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1 Introduction

Many surveys use imputation to handle item nonre-
sponse as a way to patch up the sample. However,
it is a common practice to treat the imputed values
as if they are true values, and then compute the
variance estimates using standard formulas. This
can lead to serious underestimation of the true
variance of the estimates when the proportion of
missing values is not small. Extensive literature
exists on the model-assisted approach to inference
for population totals and means under imputation
for missing data; see for example Särndal (1992),
Deville and Särndal (1994), Rancourt, Särndal and
Lee (1994) and Shao and Steel (1999).

Under the model-assisted framework, the following
assumption holds:
Assumption MA: Within an imputation cell the
response mechanism is ignorable or unconfounded in
the sense that whether or not a unit responds does
not depend on the variable being imputed but may
depend on the covariates used for imputation. Im-
putation is performed according to a model which
Särndal (1992) calls “imputation model”. For regres-
sion imputation, the imputation model is given by

Em(yi) = z′iβ, Vm(yi) = σ2
i = σ2z′iλ,

Covm(yi, yj) = 0 if i �= j, (1)

where β is a q-vector of unknown parameters, zi

is a q-vector of auxiliary variables available for
all the sample units, λ is a q-vector of specified
constants, σ2 is an unknown parameter and Em,

Vm, and Covm denote respectively the expectation,
the variance and the covariance operators with
respect to the imputation model. The restriction
σ2

i = σ2z′iλ does not severely restrict the range of
imputation models. For simplicity, we consider the
case of a single imputation cell but extension to the
case of multiple imputation cells is straightforward.
Typically, a linear model of the form (1) with fixed
effects and a diagonal variance-covariance matrix
is used as an imputation model. However, if the
existing “model-assisted methods” are applied to the
case of single-stage or two-stage cluster sampling,
the estimated variances of the imputed estimators
may be biased since they do not take account of
the intracluster correlation. A nested error linear
regression model may provide a more appropriate
theoretical framework for cluster sampling. In this
paper, using such models as imputation models, we
make inference on a population total and derive
consistent variance estimators of the imputed esti-
mator using a method introduced by Fay (1991) and
developed by Shao and Steel (1999).

Traditionally, researchers have used the following
sample-response path (sometimes called the two-
phase approach) for variance estimation:

Population−→ complete sample −→ sample with
nonrespondents.

In this case,

E
(
θ̂
)

= EpEr

(
θ̂
)
, (2)

V
(
θ̂ − θ

)
= Ep

[
Vr

(
θ̂ − θ

)]
+ Vp

[
Er

(
θ̂ − θ

)]
, (3)

where θ denotes an arbitrary parameter and θ̂
denotes its estimator based on the observed and

Proceedings of the Annual Meeting of the American Statistical Association, August 5-9, 2001 



imputed data, Ep(.) and Vp(.) denote respectively
the expectation and the variance with respect to
the sampling design and Er(.) and Vr(.) denote
respectively the expectation and the variance with
respect to the response mechanism. Note that in
the case of two-stage sampling, Ep(.) = E1E2(.)
and Vp(.) = E1V2(.) + V1E2(.) where E1, E2, V1, V2

denote the expectation and the variance operators
with respect to the first and second stage respectively.

Fay(1991) proposed to use a different path which
reverses the order of sampling and response (we will
call it the reverse approach) that can be depicted as:

Population−→ census with nonrespondents −→
sample with nonrespondents.

In this case, (see Shao and Steel, 1999)

E
(
θ̂
)

= ErEp

(
θ̂
)
, (4)

V
(
θ̂ − θ

)
= Er

[
Vp

(
θ̂ − θ

)]
+ Vr

[
Ep

(
θ̂ − θ

)]
. (5)

In the model assisted framework, we replace
Er(.) and Vr(.) by Ẽm(.) = ErEm(.) and
Ṽm(.) = ErVm(.) + VrEm(.) respectively, where
Em(.) and Vm(.) denote respectively the expectation
and the variance with respect to the imputa-
tion model. An estimator of the overall variance
V

(
θ̂ − θ

)
in (5) is given by vt = v1 + v2, where

v1 is an estimator of Vp

(
θ̂ − θ

)
conditional on

the response indicators, and v2 is an estimator of
VrEp

(
θ̂ − θ

)
. One can show that under uniform

response (see section 5), the order of
VrEp(θ̂−θ)

