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1. INTRODUCTION 
 
Linearization (Skinner 1989) is a nonparametric 

method for estimating the standard errors of design-
based statistics such as means and ratios as well as co-
efficients from linear and nonlinear regression models.  
Although the traditional linearization estimator for 
standard errors is consistent as the number of primary 
sampling units (PSUs) grows, the estimator can be bi-
ased, in particular biased low, when the number of 
PSUs is small or when the predictor variables are un-
balanced across the PSUs (Bell and McCaffrey 2000; 
Kott 1994; Murray et al. 1998).   

Bell and McCaffrey (2000) developed biased re-
duced linearization (BRL) to eliminate or reduce this 
bias for linear regression models with unweighted data 
from nonstratified two-stage samples.  Reduction in 
bias is achieved by replacing the ordinary residuals 
used in the standard linearization estimator by residuals 
adjusted to better approximate the joint distribution of 
the true errors.   

In this paper, we extend the BRL method to 
weighted regression analyses.  The method handles a 
variety of different types of weights, including:   

• design weights equal to the inverse of the 
sample selection probability; 

• weights that account for post-stratification, 
nonresponse, and other weighting adjustments 
(e.g., for multiplicity) provided the weights 
can be treated as known; 

• diagonal or nondiagonal precisions weights to 
account for heteroskedastic or correlated er-
rors;  

• logistic regression and other generalized linear 
models that can be fit by iteratively reweighted 
least squares; and  

• generalized estimating equations. 
We discuss four alternative BRL specifications and 

investigate the performance (bias and variance) of these 
estimators and commonly used alternative via simula-
tion.  We also present an application of logistic regres-
sion used to estimate the treatment effect in a cluster-
randomized experiment.  The application demonstrates 
a natural extension of BRL to models where parameters 
are estimated by iteratively reweighted least squares. 

 
 

2. BIAS REDUCED LINEARIZATION FOR 
WEIGHTED LEAST SQUARES 

 
2.1 General Method  
 

Throughout the paper we restrict attention to two-
stage nonstratified samples.  Let n equal the number of 
PSUs and mi equal the number of final sampling units 
from the i-th PSU, i = 1,…, n.  The overall sample size 
is ∑=

i imM .  We assume yij = β ′xij + εij, where the 

vector of errors, ε, has mean 0 and covariance matrix V, 
and where yij, xij, and εij all refer to the  
j-th observation from the i-th PSU.  We drop the stan-
dard OLS assumption of i.i.d. errors, assuming only that 
errors from distinct PSUs are uncorrelated—i.e., that V 
is block diagonal, with mi × mi blocks Vi for i = 1,…, n.  
Furthermore we assume there exists a known diagonal 
or block diagonal matrix of weights W.  

When weights are not constant, the coefficients can 
be estimated using the weighted least squares estimator 

WYQX’ˆ =β , where Q = (X’WX)-1. To simplify pres-
entation, we generally discuss a linear combination of 

the regression coefficients, β̂l ′ , for an arbitrary column 
vector l.  If the errors are uncorrelated across PSUs, 

then the variance of β̂l ′  is 

Var( β̂l ′ ) = ll
n

i
iiiii QXWVWXQ 





′′ ∑

=1

.        (1) 

The standard linearization estimator (Skinner 1989, 
Kott 1994) is 
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where ri = yi - Xi β̂  and c = n/(n – 1).  The ratio of vLIN 

to the Var( β̂l ′ ) converges in probability to 1 as the 
number of PSU’s grows large under some general as-
sumptions about the design matrix X, the weights and 
the errors.  However, as noted by Kott (1994), the esti-
mates can be biased when the number of PSUs is small 
because Eriri′ does not equal (1/c)Vi. 

Following our previous work with unweighted 
least squares (Bell and McCaffrey 2000), we consider 
the class of bias reduced linearization (BRL) variance 
estimators. 
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Theorem 1.  For a specified block-diagonal target 

or working covariance matrix U and a specified weight 
matrix W, consider the class of estimators  

vWL = ll
n

i
iiiiii QXArrAXQ 





′′′′ ∑

=1

              (3) 

where Ai, satisfies  
 
Ai[(I - G)iU(I - G)i′]Ai’

 = Ui               (4) 
 

for i = 1,…, n and G = X(X’WX)X’W and (I - G)i de-
noting the rows of (I - G) corresponding to the observa-
tions from the i-th PSU.  If V = kU for some scalar k, 

then )v(E WL  = Var( β̂l ′ ).   

