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Abstract:

Multi-phase surveys are often conducted in forestry,
with the goal of estimating tree characteristics and
volume over large regions. Design-based estimation
of such quantities, based on information gathered
during ground visits of sampled plots, can be made
more precise by incorporating auxiliary information
available from remote sensing. The exact relation-
ship between the ground visit measurements and the
remote sensing variables is not known, hence it is
modelled using generalized additive models. Non-
parametric estimators for these models are discussed
and applied to forest data collected in northeastern
Utah in the United States. By using these model
predictions in a model-assisted survey estimation
procedure for tree volume and related variables, we
improve the accuracy of the survey estimates com-
pared to currently available estimation procedures.
The procedures described in this article are applica-
ble to many other survey contexts.

1 Introduction

Accurate estimation of forest resources over large ge-
ographic areas is of significant interest to forest man-
agers and forestry scientists. In nationwide forest
surveys of the U.S., design-based estimates of quan-
tities like total tree volume, growth and mortality, or
area by forest type are produced on a regular basis.
In the current article, we consider the estimation of
such quantities within a 3.18 million ha ecoregion in
northeastern Utah. Figure 1 displays the region of
interest and the sample points collected in the early
1990’s for the survey we will consider here. While
this article will focus on this particular example, the
approach proposed here can be applied in other for-
est and natural resource estimation problems as well.

Currently, forest survey estimates are being pro-
duced through a two-phase sampling procedure,
with phase one consisting of aerial photo-based in-

formation collected on an intensive sample grid, and
phase two consisting of a subset of that grid vis-
ited in the field. Photo-interpreted vegetation cover
type and ownership are often used for stratification
(or post-stratification) of phase two field points, and
design-based estimates of population totals are then
calculated. Because of the increasing availability of a
wide variety of inexpensive information derived from
satellite observations, there is a tremendous oppor-
tunity for effective methods to merge forest inven-
tory data with diverse auxiliary information, to both
reduce costs and further improve precision on forest
survey estimates.

At the same time, scientists within government
agencies and in other institutions are working on de-
veloping predictive and analytical models describing
forest characteristics. Because of the multivariate
nature of the data and the incomplete understand-
ing of the relationships between variables, nonpara-
metric and semiparametric models are often found
to be a good compromise between model specifica-
tion and flexibility. Such modelling efforts would in
principle provide a good source of auxiliary informa-
tion to produce more precise survey estimators. The
purpose of this article is to propose an approach for
including such models into the design-based estima-
tion framework, and to apply it to the Utah forest
dataset.

Model-assisted survey estimation (Särndal et al.
[7]) is a well-known approach for incorporating aux-
iliary information in design-based survey estima-
tion. It assumes the existence of a “superpopula-
tion model” between the auxiliary variables and the
variable of interest for the population to be sampled.
The estimation of population quantities of interest is
then performed in such a way that the design prop-
erties of the estimators can be established. This is in
contrast to purely model-based estimation, for which
no design-based inference is possible.

While model-assisted estimation has the poten-
tial to improve the precision of survey estimators
when appropriate auxiliary information is available,
it typically requires that these models be linear or
at least have a known parametric shape. Breidt and
Opsomer [1] introduced local polynomial regression
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Figure 1: Representation of study region in northeastern Utah. Each dot represents a field-visited sample
plot. See Section 4 for an explanation of the phase 1 and phase 2 plots.

estimation, a survey estimation approach combining
the modelling flexibility of nonparametric regression
with model-assisted estimation. In this article, we
describe how this approach can be used with survey
data from a multi-phase design and with generalized
nonparametric regression models.

In Section 2, we review model-assisted survey es-
timation for multi-phase designs, and in Section 3,
we apply it to the generalized additive model. Sec-
tion 4 discusses the models used for prediction for
the Utah forest inventory. In Section 5, we show the
results of applying nonparametric model-assisted es-
timation methods to the Utah data.

2 Model-assisted Nonparametric Es-
timation

The Utah data was collected in two phases on a regu-
larly spaced grid. Such data is often analyzed as two
phases of simple random sampling without replace-
ment. This section describes the estimators consid-
ered for this application.

