int SSinc
Masked 23,787 1,846 588 1,162 337 952
Unmasked 23,799 1,825 587 1,190 342 947
Table4 Standard Deviation of Masked (Based on Scheme I1) and Unmasked Data, c=.01
Wage Taxab Int | Dividend Rent N_Tax Int SSinc
Masked 29,887 8,101 6,262 15,600 15,080 2,944
Unmasked 44,221 7,982 6,378 21,986 17,007 3,205
Difference -324% 15% -1.8% -29.1% -11.3% -8.1%

Table5. Mean of Masked (Based on Scheme I1) and Unmasked Data, c=.10




Wage | Taxab Int Dividend Rent N_Tax Int SSinc
Masked 24,266 1,901 581 1,137 322 957
Unmasked 23,799 1,825 587 1,190 342 947
Table6 Standard Deviation of Masked (Based on Scheme I1) and Unmasked Data, c=.10
Wage Taxab Int Dividend Rent N_TAX Int SSinc
Masked 74,732 8,122 4,936 10,388 10,324 3,000
Unmasked 44,221 7,982 6,378 21,986 17,007 3,205
Difference 69.0 % 1.8% -22.6 % -528% | -39.3% -6.4 %
Table 7. Match Rate
d-metric [-metric
Schemel - 41 %
Schemell withc=.01 8 % 8%
Schemell withc=.10 4 % 10%
Table 8. Comparison of Means for the Schemes
Wage Taxab Int Dividend Rent N_Tax Int SSinc
Schemell 23,821 1,825 583 1,189 337 945
Schemell, c=.01 23,787 1,846 588 1,162 337 952
Schemell, c=.10 24,266 1,901 581 1,137 322 957
Unmasked 23,799 1,825 587 1,190 342 947
Table 9. Comparison of Standard Deviations for the Schemes
Wage Taxab Int Dividend Rent N_Tax Int SSinc
Scheme | 40,423 8,069 6,131 22,089 15,568 3,202
Schemell, c=.01 29,887 8,101 6,262 15,600 15,080 2,944
Schemell, ¢=.10 74,732 8,122 4,936 10,388 10,324 3,000
Unmasked 44,221 7,982 6,378 21,986 17,007 3,205

This paper reports the results of research and analysis undertaken by Census Bureau staff. It has undergone a Census
Bureau review more limited in scopethan given to official Census Bureau publications. Thisreport isreleased toinform
interested parties of ongoing research and to encourage discussion of work in progress.