Proof.  If V = kU, then Eriri′  = k(I - G)iU(I - G)i’ 
and the result follows. 
 

For mi > 1, Ai is not unique.  If Ai satisfies (4), then 
so does Ui

1/2OUi
-1/2Ai where Ui

1/2Ui
1/2’ = Ui and O is any 

mi × mi orthogonal matrix.  If V = kU, the choice of Ai 
is unimportant because any solution to (4) will produce 
an unbiased variance estimator.  However, the resulting 
estimators are biased when V ≠ kU, and the bias can 
vary greatly with the choice of Ai.  Bell and McCaffrey 
(2000) found that for OLS estimates, the symmetric 
solution minimized squared error between the adjusted 
residuals and the true errors when the errors were i.i.d, 
and that the symmetric solution also tended to yield the 
smallest bias when the errors were not independent.  
Thus symmetric solutions to (4) are of particular inter-
est.   

We obtain a symmetric solution to (4) as  
Ai = Ui

1/2P Λ−1/2P’Ui
1/2 where P ΛP’ is the eigen decom-

position of [Ui
1/2(I - G)iU(I - G)i′Ui

1/2’].  The solution is 
invariant to choice of Ui

1/2, Ui
1/2Ui

1/2’ = Ui.  We refer to 
the estimator that obtains from (3) with the symmetric 
solution to (4) as vBRL,S1. We will also explore the prop-
erties of the estimators that use the asymmetric solution 
to (4) Ai = Ui

1/2[(I - G)iU(I - G)i′]-1/2 where the Chole-
sky roots are used for Ui and (I - G)iU(I - G)i′.  We 
refer to the resulting estimator as vBRL,A1.   

We also consider an alternative class of estimators 
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where Bi, satisfies   
 

Bi[Wi
1/2(I - G)iU(I - G)i′Wi

1/2]Bi
′ 
 = Wi

1/2UiWi
1/2        (6) 

 

Again, if V = kU, then )v(E *WL
 = Var( β̂l ′ ).  If  

Ui
1/2Wi

1/2[Wi
1/2(I - Q)iU(I - Q)i′Wi

1/2’]Wi
1/2’Ui

1/2’ = 

PΛP’, then Bi = Wi
1/2Ui

1/2PΛ−1/2P’Ui
1/2'Wi

1/2' is a sym-
metric solution to (6) for any roots Wi

1/2
 and Ui

1/2.  The 
estimator derived from (5) with the symmetric solution 
to (6) is vBRL,S2.  An asymmetric solution is 
Wi

1/2Ui
1/2[Wi

1/2(I - Q)iU(I - Q)i′ Wi
1/2]-1/2 where Chole-

sky roots are used for all matrices.  We denote the esti-
mator that results from using this asymmetric solution 
to (6) in (5) as vBRL,A2. 
 
2.2 Applications 
 

The results of Section 2.1 are general and hold for 
any block diagonal weight matrix.  However, several 
interesting special cases exist.  When W = I and U = I, 
we return to the case of OLS regression with the iden-
tity as the working covariance as considered by Bell 
and McCaffrey.  Equations (3) and (5) are identical, so 
that vBRL,S1 = vBRL,S2 and vBRL,A1 = vBRL,A2.  If W = I, but U 
is a specified, nonidentity, covariance matrix, then 
equations (3) and (5) are again identical and the sym-
metric solution to (4) generalizes the estimator of Bell 
and McCaffrey (2000) to general working covariance 
matrices.   