ErVp(θ̂) is

O( n
K ) where n is the number of first-stage units

(PSU’s or clusters) in the sample and K is the num-
ber of ultimate units (or elements) in the population.
Typically, n << K and hence the second component
in (5) is negligible relative to the first component.
We can then omit the derivation of v2 which could
be quite tedious (Shao and Steel, 1999). However,
under a “beta-binomial” response mechanism, one

can show (see section 5) that the order of
ṼmEp(θ̂−θ)

ẼmVp(θ̂)
is O( n

N ) where N is the number of first-stage units
in the population and n is the number of PSU’s
selected at the first stage from the N clusters. The
first-stage sampling fraction n

N may not be negligible
and hence the computation of v2 must be performed.

We set out our basic framework and assumptions in
section 2. In section 3, we present the imputed esti-
mator of a population total and show that it is design-
model unbiased. In section 4, using the method of
Fay (1991), we derive a consistent estimator for the
variance of the imputed estimator. In section 5, we
investigate the underestimation of the variance of the
imputed estimator occurring when one does not use
the appropriate imputation model. The paper con-
cludes with section 6, which summarizes the results
and puts forth some suggestions.

2 Framework and Assumptions

Let U be a population consisting of N clusters,
where N is known. Let Ui be the ith cluster of
size Mi, i = 1, ..., N We have

⋃N
i=1 Ui = U. For

simplicity, we assume Mi = M for all i ∈ U . We
then have K = MN ultimate units in the popula-
tion. Let y be the variable of interest, yij be the
value of y for the jth element in the ith cluster,
i = 1, ..., N ; j = 1, ...,M and Yi be the cluster total
for the ith cluster. The objective is to estimate the
population total Y =

∑N
i=1 Yi =

∑N
i=1

∑M
j=1 yij

when imputation has been used to compensate for
nonresponse. At the first stage, suppose a random
sample of clusters, s, of size n is selected according
to some design p1(s) from the population of clusters.
At the second stage, suppose that from each cluster
sampled at the first stage, a random sample of
element, si, of size mi (i = 1, ..., n) is selected
according to some design p2(s). Let sri be the
sample of respondents in the ith cluster, of size ri,
and soi be the sample of nonrespondents in the ith

cluster, of size oi; ri + oi = mi.

In this paper we consider mean imputation, in
which case the imputation model under single-stage
or two-stage cluster sampling, is the well known one-
way ANOVA model with random effects given by

m : yij = β + αi + εij , (6)

where β is the general mean, αi is i-th cluster random
effect and εij is the residual error. We assume that
(i) Em(αi) = Em(εij) = 0,
(ii)Covm(εij , εi′j′) = 0 except for i = i′ and j = j′,
Covm(αi, αi′) = 0 ∀i �= i′,
Covm(αi, εi′j′ ) = 0 ∀i, i′ and j′,

(iii)Vm(αi) = σ2
α ∀i,

Vm(εij) = σ2
ε ∀i, j.

From (i)-(iii), we get



Covm (yij , yi′j′) =



σ2

α if i = i′ and j �= j′

σ2
α/ρ if i = i′ and j = j′

0 if i �= i′

where ρ = σ2
α

σ2
α+σ2

ε
is the intracluster correlation coef-

ficient. We assume missing at random (MAR) mech-
anism so that the model holds for the sample respon-
dents.

3 Point estimation

In this section, we present an imputed estimator of
a total Y and show that it is design-model unbi-
ased. Mean imputation under model (6) uses the
predicted value y∗ij = β̂r for missing yij , where β̂r

is the weighted mean of respondents given by β̂r =∑
i∈s

∑
j∈sri

wijyij∑
i∈s

∑
j∈sri

wij
and wij is the survey weight at-

tached to unit j in cluster i. Using the y∗ij ’s, an im-
puted estimator of Y , denoted by ŶI , is given by

ŶI =
∑
i∈s

∑
j∈si

wij ỹij , (7)

where ỹij = yij if j ∈ sri and ỹij = y∗ij if j ∈ soi .
Since Em(Y ) = Kβ and Em(y∗ij) = β, it follows that
Em(ŶI − Y ) = 0 and hence EpEm(ŶI − Y ) = 0.
That is ŶI is design-model unbiased for Y , under the
imputation model (6) .

