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Balanced Repeated Replications  (BRR) ia a variance
estimation method  usually implemented for cases where
there are two units (be they PSUs or otherwise) per stratum.
For each replication one of the units is dropped from the
sample and the weights of the other adjusted.  BRR can be
applied when there are more than two units per stratum, but
it is more difficult to implement.  

Fay’s method for variance estimation (Judkins, 1990)
modifies the balanced repeated replications approach by
instead of deleting one half-sample, multiplying the weights
of one half-sample by k (where  0 <  k < 2) and the other by
2-k.   Thus when one uses Fay’s method every respondent
is used in every replicate, but the weights will be different
from replicate to replicate.
This approach permits for ratio and small subpopulation
estimates where the denominator may be zero for some
half-sample or the subpopulation may be not present in the
half-sample.  This paper examines an extension of Fay’s
concept to the bootstrap.  

One of the advantages of Fay’s method is that a
denominator which could otherwise disappear for a given
replicate will not disappear, for the units will be there with
a smaller weight.  An estimate will be obtained for every
replicate if one was obtained for the original sample.
Furthermore, under certain circumstances for linear
estimates where the estimate would not disappear, the BRR
estimate will be the same as the estimate using Fay’s
method.

The heuristic motivation for this paper came as several
variance estimation approaches were compared as part of
a simulation study.  While the design used did not permit
easy use of balanced half sample replications, Monte Carlo
half-sample simulations were used.  This approach
essentially selects half the sample and weighs up the
estimate to the total sample.  It takes more computer time
than BRR , but is easy to program and yields results
comparable to other methods.  But it seems that Fay’s
approach can be easily extended to the Monte-Carlo half
sample, weighting half the sample up and the other half
down by the same percent.

This method led to consideration of  whether the Fay
approach could be applied to other forms of variance
estimation.  In the case of the bootstrap one can keep all the
units in each replicate and merely change the weights.  One
has essentially replicate weights which do not vanish for
any case.

Why would this method be expected to work at all?
Consider an estimate X from a sample.  Let X’ be an

estimate of the same parameter derived from a bootstrapped
sample.  Now let 0 < k < 1.  It follows that one can obtain
an estimate of the same parameter by letting X”=kX’+(1-
k)X.   The extension can be conceived either as a weighted
average of each bootstrapped sample and the original
sample, or as a transformation of bootstrap weights where
the new weights are kw’+(1-k)w (where w’ is the
untransformed bootstrapped weight, and w is the original
weight.  

Using this method every subpopulation present in the
original sample will be present in each modified
bootstrapped sample.  It can be shown that for linear
estimates the modified bootstrap’s standard error estimate
divided by k yields the same standard error estimate as
theregular bootstrap’s standard error estimate.  Following
the Fay terminology, 100k will be called the perturbation
factor of the modified bootstrap, where a perturbation
factor of 100% gives one a standard bootstrap.

Thus the variance of this modified bootstrap will be 

  and hence the result can be divided by k2 to obtain the
same result as one would for the ordinary bootstrap,
provided one has a linear estimate where the denominator
never vanishes for each bootstrapped sample.   This,
however,  cannot be said for other estimates.  Indeed, if
there are weight adjustments and other deviations from
linearity, there will be differences in the two sets of
estimates. 

Example 1: The EIA-878

The first example where the procedure was tested is the
EIA-878 gasoline survey.  This is a survey of gasoline
prices at the pump.  For each station the weighted volumes
add to known values per cell.  The survey is post-stratified
separately for each gasoline grade, and the total gasoline
price (combining grades) is obtained at the basic stratum
level.  A regular bootstrap is used to obtain the variance of
the prices for publication cells which are in general
combinations of sampling  strata The sampling strata are
used to adjust weights to obtain correct volumes for
different regions.  The term publication cell is used for cells
where in principle one might consider publishing prices,
though some are too small to do so.