If we had information for an estimate of V, we 
might reduce the bias in BRL by using that information 
for the working U rather than assuming the identity.  
Alternatively, we might want to use that information to 
improve the properties of the estimates of β as well as 
the estimated standard errors by conducting precision 
weighted least squares (generalized least squares) to 
account for known heteroskedasticity or correlation of 
errors within PSUs.  In this case W = U-1.  The variance 
of linear combinations of the resulting coefficient esti-
mates is still given by equation (4), which reduces to 
l'(X'WX)-1l when W-1 = V.  Let HW = W1/2XQX'W1/2.  
If W = U-1, then (I - G)iU(I - G)i′ = Ui

1/2(I – HW)iiUi
1/2 

which simplifies equation (4).  Similarly, Wi
1/2(I - 

G)iU(I - G)i′Wi
1/2 = (I – HW)ii which greatly simplifies 

equation (6).  If we let X* = W1/2X and r* = W1/2r, then 
vBRL,S2 can be obtained by using the formulas for OLS 
given in Bell and McCaffrey by using X* and r*.  In 
fact, vBRL,S2 can be derived from formulas for OLS even 
when W ≠  U-1 provide we also replace U in the formu-
las with U* = W1/2UW1/2 and use the appropriate matrix 
roots. 

Weighted least squares that combine precision and 
design weighting will also be of interest.  The estima-
tors vBRL,S1, vBRL,A1, vBRL,S2, vBRL,A2 apply to this general 
case but equations (4) and (6) do not simplify. 

 
3. SIMULATION METHODS 

 
We use a Monte Carlo simulation to study the 

properties of alternative variance estimators for a bal-
anced two-stage cluster sample with n = 20 PSUs and a 



constant  m = 10 observations in each PSU.  All simula-
tion replications use the common design matrix X of 
Bell and McCaffrey (2000).  The design matrix has four 
independent variables chosen to represent a range of 
difficulty for nonparametric variance estimators.  The 
first two independent variables, x1 and x2, are dichoto-
mous (0 or 1) and constant within PSU.  The variable x1 
is 1 in half the clusters: 1, 3,...,19, while x2 is 1 in just 
three clusters:  9, 10, and 11.  Both x3 and x4 were gen-
erated from standard normal distributions.  They differ 
in that x3 was generated from a multivariate normal 
with intra-cluster correlation (ICC) of 0.5 within PSU, 
while x4 was generated from independent normal distri-
butions.  Observed intra-cluster correlations are 1.00, 
1.00, 0.62 and -0.04, respectively.  Observed correla-
tions among the independent variables are all very 
small with the exception of Corr(x1, x2) = 0.14, Corr(x1, 
x3) = 0.25 and Corr(x1, x4) = -0.11.   

The dependent variable was generated from the 
equation yij = β′xij  + εij, where β = 0 and the εi’s are 
standard multivariate normals with ICC equal to ρ.  We 
use four alternative values of ρ = 0, 1/9, 2/9, and 1/3, 
corresponding to design effects for the sample mean of 
DEFF = 1, 2, 3, and 4, (DEFF=1+(m-1)ρ).  We gener-
ate a single design matrix for the simulation study.   

We consider two types of weights.  The first 
weights are unrelated to the variance of the errors and 
are analogous to design weights where the selection 
probability was not directly related to the variance of 
the dependent variable in the regression.  For the results 
reported in this paper, the weights were uniform ran-
dom variables between 1 and 3 and were independent 
of the covariates and the errors. Weights varied among 
units from the same PSU.  We explored alternative 
weights such as weights that were constant within PSUs 
and weights that were correlated with either the errors 
or the covariates.  The results were qualitatively similar 
and so we report only the results for the independent 
weights.   For our design weighted estimates the work-
ing covariance matrix used in deriving the BRL estima-
tor is the identity, i.e., U = I. 

The second type of weights used in the simulation 
study were precision weights where W = U-1, the in-
verse of the working covariance matrix for the errors.  
We consider cases where U equals the true covariance 
matrix, V, and cases where it does not. 

We used the simulation to study the bias and vari-
ance of the four alternative BRL estimators.  We also 
study the properties of common alternatives to BRL.  
For the study of design weights, the alternative estima-
tors we consider are the standard linearization estimator 
(vLIN), the jackknife (Cochran 1977) and Kott's method 
(Kott 1994).  For the precision weighted estimates, the 
common alternatives to BRL are the standard lineariza-
tion estimator and the model based generalized least 
squares estimator. 

