
GENERALIZED VARIANCE MODELING FOR THE CENSUS 2000 A.C.E.

Michael D. Starsinic, Charles D. Sissel, U.S. Census Bureau†

Michael D. Starsinic, U.S. Bureau of the Census, Washington, DC 20233

Key Words: Generalized Variance, Census, Small
Area Estimation

1. INTRODUCTION

It is Census Bureau policy to release measures of error
for estimates in all its data products.  For Census 2000,
that included being prepared to release estimates of
sampling error for the 100-percent census data as adjusted
by the results of the Accuracy and Coverage Evaluation
(A.C.E.).  The vast number of small area population
estimates produced for Census 2000 make it impractical
to provide a direct standard error for each estimate.
Instead, generalized variance parameters are made
available for certain demographic and geographic
characteristics so users can approximate the standard
error of any desired A.C.E.-adjusted estimate.
Computing a generalized variance model also eases the
problem of instability associated with estimating standard
errors for very small populations.  Initially, we planned to
use the 1998 Census 2000 Dress Rehearsal generalized
variance methodology (Starsinic & Town, 1999) to
produce Census 2000 estimates.  However, questions
arose about these initial weighted least squares regression
models, necessitating a change in approach to a
generalized coefficient of variation methodology.    This
paper analyzes the results of the generalized variance
modeling for Census 2000.  Section 2 provides a brief
overview of the sampling, estimation, and variance
estimation for the A.C.E.  Section 3 gives the original and
final generalized variance methodologies considered, and
Sections 4 and 5 analyze results from several alternative
methodologies.

2. A.C.E. SAMPLING, ESTIMATION, AND
VARIANCE ESTIMATION

The A.C.E. was intended to estimate the net coverage of
Census 2000, taking into account persons enumerated
erroneously or more than once and persons missed by the
census enumeration.  The estimates were produced using
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a post-stratified, dual-system estimator, based on a sample
of approximately 310,000 housing units.

An initial sample of 29,136 clusters (collections of
contiguous census blocks) was selected, but this was
reduced through further sampling to a final size of 11,303
clusters to meet a target for the total number of sampled
housing units.  An enumeration of these clusters based on
an address list independent of the census was called the
P Sample, and the E Sample was formed essentially from
the census results for the same clusters.  These two
samples were used to identify E-Sample individuals as
correct or erroneous enumerations and P-Sample
individuals as matches or nonmatches to census persons.
The matching and identification results were used to
produce dual-system estimates at the post-stratum level,
where 448 person-level post-strata were defined using a
combination of demographic and geographic
characteristics.

A multi-phase jackknife variance estimator was
developed and implemented, which directly computed
variances at the post-stratum level.  The sample, although
large, cannot support direct variance estimates at small
geographic levels.  For consistency, all other variances -
including those for geographic areas used in the
computation of the generalized variance parameters -
were computed synthetically using post-stratum variances
and covariances.

For more information on these operations, see ZuWallack
et al. (2000), Haines (2001), and Navarro & Sands
(2001).

3. CENSUS 2000 GENERALIZED VARIANCE
METHODOLOGY

3.1 Why We Need Generalized Variances

The first Census 2000 release for detailed geographic
areas was the Public Law (PL) 94-171 data.  These are
census block-level counts which are used by states to
redefine legislative district boundaries (“redistricting”).
The most detailed sets of data are 286 overlapping
combinations of race, Hispanic origin, and age, which we
will call redistricting (or PL) categories.  For each state,
we prepared generalized variance parameters for 62 of the
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286 largest groups, with four additional “catch-all”
categories for the redistricting categories not modeled
separately.

3.2 Initial Methodology - Generalized Variance Functions

As mentioned above, the Census 2000 Dress Rehearsal
used a weighted least squares regression generalized
variance function methodology for its published
generalized variance parameters.  The parameters were
published for 86 groups used in the Dress Rehearsal as a
preliminary prototype for the Census 2000 redistricting
categories.