Let U = {1, . . . , i, . . . , N} represent the popula-
tion of elements to be sampled, sa ⊆ U the sample
of elements selected in phase 1 and s ⊆ sa the sam-
ple of elements selected in phase 2. In this applica-
tion, the elements are plots of approximately 1 acre
(0.405 ha) in size. Let na and n represent the phase
1 and phase 2 sample sizes, respectively. Finally, let
yi represent a generic variable of interest for element
i.

The design-based estimator for the population to-
tal ty =

∑
U yi is

t̂y =
N

n

∑
s

yi, (1)

The variance of this estimator is composed of two
components, one for each phase of sampling, and
can be written as

Var(t̂y) = N2
(
1− na

N

) S2
yU

na

+N2Ea

((
1− n

na

)
S2

ysa

n

)
,

2



where S2
yU and S2

ysa
are the variances of the yi in the

population and in the phase 1 sample, respectively,
and Ea is the expectation with respect to the first
phase of sampling. An unbiased estimator for the
variance is

V̂ (t̂y) = N2
(
1− na

N

) S2
ys

na

+N2

(
1− n

na

)
S2

ys

n
, (2)

with S2
ys the variance of the yi in s. More details on

two-phase sampling and the estimator are given in
Särndal et al. [7], chapter 9.

Suppose now that we would like to use auxiliary
information to improve on the precision of the above
estimator. We assume that the auxiliary informa-
tion is available for all the elements in the phase 1
sample sa, but not for the remaining elements in
the population (this is the most common situation
in two-phase sampling). Let Xi represent a vector
of auxiliary variables that is observed for all i ∈ sa.
The superpopulation model

E(Yi|Xi) ≡ µi = f(Xi) (3)

is assumed for the population. Traditionally, f(·) is
assumed to be linear. Recently, Wu and Sitter [8]
studied more general parametric regression models,
and Breidt and Opsomer [1] considered nonparamet-
ric models.

The model is fitted on the data (Xi, yi), i ∈
s using a nonparametric regression technique. A
wide range of such method are available, including
kernel-based methods, spline methods and orthog-
onal decomposition-based approaches (see e.g. Op-
somer [6] for an overview), and in principle any of
these can be used to produce predictions µ̂i for all
i ∈ sa. In model-assisted estimation, the estimator
t̂y in (1) is then replaced by

t̂ym =
N

na

(∑
sa

µ̂i +
na

n

∑
s

(yi − µ̂i)

)
. (4)

The design-based estimator t̂y is replaced by model
predictions over the phase 1 sample, corrected by
the observed deviations between the true values and
model predictions over the phase 2 sample, appro-
priately weighted up to the whole population.

When µ̂i is obtained from an appropriately
weighted linear regression, t̂ym is known as the gen-
eralized regression estimator (Särndal et al. [7]). In
that case, t̂ym is design consistent, regardless of
whether the model (3) is correctly specified or not,

and its design variance can be approximated by

Var(t̂ym) ≈ N2
(
1− na

N

) S2
yU

na

+N2Ea

((
1− n

na

)
S2

esa

n

)
,(5)

where S2
esa

is the variance of the residuals ei = yi−µ̂i

for the model fit on (yi,Xi) for i ∈ sa. Similarly, a
variance estimator is found by replacing S2

ys by S2
es

in (2).

The poststratified estimator for ty can be consid-
ered as a special case of the generalized regression
estimator, in which the auxiliary variables are cat-
egorical. By classifying the phase 2 sample into a
small number of post-strata based on the phase 1 in-
formation, this estimator is often used as a relatively
simple way to incorporate auxiliary information in
the estimation. See Särndal et al. [7] for explicit
expressions for the post-stratified estimator and its
variance.

It is intuitively clear why a model can improve
the efficiency of the estimator. If the model fits the
data well, the variance of the residuals ei can be ex-
pected to be smaller than the variance of the yi. If
the model fits poorly, the residual variance should
be equally large or even potentially larger than the
measurement variance. Hence, the efficiency gains
of the model-assisted estimator depend on the selec-
tion of a good model for f(·) in (3). The same rea-
soning applies when f(·) is fitted by nonparametric
regression (Breidt and Opsomer [1]). In that case,
the estimator t̂ym in (4) can be more efficienct even
even when the specific form of f(·) is unknown.