The variability of the estimators is described by 
twice the reciprocal of the square of the coefficient of 
variation.  We call this quantity the degrees-of-freedom 
(DF) of the estimator because it equals the degrees-of-
freedom for the Satterthwaite approximation to the dis-
tribution of each estimator (Bell and McCaffrey 2000).    
Given the design matrix and weights, the exact bias and 
DF can be obtained analytically for all estimators other 
than Kott's.  For Kott's method we use 100,000 simu-
lated replicates of the error to estimate bias and DF.  

 
4. SIMULATION STUDY RESULTS 

 
We first describe the simulation results for the de-

sign weighted estimates and then for the precision 
weighted estimates. 

 
4.1 Simulated Design Weights 

 
By design, all four BRL estimators are unbiased 

when ρ = 0.  Figure 1, compares the relative biases of 
the three BRL estimators when ρ = 1/3.  The two 
asymmetric estimators are the same for this study.  Be-
cause the errors have equal correlation within PSU, the 
ratio of the relative biases of any two BRL estimates is 
invariant to the value of ρ for ρ > 0.  Thus, for all ρ > 0, 
the relative size of the bars would be the same as in 
Figure 1, although the scale would change; the magni-
tude of the bias increase with ρ.  The relative bias in 
vBRL,S1 is closer to zero than the relative bias in vBRL,S2 
for all covariates with positive ICC (intercept, x1, x2, x3).  
For these variables, the ratios of the relative biases 
range from 1.3 to 2.1.  For x4 which has a very small 
negative ICC, the ratio of relative biases of vBRL,S2 to 
vBRL,S1 is 0.7.  The relative bias of vBRL,A1 is always fur-
ther from zero than the relative bias in vBRL,S1.  The ra-
tios of the relative biases range from 1.1 to 2.0.  For the 
intercept and x1, x2, and x3 the relative bias of vBRL,A1, is 
smaller than the relative bias of vBRL,S2.  For x4 the rela-
tive bias of vBRL,S2 is closer to zero than that of vBRL,A1.   
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Figure 1.  Relative biases of three BRL estimators, vBRL,S1 
(blue) vBRL,S2 (red) and vBRL,A1 (yellow), ρ = 1/3.  

 



For each BRL estimator the DF vary among the 
covariates (for example for vBRL,S2 the DF range from 
2.8 for X2 to 14.2 for X4 for ρ = 0) and tend to decrease 
ρ increases (for example for vBRL,S2 the DF for X3 de-
crease from 11.9 for ρ = 0 to 9.3 for ρ = 1/3).  Across 
the estimators the DF are very similar with the ratios of 
the DF ranging from 0.99 to 1.01. 

While the bias in the BRL estimators is small (no 
more then 2.4 percent in absolute value) for all the co-
variates and for all values of ρ, the bias in the lineariza-
tion estimators and the jackknife estimators can be 
large.  The linearization estimators are always biased 
low and the bias ranges from –2.8% for X4 to –33.0% 
for X2 for ρ = 0.  The bias is similar for other values of 
ρ.  The bias in the jackknife estimators is always posi-
tive and similar in magnitude to the bias in the lineari-
zation estimators.  Kott's methods produces estimator 
with small postive bias of less than five percent  and 
often less than one percent.  Kott's method also appears 
mostly invariant to the value of ρ.  Figure 2a presents 
the relative bias for the various estimator when ρ = 1/3.  
The results for other values of ρ are similar with the 
exception that BRL is unbiased when ρ = 0.  As shown 
in Figure 2b the values of DF are very similar across 
the estimators.  These results are very similar to the 
OLS results of Bell and McCaffrey (2000). 

 
4.2 Nondiagonal Precision Weighting 

 
For each of the six estimators included in the study 

of nondiagonal precision weighted estimation (the four 
BRL alternatives, the model based GLS estimator and 
the traditional linearization estimator), Figure 3 plots 
relative bias versus working ICC, ρW, by relative bias 
for each of the four values of the true ICC, ρT, used in 
the study (0, 1/9, 2/9 and 3/9).  The figure contains the 
relative bias for the estimator of the variance of the 
coefficient for x1. Plots for the intercept and x2 are 
similar except that the relative bias tends to be larger 
for x2.  For x3 and x4 the performance of vBRL,A1 is still 
poor but the differences between this and the other BRL 
estimators are much less pronounced. In addition the 
bias for x4 has the opposite sign because of the negative 
ICC for x4. The performance of the linearization and 
GLS estimators for x3 and x4 is qualitatively similar to 
the performance in the plots although the relative bias 
tends to be smaller and the relationship is between ρW is 
not linear. The plots for the other coefficients are avail-
able from the authors. 