The form of this initial generalized variance function
(GVF) was:

(3.1)V2
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y % b 1
x
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where:

x   =  estimated population for redistricting group in
    small geographic area

y =  estimated population for redistricting group in
    entire geographic area
=  relative variance of x, defined as V 2

x
Var(x)

x 2
 

=  relative variance of yV 2
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b =  estimated regression parameter for the model

For our regression models, we fixed the intercept at V2
y

to force  when x=y (i.e., when the redistrictingV 2
x ' V 2

y
group = the entire geographic area).  We then ran nine
iterations of our weighted regression model (with the
weights equal to (1/ )2 ) to obtain the “b” regressionV 2

x
parameter and set
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With an appropriate pair of parameters, users could
approximate the standard error of an estimate, ,  asx̂

(3.3)SE(x̂) ' ax̂2
% bx̂

Ideally,  would exclude the out-of-scope A.C.E.x̂
population (specifically, persons living in group quarters
and those enumerated in the Remote Alaska operation),
as they do not contribute sampling error.  However, the
majority of published estimates, including the first-
released PL 94-171 counts, are not broken down by in-
and out-of-scope.  Since a user only sees the estimates
including the out-of-scope population, the A.C.E. out-of-
scope population is used in the modeling.

This GVF methodology has some theoretical
justifications and advantages (Wolter 1985, Valliant
1987, and Tomlin 1974), and appears to have worked
well in the Census 2000 Dress Rehearsal.

We were unable to generalize our results to larger
geographies such as places, counties, and congressional
districts using the Dress Rehearsal data alone because of
the small size of the Dress Rehearsal sites.  Instead, we
used variances from a simulation designed to approximate
the 2000 variances  (Asiala 2001) based on known A.C.E.
sample sizes and weights combined with data from the
1990 Post-Enumeration Survey (PES), a coverage survey
similar in many ways to the A.C.E.  Including variance
estimates from places, counties, and congressional
districts with variance estimates for census tracts seemed
to improve the fit.  Omitting the tract-level variances and
using only the variance estimates from the larger
geographic areas produced parameters which gave poor
approximations to areas with small populations.

However, a serious problem arose with the results from
the simulated data.  With the simulated data, we produced
parameters for 26 redistricting categories (the others dealt
with persons identifying with more than one race group,
which was not possible in the 1990 census) for 51 states,
including the District of Columbia but excluding Puerto
Rico, for a total of 1,326 sets of parameters.  Of these, 69
parameter pairs (about five percent) had a negative value
of “b”, the regression parameter.  It can be seen from
Equation 3.3 that

(3.4)Var(x̂) < 0 if x̂ < &b
a

As long as both parameters are positive - and in our
results the “a” parameter was always positive - the
variance estimate can never be negative.   However, with
negative values for “b”, these 69 specific problem sets of
parameters yielded negative variance estimates for
population estimates less than -b/a.  This is obviously not
a desirable result.

It was unknown whether these occurrences were
aberrations caused by something specific to the simulated
data, or whether they could occur with the actual Census
2000 data.  Considering the time pressures we would be
under in producing the parameters, there was no way we
could take the risk of producing bad parameter estimates,
and so this model was abandoned.  Alternative models,
one of which is discussed in Section 5 below, eliminated
the negative “b” cases and even gave improved empirical
fits, but their theoretical justifications were on much less
stable ground.  Clearly, we needed to find an alternative
generalized variance methodology.  



3.3 Final Methodology - Generalized Coefficients of
Variation

When the detailed 1990 PES redistricting estimates were
released in 1998, they were accompanied by generalized
variance tables using a generalized coefficient of
variation (GCV) methodology.  This was the approach we
used in computing the Census 2000 GCV parameters.