As a second alternative, one may wish to use the
empirical best linear unbiased predictor (EBLUP) of
β+αi as imputed values y∗ij for j ∈ soi . Under model
(6), the best linear unbiased predictor of β + αi is
given by

BLUP(β + αi) = BLUE (β)

+
riσ

2
α

riσ2
α + σ2

ε

[ȳri − BLUE(β)] (8)

where BLUE(β) denotes the best linear estimator of

β under model (6), given by BLUE(β) =

∑
s

riȳri
riσ2

α+σ2
ε∑

s

ri

riσ2
α+σ2

ε

and ȳri =

∑
sri

wijyij∑
sri

wij
. The EBLUP of β + αi is then

obtained by estimating unknown quantities in (8).
In what follows, we use the weighted mean of respon-
dents β̂r, as imputed values.

4 Variance estimation

To estimate the variance of the imputed es-
timator (7), we use the reverse approach of
Fay (1991). To apply the reverse approach,
we first express ŶI as ŶI = T̂ R̂a, where
R̂a = Ŷa

T̂a
, with Ŷa =

∑
i∈s

∑
j∈si

wijaijyij and

T̂a =
∑

i∈s

∑
j∈si

wijaij , T̂ =
∑

i∈s

∑
j∈si

wij ,
aij = 1 if unit j in cluster i belongs to sri and aij =
0 otherwise .It follows from (5) that the variance
V (ŶI) of ŶI can be estimated by vt = v1 + v2,
where v1 is an estimator of Vp(ŶI) = E1V2(ŶI) +
V1E2(ŶI), conditional on the aij ’s and v2 is an esti-

mator of Ṽm

[
Ep

(
ŶI − Y

)]
= Ṽm

[
E1E2

(
ŶI − Y

)]
.

Denote the estimator of the variance of Ŷ =∑
i∈s

∑
j∈si

wijyij based on the full sample as v(yij).
Then, one can show, using Taylor linearization, that
v1 reduces to

v1 = v(ξ̂ij), (9)

where

ξ̂ij = aijyij+(1 − aij) R̂a+

(
T̂ − T̂a

)
T̂a

aij

(
yij − R̂a

)
.

To obtain v2, note that Ep

(
ŶI − Y

)
=∑

i∈U

∑
j∈Ui

cijyij , where cij = K
aij

Ta
− 1 with Ta =∑

i∈U Tai and Tai =
∑

j∈Ui
aij . Now,

ṼmEp

(
ŶI − Y

)
= ErVmEp

(
ŶI − Y

)
+VrEmEp

(
ŶI − Y

)
. (10)

The second term on the right hand side of (10) is 0
because EmEp

(
ŶI − Y

)
= 0. Also, it is easy to show

that

ErVmEp

(
ŶI − Y

)
≈ −K(Mσ2

α + σ2
ε )

+
(

K

Er(Ta)

)2

σ2
α

∑
i∈U

T 2
ai +

K2

Er(Ta)
σ2

ε . (11)

The component v2 is then obtained by substituting
estimators for the unknown quantities in (11). Hence,
v2 is given by

v2 ≈ −K(Mσ̂2
α + σ̂2

ε )

+
(
K

T̂a

)2

σ̂2
α

∑
i∈s

[
T̂ 2

ai − V̂2

(
T̂ai

)]

+
K2

T̂a

σ̂2
ε , (12)



where σ̂2
α and σ̂2

ε are estimates of σ2
α and σ2

ε respec-
tively that can be obtained using available methods
such as ML, REML or MINQUE methods. Note that

since V2

(
T̂ai

)
= E2

(
T̂ 2

ai

)
− E2

(
T̂ai

)2

, an estimate

of T 2
ai is given by T̂ 2

ai − V̂2

(
T̂ai

)
, where V̂2

(
T̂ai

)
is

an estimate of V2

(
T̂ai

)
, T̂ai =

∑
si
wj|iaij and wj|i is

the survey weight of unit j at the second stage given
that cluster i has been selected in the first stage sam-
ple. The sum of (9) and (12) gives vt.