The estimator t̂ym has some additional desirable
properties. If the nonparametric regression method
is a linear smoothing method, in the sense that
µ̂i =

∑
s sijyj for a set of smoothing weights sij

that do not depend on the yj , t̂ym can be writ-
ten as a linear combination of the sample obser-
vations t̂ym =

∑
s wiyi, with weights wi indepen-

dent of the yi. These regression weights can be
used for any variables collected in the same sur-
vey, and to the extent that such variables also follow
model (3), they will also benefit from the efficiency
gain. When (local) polynomial regression is used for
model fitting, the resulting regression weights are
calibrated for the auxiliary variables in phase 1, so
that

∑
s wiXi = N

na

∑
sa

Xi.

3



3 Model-assisted Estimation Using
Generalized Additive Models

Suppose now that f(Xi) is the generalized additive
model

E(Yi|Xi) ≡ µi = g(m1(X1i)+ . . .+mD(XDi)) (6)

for some known link function g(·) and unknown
smooth functions md(·), d = 1, . . . , D, where the
Xdi are known subsets of the vector Xi. Given a
set of estimated functions m̂d(·), d = 1, . . . , D, model
predictions µ̂i = g−1(m̂1(X1i) + . . . + m̂D(XDi))
and corresponding residuals ei = yi − µ̂i are readily
calculated, for instance using the gam() local scor-
ing estimation routines (Hastie and Tibshirani [3])
implemented in S-Plus. Assuming consistency of the
generalized additive model estimators, the estimator
t̂ym will be design consistent under conditions simi-
lar to those in Breidt and Opsomer [1]. The variance
approximation (5) is then again appropriate for this
case.

Unless the link function g(·) is the identity link,
local scoring estimators are not produced by linear
smoothers. Hence, the resulting estimator t̂ym is no
longer a linear combination of the yi. In addition,
the inverse transformation g−1(·) used to calculate
the µ̂i introduces bias in the model portion of the
estimator. Both of these disadvantages can be cor-
rected, however, by introducing an additional regres-
sion estimation step. To do this, we perform a linear
regression of the yi on the µ̂i. Let µ̂∗i represent the
fitted values from this new regression. The estimator

t̂∗ym =
N

na

(∑
sa

µ̂i
∗ +

na

n

∑
s

(yi − µ̂∗i )

)
(7)

is corrected (up to first order) for the bias introduced
by the link function, and it can again be written as
a linear combination of the observations yi for i ∈ s.
Note that this new estimator is now calibrated for
the model fits µ̂i in phase 1, not for the auxiliary
variables themselves. Wu and Sitter [8] proposed a
calibration adjustment for their nonlinear regression
estimators that is similar to this second regression
step.

4 Generalized Additive Models for
the Forest Inventory Data

In this section, we discuss fitting generalized addi-
tive models to the Utah forest inventory. Data used
in this study were collected on a 5 km sample grid
as illustrated in Figure 1. On each of 968 phase 2

sample plots, numerous forest site variables and in-
dividual tree measurements were collected, including
a binary classification of the plot as ”forest” or ”non-
forest” (FOR), and a measure of total wood volume
(NVOL) expressed in cuft per acre. In addition to
the field plot data, remotely sensed auxiliary infor-
mation was extracted on the 5 km field plot locations
as well as on an intensified 1 km grid (25,386 points),
which will represent the phase 1 data. These data
came from four sources: (1) elevation (ELEV), a
transformed aspect (TRASP), and slope (SLOPE)
from digital elevation models produced by the U.S.
Defense Mapping Agency; (2) a Normalized Differ-
ence Vegetation Index (NDVI) from a biweekly Ad-
vanced Very High Resolution Radiometer compos-
ite; (3) vegetation cover type from the U.S. National
Land Cover Data (NLCD1) based on a 30-m reso-
lution Thematic Mapper imagery collapsed to seven
vegetation classes; and (4) spatial coordinates (X
and Y).

Moisen and Edwards [5], Moisen [4] and Fres-
cino et al. [2] developed parametric and nonpara-
metric models relating remotely sensed data to for-
est attributes observed during field visits. Taking a
similar approach here, response variables FOR and
NVOL were modeled as nonparametric functions of
ancillary predictor variables X, Y, ELEV, TRASP,
SLOPE, NDVI, and NLCD1 through generalized ad-
ditive models. Logit and log link functions g(·) were
chosen for the FOR and NVOL models, respectively.
The model (6) was fitted using gam() in S-Plus.
Component functions were obtained through loess
smoothers with local polynomials of degree 1 and a
relatively large smoothing parameter (see Opsomer
[6] for an explanation of the loess smoothing method
and smoothing parameter selection). Predictor vari-
ables ELEV and NDVI entered the model as uni-
variate smooth terms, while X with Y, and TRASP
with SLOPE contributed as bivariate smooth func-
tions. NLCD1 entered as a categorical variable in
both models. The plots of the smooth contributing
terms in the FOR model are shown in Figure 2. The
plots for NVOL are not shown but are qualitatively
similar.