The GCV parameter estimation process worked
identically in each of the state by redistricting category
cells.  The coefficient of variation (CV) was calculated
for all tracts in a state with a nonzero population in the
particular redistricting category.  Tracts composed
entirely of persons out-of-scope for the A.C.E. sample
had no sampling variance (and therefore a CV of 0) and
were removed from the processing.  Also removed were
tracts with a very small population in the redistricting
category, as these were shown in the Dress Rehearsal
analysis to have a disproportionate downward effect on
the parameters.  A two-tiered cutoff was employed to
prevent removing an overly-large fraction of “small”
tracts from a given redistricting category.

The CVs of the remaining tracts were averaged within
redistricting category to produce an initial GCV.  Outliers
were identified using the relative absolute deviation
(RAD)

    (3.5)RAD '

| tract population× GCV& SEtract |

SEtract

Tracts with an RAD above the cutoff were removed, and
a new GCV was computed using the CVs of the
remaining tracts.  This cycle of identifying and removing
outliers and recalculating the GCV went through four
iterations.  The value of the GCV after the fourth iteration
is the production value for that state by category
combination.  Using one (appropriate) GCV parameter,
users could calculate an approximate standard error of
any estimate as

(3.6)SE(x̂) ' x̂ × GCV

The GCV methodology was quick and easy to implement.
Moreover, it was less burdensome on the user than the
earlier proposed GVF methodology.

4. GENERALIZED VARIANCE RESULTS

Overall, the fit of the GCV model to the synthetic
standard errors is good, and where the fit wasn't as good
as we would have liked, the GCV generally produced an

overestimate of the variance, as opposed to the
underestimation seen at times in the Dress Rehearsal
GVF model  (Starsinic & Town, 1999).

Figure 1 shows a typical distribution of the state-level
values of the median RAD, specifically for the “Black
Alone” redistricting category  for all tracts.  The state-
level values were computed by applying the state “Black
Alone” GCVs to the “Black Alone” population in each
tract to produce approximate standard errors, and these
were used to produce tract-level RADs.  These (and
following) RAD estimates include all tracts, including
those removed as outliers during the GCV calculation.

Figure 1: Median RAD for States - All Tracts, “Black
Alone” Redistricting Category
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The GCVs also performed well at larger geographic
levels.  Figure 2 shows the distribution of median RADs
for counties, which were not included in the modeling
process.  Again, as with tracts, when the GCV is off, it is
usually too high.

Figure 2: Median RAD for States - All Counties, “All
Persons” Redistricting Category
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Figure 3: State “X” - Tracts Over 4,000 Population, “White Alone” Redistricting Category

0

50

100

150

200

250

2000 4000 6000 8000 10000 12000 14000

A.C.E.-Adjusted Population

S
ta

nd
ar

d 
E

rr
or

Synthetic Standard Error Approximate (GCV=0.0118) Standard Error

One phenomenon that was first observed during the
simulation work also occurred in the Census 2000 data.
For some states and some redistricting categories, the
tract-level synthetic standard errors fall into two or more
bands, so that no single line (GCV or GVF) could
describe the distribution well.   Figure 3 shows the
distribution of tracts with a population of at least 4,000 in
the “white alone” redistricting category in a specific state.
(All tracts were used to estimate the GCV parameter.  The
cutoff of 4,000 is used to emphasize the two distinct
groups of tracts.)  Two separate bands of observations are
fairly well-defined, with the GCV value producing
approximate standard errors (the line on the graph) which
more closely follow the upper band.

What is causing this?  It could be he interplay between
the post-stratum definitions and the redistricting category
definitions.  The 448 post-strata were based on
combinations of race, Hispanic origin, age, sex, tenure,
size of metropolitan area, type of census enumeration,
tract-level return rate, and census region.  Persons of
many different post-strata can be included in any
redistricting category.  When a redistricting category in a
state contains groups of people from post-strata with
markedly different variance characteristics, this
“banding” can result.  In Figure 3, the tracts in the upper
grouping contain people that come from post-strata with
higher variances than the post-strata making up the
population in the tracts in the lower grouping.  Fitting a
simple variance function to a split distribution like this

would be difficult for any generalized variance
methodology.