5 Comparisons

In this section, we compare the magnitude of the sec-
ond term ṼmEp

(
ŶI − Y

)
under the “correct” model

(6) and the “wrong” model (1), assuming single-stage
cluster sampling. Note that under mean imputation,
model (1) reduces to

Em(yi) = β, Vm(yi) = σ2,

Covm(yi, yj) = 0 if i �= j. (13)

Under this model, it is easy to show that
ṼmEp

(
ŶI − Y

)
is given by

ṼmEp

(
ŶI − Y

)
= σ2K

(
K

ErTa
− 1

)
. (14)

We are interested in the ratio
R =

Ṽm.correctEp(ŶI−Y )
Ṽm.wrongEp(ŶI−Y )

where Ṽm.correctEp

(
ŶI − Y

)
is given in (11) and Ṽm.wrongEp

(
ŶI − Y

)
is given in

(14). To determine this ratio, we need to specify a
response mechanism. In this paper, we consider two
distinct response mechanisms: the uniform response
mechanism and the “beta-binomial” response mech-
anism.

5.1 The uniform response mechanism

In this section, we assume that the response mech-
anism is uniform; that is, we assume that P (aij =
1) = p1 ∀i, j and that the aij ’s are independent
random variables, so that Er (aij) = p1. It is
then easy to show that under this response mech-
anism, Ṽm.correctEp

(
ŶI − Y

)
given in (11) and

Ṽm.wrongEp

(
ŶI − Y

)
given in (14) reduce respec-

tively to

Ṽm.correctEp

(
ŶI − Y

)
≈ p−1

1 (1 − p1)K
(
σ2

ε + σ2
α

)
, (15)

and

Ṽm.wrongEp

(
ŶI − Y

)
≈ p−1

1 (1 − p1)Kσ2. (16)

Noting that σ2 in (13) is equal to σ2
ε +σ2

α, it is easy
to see that R = 1 which suggests that the uniform
response assumption “washes off” the effect of the
model. Hence, under uniform response, the choice of
the model is irrelvant. Note that the order for both
(15) and (16) is O(K). Also, note that if there is
no nonresponse (i.e., p1 = 1), both (15) and (16) are
equal to 0, as expected.

5.2 The “beta-binomial” response
mechanism

Uniform response is a strong assumption that may
not be tenable in the case of cluster sampling. A more
realistic response mechanism may be a beta-binomial
mechanism. We assume that Er (aij) = p1 and
Er (aijaij′ ) = p2 . If ρp represents the correlation be-
tween the response indicator between two units in the
same cluster, one can show that p2 can be expressed
as p2 = ρpp1 + (1 − ρp) p21. It is then easy to show

that under this mechanism, Ṽm.wrongEp

(
ŶI − Y

)
is

given by (16) and Ṽm.correctEp

(
ŶI − Y

)
is given by

Ṽm.correctEp

(
ŶI − Y

)
≈ −K (

Mσ2
α + σ2

ε

)
+K (M − 1)σ2

α

p2
p21

+
K

p1

(
σ2

α + σ2
ε

)
. (17)

One can then show that the ratio R is given by

R = 1 + (M − 1) ρρp, (18)

where ρ is the intracluster correlation coefficient.
Note first that under uniform response p2 = p21 (or
ρp = 0), (18) reduces to 1. Second, note also that the
order of (17) is O (KM) as opposed to (16) which is
only O (K). Third, note that the ratio R increases as
M , ρ and ρp increase. Finally, note that under full
response p1 = p2 = 1, (17) is equal to 0, as expected.
Table 1 gives the magnitude of R with M = 20 for
different values of ρ and ρp.

Table 1
Magnitude of R for different values of ρ and ρp for

M = 20



ρ\ρp 0.1 0.3 0.5 0.7 0.9
0.1 1.19 1.57 1.95 2.33 2.71
0.3 1.57 2.71 3.85 4.99 6.13
0.5 1.95 3.85 5.75 7.65 9.55
0.7 2.33 4.99 7.65 10.31 12.97
0.9 2.71 6.13 9.55 12.97 16.39

5.3 Choice of the model

Results in Table 1 shows that choosing the wrong
model may lead to appreciable underestimation of
the second component ṼmEp