5 Design-based Survey Estimation
for the Forest Inventory Data

We calculate the following estimators for FOR and
NVOL:

1. the design-based estimator t̂y in (1)

2. the model-assisted estimator t̂ym in (4)

4
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Figure 2: GAM model fits for FOR variable

3. the bias-corrected model-assisted estimator t̂∗ym

in (7)

4. a two-phase poststratified estimator with the
seven categories of variable NLCD1 as post-
strata, denoted by t̂yps.

Table 1 shows the estimates for both FOR and
NVOL, as well as the estimated standard deviations,
when the model is fit using local scoring.

Estimator FOR (in 000) NVOL (in 000,000)
1. t̂y 3,389 (99) 5,587 (271)

2. t̂ym 3,389 (81) 5,540 (224)
3. t̂∗ym 3,390 (80) 5,540 (224)
4. t̂yps 3,375 (86) 5,614 (245)

Table 1: Estimates for FOR and NVOL (estimated
standard deviations in parentheses).

There is a 17–18% decrease in the estimated stan-
dard deviations for the model-assisted estimator t̂ym

for both variables, compared to the purely design-
based estimator t̂y. The bias-correction step does

not appear to give any additional precision benefit,
but is still worthwhile because it provides weights.

The traditional method for improving the pre-
cision of design-based estimators relies on post-
stratification, which in this case provides an im-
provement of 13% for FOR and 10% for NVOL.
Since the post-stratification variable, NLCD1, was
included as a categorical variable in the generalized
additive models, t̂ym can be interpreted as a further
refinement of t̂yps. Modelling appears to provide a
small but valuable increase in precision of 4% for
FOR and 8% for NVOL.

Survey weights, obtained directly from the design
as inverse inclusion probabilities or after adjustment
from a regression, are useful primarily because they
can be applied to any variable of interest in a survey.
To illustrate this point, we can calculate regression
weights by fitting the variable FOR on the µ̂i ob-
tained from the generalized additive model for that
variable, and use these weights to estimate the to-
tal for NVOL. Conversely, NVOL-derived regression
weights can be obtained and used to estimate the
total of FOR. The first two lines of Table 2 show

5



Estimator FOR (in 000) NVOL (000,000)
FOR weights 3,390 (80) 5,611 (239)

NVOL weights 3,365 (87) 5,540 (224)
FOR/NVOL weights 3,390 (80) 5,544 (224)

Table 2: Estimates for FOR and NVOL using dif-
ferent regression weights (estimated standard devi-
ations in parentheses).

the estimates obtained using both regression weights
and their estimated standard deviations.

Clearly, weights specifically calculated for one
variable do not achieve the full precision improve-
ment when applied to the other variable. A simple
solution to recapture the full efficiency improvement
for the main variables in a survey is to perform the
regression step simulatneously using all the predic-
tions for these variables as covariates. In this case,
this means performing a multiple regression on both
the FOR and the NVOL predictions, so that the re-
gression weights are jointly calibrated to both model
fits. Line three in Table 2 shows the estimates pro-
duced after this multiple regression step. The results
for both variables are now almost identical to those
found by calibrating them individually to their re-
spective predictions, achieving the desired results.

6 Conclusion

Auxiliary information from remote sensing or other
sources is becoming increasingly available to orga-
nizations involved in natural resource surveys. In
this article, we have explained how nonparametric
model-assisted estimation techniques can be used to
incorporate such auxiliary information in the pro-
duction of survey estimates, even in the case of fairly
complex models and multi-phase designs. This was
illustrated using generalized additive models in a
survey of forest resources in Northeastern Utah.

The theoretical properties of this approach in
complex surveys are currently being investigated by
the authors. An important open issue concerns the
selection of the smoothing parameters for the non-
parametric regression fitting algorithms, since this
directly affects both the estimates of the quantity of
interests and their estimated variances.
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