By design the relative bias of the four BRL estima-
tors and the GLS estimator equals zero when ρW = ρT.  
When the ρW > ρT, then the bias in each of these five 
estimators is positive.  When ρW < ρT,  then bias is 
negative.  For a given value of the ρT, the expected val-
ues of vBRL,S1, vBRL,S2, vBRL,A2 and vGLS are nearly linear in 

ρW as demonstrated by the nearly linear relationship 
between relative bias and ρW for each estimator.  How-
ever, the slope of the line decreases as the ρT increases.  
Thus, relative bias is not symmetric with respect to the 
difference between ρW and ρT.  Over estimation of the 
ICC results in relative bias that is further from zero than 
does underestimation of the ICC; however, underesti-
mation of the ICC results in negative bias while overes-
timation results in positive bias. 
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Figure 2a.  Relative bias of alternative variance estimators for 
simulated design weights by covariate, ICC=1/3: intercept 
(dark blue), x1 (red), x2 (yellow), x3 (light blue) and x4 (black). 
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Figure 2b.  DF for variance estimators for covariates for simu-
lated design weights by estimator: linearizatioin (dark blue), 
jackknife (red), BRL,S1 (yellow), and Kott (light blue). 
 

The relative bias of vBRL,S1, vBRL,S2 and vBRL,A2 is 
small to moderate, less than 10 percent in absolute 
value for all values of ρW and ρT. The relative bias of 
vBRL,S1 is nearly equal to that of vBRL,S and the relative 
bias of vBRL,A2 is roughly 1.5 times as large when ρW � 
ρT.  The relative bias in the vGLS is very large in absolute 
value when the ρW deviates ρT by more than 1/9.   

Unlike the other BRL alternatives, the relative bias 
vBRL,A1 grows exponentially when the working ρW > ρT 
resulting in extremely large relative bias when the ρT = 
0 and the ρW  equals2/9 or 1/3. 

The linearization estimator always under-estimates 
the true variance.  This is true for all coefficients and 
regardless of the values of the ρW and ρT.   
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Figure 3.  Relative bias versus values of ρW at four values of ρT: 0 (red), 1/9 (blue), 2/9 (purple) and 1/3 (green), for 
six estimator of the variance of the coefficient for x1 estimated by GLS.  
 

The DF are similar across the BRL estimators.  For 
all the estimators the DF are smallest for x2 (ranging 
from 2.8 to 4.4 across estimators and values of ρW and 
ρT) and largest for x4 with values around for 16.4 for all 
conditions.  The linearization estimator is relatively 
more variable for the PSU level estimators when the ρW 
> 0 and the DF are inversely related to ρW.  For exam-
ple when the ρW = 1/3 the DF for the linearization esti-
mator for x1 is only 20% as large as the DF for the BRL 
estimators. When ρW = 1/9 the DF for linearization is a 
little over 60% of the DF for the BRL estimators.  Thus, 
for GLS, BRL not only reduces bias but it also in-
creases the relative precision of the variance estimators. 

 
5. APPLICATION: LOGISTIC REGRESSION 
FOR PARTNERS-IN-CARE INTERVENTION 

 
We illustrate the methods in this paper using data 

from Partners in Care, a longitudinal experiment assess-
ing the effect of “quality improvement” programs on 
care for depression in managed care organizations 
(MCOs) (Wells et al. 2000).  The experiment followed 
1356 patients who screened positive for depression in 
1996-1997 in 43 clinics of seven MCOs.  In each of 
nine blocks, clinics sets of one to four clinics were as-
signed at random to one of three experimental cells:  
usual care, or a quality improvement program supple-
mented by either nurses for medication follow-up or 
access to psychotherapists.  Six MCOs constituted sin-
gle blocks, and one MCO was divided into three blocks 
based on ethnic mix of the clinics.  Within blocks with 
more than three clinics, clinics were combined into sets 
matched as closely as possible on anticipated sample 
size and patient characteristics.  See Wells et al. (2000) 
for additional details.   