(
ŶI − Y

)
, especially for

large M , which might suggest that, in the case of
single-stage or two-stage cluster sampling, one should
use model (6) and not model (13). It should be noted
however that as M increases, ρ and ρp typically de-
crease.
Under uniform response, the first component
ẼmVp

(
ŶI − Y

)
is given by

ẼmVp

(
ŶI − Y

)
≈ NK

(
1
n
− 1
N

)
× [
p−1
1

(
σ2

α + σ2
ε

)
+ (M − 1)σ2

α

]
. (19)

The order of the first component in (19) is thus
O

(
K2

n

)
. We have noted in section 5.1 that, under

uniform response, the order of the second component

ṼmEp

(
ŶI − Y

)
is O(K) so the order of

ṼmEp(ŶI−Y )
ẼmVp(ŶI−Y )

is O( n
K ). Typically, n << K in cluster sampling

so the second component is negligible relative to the
first component. In this case, the computation of
v2 may be omitted. This may, however, be not true
for the beta-binomial response mechanism. Under
this response mechanism, one can show that the first
component ẼmVp

(
ŶI − Y

)
is given by

ẼmVp

(
ŶI − Y

)
≈ K2

A
N

(
1
n
− 1
N

)

×
([(

σ2
α + σ2

ε

)
p1 + (M − 1)σ2

αp2

(
1 +

p1 − p2
A

)]

+
[
K −M
N − 1

(
p2 − p21

)
×

(
σ2

α + σ2
ε

Kp1
+

(M − 1)σ2
αp2

A

)])
, (20)

where A = M
(
p2 − p21

)
+ Kp21. First, note that

under uniform response p2 = p21, (20) reduces to
(19), assuming Kp1 + (1 − p1) ≈ Kp1. Second,

note that the order (18) is O
(

K2

n

)
. Third, note

that under full response p1 = p2 = 1, (20) reduces
to ẼmVp

(
ŶI − Y

)
≈ NK

(
1
n − 1

N

) (
Mσ2

α + σ2
ε

)
, as

expected . Finally, in section 5.2, we have noted
that under the beta-binomial response mechanism,
the second component ṼmEp

(
ŶI − Y

)
was of order

O(KM) and therefore the order of
ṼmEp(ŶI−Y )
ẼmVp(ŶI−Y )

is

O( n
N ). The second component is hence negligible

only if the first-stage sampling fraction is negligible
which might not be the case in practice. Indeed, it
not unusual, in cluster sampling, to have first-stage
sampling fractions as high as 0.5. In this case, com-
putation of the second component must be performed
and the choice of the imputation model may then be-
come relevant. We now investigate the magnitude
of the underestimation of the total variance occur-
ing when using the wrong model. A measure of the
underestimation, denoted by Q, is defined as

Q = 1−
Ẽm.correctVp

(
ŶI − Y

)
+ Ṽm.wrongEp

(
ŶI − Y

)
Ẽm.correctVp

(
ŶI − Y

)
+ Ṽm.correctEp

(
ŶI − Y

) ,

where Ẽm.correctVp

(
θ̂ − θ

)
is given by (20). Note

that the first component of the total variance is com-
puted under the correct model since it is valid re-
gardless of the model and/or the response mecha-
nism. Tables 2, 3 and 4 show the magnitude of the
underestimation for different values of ρ, ρp, with
M = 20, p1 = 0.7 and n

N = 0.1, 0.25 and 0.5. The
following conclusions may the be drawn: For modest
and small first-stage sampling fractions, the underes-
timation is small to negligible; in this case, the choice
of the model may not be relevant. As the first-stage
sampling fraction n

N increases, the underestimation
increases for a given ρ and may be quite substantial
(e.g., n

N = 0.1, ρ = 0.3 =⇒ 0.36% ≤ Q ≤ 2.54% and
for n

N = 0.5, ρ = 0.3 =⇒ 3.03% ≤ Q ≤ 18.40%). For
a given n

N and ρ, Q increases as ρp increases; (e.g.,
n
N = 0.5, ρ = 0.5 =⇒ 3.34% ≤ Q ≤ 19.61%). This
indicates that departure from uniform response leads
to underestimation of the total variance. For a given
n
N and ρp, Q increases as ρ increases; (e.g., n

N = 0.5,
ρp = 0.5 =⇒ 8.90% ≤ Q ≤ 13.93%). Hence, correct
specification of the model becomes critical when n