Ideally, the redistricting category definitions and the post-
strata should more closely parallel one another.  That is
unlikely to happen, though, as post-stratification is a
statistical process and defining redistricting categories for
publication is largely a political one.

5. RESULTS OF OTHER METHODOLOGIES

After production was finished, we tested several other
GVF regression models on real census data.  After
examining several, the GCV method seems to have
performed better than any of the GVF models.

The most promising new GVF model was

(5.1)ln(V2
x ) ' ln(V2

y ) % b (x& y)

with ln( ) fixed as the intercept.  After obtaining theV 2
y

“b” regression parameter using iterated weighted
regression, we set the second parameter to

(5.2)a ' ln(V2
y ) & b y

The approximate standard error for an estimate, ,  is:x̂

(5.3)SE(x̂) ' x̂ e
1

2
(a% b x̂)



Figure 4: Comparison of GCV, GVF 1, and GVF 2 Fits - State “Y”, “All Persons” Redistricting Category
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Note that the variance (and hence standard error) of an
estimate cannot be negative in this model.  Let the model
just described be GVF 2, and the original model
described in Section 3.2 (Equation 3.1) be GVF 1.

In the majority of fits to the census data, GVF 2
outperformed GVF 1, based on median RADs and
graphical comparisons of standard errors.  Both were,
however, inferior to the production GCV method.

Figure 4 shows the distribution of the standard errors for
redistricting category 1 (“all persons”) for tracts in a
certain state.  This pattern is typical across most states
and redistricting categories.  For the smallest tracts, the
GCV and GVF 2 models give almost identical
approximate standard errors, while GVF 1 gives much
higher standard errors.  At about a population of 3,000,
GVF 1 falls below GCV, and at about 4,000, GVF 1 falls
below GVF 2.  Its plot continues to flatten out as the
population increases, and diverges from GCV.  For the
largest tract in Figure 4, GVF 1 is about 43 percent lower
than GCV.  GVF 2 gives nearly a straight line, although
the slope of the curve is very slowly decreasing; both the
“a” and “b” parameters here are naturally negative, and
the function will eventually tend towards a slope of zero.
The graph of GVF 2 is generally closer to GCV than to
GVF 1, but it offers no real improvement on the fit of the
GCV.  GCV offers users a much simpler formula for
computing the approximate standard error than GVF 1 or
GVF 2.

6. FUTURE RESEARCH

One avenue of research is reflected in Section 5 above,
involving a search for a theoretically sound regression
GVF methodology that would give consistently good
approximations to users and would not be vulnerable to
the negative variance problem.

A second approach would be to further divide each
state × redistricting category into groups by size of area,
and compute separate GCVs for each group.  This was
the methodology used with the published PES GCVs
which used four divisions: less than 5,000, 5,000-25,000,
25,000-100,000, and greater than 100,000.  The fit may
be improved, but it is not clear what the optimal number
of population-size groups should be (or even how to
determine the optimal number), or where to make the
divisions between each size class.  This method also
could introduce large discontinuities at the division
between two adjacent size groups, where the difference
of just one person would mean a large difference in the
approximated standard errors.  Still, if further subdividing
each category results in greatly improved fits, this
approach would have to be considered.

A third area for further research is to examine why the
original GVF methodology - Equation 3.1 - yielded the
negative “b” parameters.  Using the original methodology
on the Census 2000 data, there were 12 instances of



negative values for “b”.  This may be related to the
relationship between the redistricting categories and the
post-stratification definitions described in Section 4.

As of this writing, A.C.E.-adjusted estimates have not
been publicly released, and it is not known when or if
they will be.  A set of generalized variance parameters
must be ready if the decision to publish is made.  For
now, it is this set of GCV parameters we have just
discussed.  But it does not necessarily need to remain this
set, if a superior parameter set can be created.
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