One outcome of particular interest was receipt of 
appropriate care during the six months preceding the 
first follow-up.  Receipt of appropriate care was coded 
as a dichotomous variable equaling one if the patient 
received appropriate medication or therapy and zero 
otherwise (Wells et al. 2000).  We present results from 
a logistic regression model for appropriate care for 
1143 patients at 6-month follow-up. As in Wells et al. 
(2000), the independent variable of primary interest is 
an intervention indicator that estimates the combined 
effect of medication or therapy versus care as usual. 
Our regression differs from theirs because we do not 
use sampling weights or impute for missing values of 
the outcome variable, but the results for the intervention 
effect agree reasonably closely.   

Because patients from the same clinics could have 
similar outcomes, logistic regression standard errors 
could easily be too low—especially for PSU-level vari-
ables like Intervention.  Binder (1983) suggested lin-
earization standard errors for logistic regression.   The 
estimated coefficients for logistic regression satisfy the 
equation: 

 

β̂  = (X’WX)-1X’Wz,                              (8) 
 

where the ij-th element of the outcome vector z is  

zij = xij’β̂  + (yij - pij )/{pij(1-pij)}, for pij = 1/(1 + β̂ije
x′− ) 

and W a diagonal matrix with wij = pij(1-pij).  Estimates 
are analogous to coefficients for a weighted linear re-
gression in the last iteration of iteratively reweighted 
least squares.  Equation 8 suggests that the BLR method 
can be extended to logistic regression using the tech-
niques for weighted least squares and using the residu-



als r = z – X β̂ .  Properties of this natural extension of 
BRL are less obvious and are currently being studied. 

Figure 4 plots the ratio of BRL standard errors 
(SEBLR) to the standard large sample approximation 
(SEML) versus the ratio of linearization standard errors 
(SELIN) to SEML.  We use clinic as the PSU because 
there is very little reason to expect correlations of errors 
across clinics after controlling for block.   

If outcomes are correlated within clinic, then we 
can expect the ratios to be greater than one for variables 
with a positive ICC—e.g., clinic-level variables.  The 
ratio for BRL is greater than one for eight of the nine 
clinic-level variables but the linearization ratio is 
greater than one for only three and often falls far below 
one.  Using the GEE method of Zeger and Liang 
(1986), we estimate the intra-clinic correlation of the 
errors as –0.0014, easily consistent with a true value of 
0.  Nonetheless, there is no reason to expect any of the 
correct standard errors to fall much below those ob-
tained from logistic regression.  For example, the lin-
earization standard error for Intervention is only 91 
percent as large as the asymptotic standard error from 
logistic regression.   

 

0.7

1

1.3

0.70 1.00 1.30

SELIN/SEML

S
E

B
R

L
/S

E
M

L

 
Figure 4.  Ratio of SEBRL to SEML vs. SELIN to SEML  for coef-
ficients of model for appropriate care, intervention (red), other 
cluster-level variables (pink), demographics (blue), and base-
line health (brown).  
 

6. SUMMARY 
 
In this paper we extend the bias reduced lineariza-

tion estimators of Bell and McCafrey (2000) for un-
weighted least squares to weighted estimators.  We 
considered two classes of weighted estimators those 
where the weights equal the inverse of the working co-
variance matrix and those where the weights do not.  
The method is widely applicable, including generalized 
linear models.  For both types of weights, we developed 
a class of estimators that is unbiased for estimating the 
variance of the coefficients if the working covariance 
matrix used in deriving the estimator equals the true 
covariance of the residual errors.  Our simulation study 
results show that these estimators can have small rela-

tive bias even when the working covariance matrix is 
incorrect.  The simulation study also shows that using a 
symmetric matrix to transform the residuals used in the 
variance estimator is necessary to obtain the reduced 
bias for the design matrix and error distributions in-
cluded in our study.   
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