N ,
ρ and ρp increase. Finally, we investigate the rela-
tive magnitude of the underestimation, Q′, occuring
when the computation of the second component is
not performed and given by



Q′ = 1−
Ẽm.correctVp

(
ŶI − Y

)
Ẽm.correctVp

(
ŶI − Y

)
+ Ṽm.correctEp

(
ŶI − Y

) .
Tables 5, 6 and 7 shows the magnitude of Q′ for dif-
ferent values of ρ, ρp, with M = 20, p1 = 0.7 and
n
N = 0.1, 0.25 and 0.0.5. These tables show that for
a given ρ and ρp, Q′ increases as n

N increases. Also,
for large n

N and given ρp, Q′ decreases as ρ increases
because, as ρ increases, the numerator of Q′ increases
faster than the second component in the denominator
of Q′ (Tables 6 and 7).

Table 2
Magnitude of Q× 100% with n

N = 0.1
ρ\ρp 0.1 0.3 0.5 0.7 0.9
0.1 0.26 0.74 1.18 1.57 1.94
0.3 0.36 1.01 1.58 2.09 2.54
0.5 0.39 1.09 1.70 2.23 2.70
0.7 0.41 1.13 1.76 2.30 2.78
0.9 0.42 1.16 1.79 2.34 2.82

Table 3
Magnitude of Q× 100% with n

N = 0.25
ρ\ρp 0.1 0.3 0.5 0.7 0.9
0.1 0.75 2.14 3.37 4.48 5.49
0.3 1.07 2.95 4.57 5.96 7.18
0.5 1.16 3.20 4.92 6.38 7.65
0.7 1.21 3.32 5.08 6.58 7.87
0.9 1.24 3.40 5.18 6.70 8.00

Table 4
Magnitude of Q× 100% with n

N = 0.5
ρ\ρp 0.1 0.3 0.5 0.7 0.9
0.1 2.07 5.75 8.90 11.63 14.03
0.3 3.03 8.11 12.21 15.57 18.40
0.5 3.34 8.84 13.20 16.70 19.61
0.7 3.49 9.19 13.66 17.24 20.18
0.9 3.58 9.40 13.93 17.55 20.52

Table 5
Magnitude of Q′ × 100% with n

N = 0.1
ρ\ρp 0.1 0.3 0.5 0.7 0.9
0.1 1.64 2.05 2.43 2.77 3.09
0.3 1.01 1.72 2.15 2.62 3.04
0.5 1.82 1.49 2.07 2.58 3.03
0.7 1.72 1.43 2.03 2.56 3.02
0.9 1.64 1.39 2.01 2.55 3.02

Table 6
Magnitude of Q′ × 100% with n

N = 0.25
ρ\ρp 0.1 0.3 0.5 0.7 0.9
0.1 4.74 5.90 6.93 7.86 8.70
0.3 2.95 4.69 6.17 7.46 8.58
0.5 2.39 4.32 5.95 7.34 8.55
0.7 2.12 4.15 5.85 7.29 8.53
0.9 1.96 4.05 5.78 7.26 8.52

Table 7
Magnitude of Q′ × 100% with n

N = 0.5
ρ\ρp 0.1 0.3 0.5 0.7 0.9
0.1 13.00 15.84 18.27 20.38 22.24
0.3 8.35 12.86 16.49 19.48 21.98
0.5 6.86 11.95 15.96 19.21 21.90
0.7 6.12 11.50 15.71 19.09 21.87
0.9 5.68 11.24 15.56 19.02 21.85

6 Summary and Conclusion

In this article, we have discussed variance estima-
tion in cluster sampling under imputation for missing
data. For simplicity, we have considered mean im-
putation but extension to ratio imputation has also
been investigated. We have proposed to use nested
error linear regression models as imputation models
in order to take account of the intracluster correla-
tion. Using a method developed by Shao and Steel
(1999), we have derived consistent estimators for the
variance of the imputed estimator. In the case of
single-stage cluster sampling, we have compared the
effect of using a linear model with fixed effects and
a diagonal variance-covariance matrix as an imputa-
tion model instead of a random effect model; we have
shown that the choice of the model becomes relevant
under the beta-binomial response mechanism when
the first-stage sampling fraction is large.
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