Given this design there are two kinds of estimates where
one might expect a different between the simple bootstrap
and the modified bootstrap.  One such estimate is for cells
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that are particularly small.  In this survey the geographical
regions (PADDs) served as sampling strata, but attainment
status regions within geographic regions were post-
stratification cells.  Because the sampling design allows for
varying sample sizes within post-stratification cells (and
thus publication cells) the bootstrap allowed for the
occasional bootstrap sample where the cell vanished.
Estimates for these cells are among the ones where the two
bootstrap methods can be expected to differ.

The second type of estimate where the two approaches are
likely to differ is in estimating prices for total gas,
combining the three grades.  Because the post-stratification
adjusts separately for total volume for each of the three
grades, the modified bootstrap will yield different results
than the regular bootstrap.  Using a single week,
bootstrapping 1,000 samples, and using perturbation factors
of 100% and 80% one finds indeed that the modified
bootstrapped yields identical results as the simple bootstrap
for regular, midgrade and premium gasoline, except in very
small cells (cells with only four to six outlets per cell).  In
these cases, the variance estimates are lower using the
modified bootstrap (perturbation of 80%).  

Likewise, the variance estimates for total gasoline are also
lower for the modified bootstrap than for the simple
bootstrap.  In each case the results are still of a similar
magnitude.  For example, estimates for a very small cell
went down from a standard error of 4.0 cents to 3.7 cents.
And one total gasoline estimate in a larger cell went from
1.8 cents to 1.5 cents.  Decreasing the perturbation factor
continued to decrease the non-linear estimates, while
leaving the linear estimates unaffected.  The estimate which
went from 4 to 3.7 went down to 3.5 with a perturbation
factor of 50%.

This led us to try a perturbation factor of 99%.  The results
were practically identical to the perturbation factor of
100%.  Unlike the regular bootstrap, this method
guarantees a denominator for every bootstrapped estimate
(the regular bootstrap -- or perturbation factor of 100% --
computes variances using only the bootstrapped samples
where the denominator does not vanish) but does not alter
the results, at least for the kind of estimates that have been
examined here.

Example 2: The Zip Code simulation

The second example uses a file of zipcode areas.  One
thousand samples of 100 zip code areas with 1990 census
populations greater than zero and at least one housing unit
were drawn.  For each sample, estimates were obtained for
average population per zip code area, average number of
housing units per zip code area and the ratio of population
to housing units.  The estimates were obtained for the total
sample and for states with at least three zip code areas in
the sample.  

One thousand bootstraps were conducted for each sample,
using perturbation factors of 100% and 80%.  In addition
standard errors were estimated from the frame by
calculating them directly using only those samples where
at least three units entered the sample.   This approach
means that there were fewer than 1,000 samples for which
estimates were possible for each state (though 1,000
samples yielded national estimates).

Thus there are four standard error estimates for states and
the nation:

1) Estimate obtained from the variance of sample estimates.
This is one estimate, while the others are estimated
separately for each sample.

2) Use of the standard error formula.

3) Regular bootstrap (perturbation factor of 100%).

4) Modified bootstrap (perturbation factor of 80%).

The standard error differences for pairs of estimates are
divided by the first of these, and then  the results are tested
for significance across all the samples for which the
estimates were possible.  The state estimates were also
pooled to examine the results, even though the different
states were not independently sampled.

Table 1 summarizes the results.As expected, the total units
and the total population national estimates were identical
for the two bootstraps.  The standard error for the ratio
estimate was lower using the modified bootstrap.  All
sample based estimates were on the average lower than the
frame based estimate, and the standard formula yielded
slightly higher standard errors than either bootstrap.  The
sample based estimates were off by 0.9% to 1.5% for
population and units, and by about 10% for the ratio. 

Absolute relative errors were calculated for the three
sample based methods and the differences were tested for
significance across the 1,000 simulations. Each  
bootstrap sample used in the regular bootstrap was then
combined with the original sample to form a modified
bootstrap sample.  Matched pairs t-tests were used to test
for significant differences across the simulations. The
regular bootstrap outperformed the modified bootstrap as
well as the standard error formula at the .01 level.

The state estimates were then pooled.  No state had three
zip codes in every sample.  It was however, possible to
compare results across all samples with at least three
representatives for that state.  In addition, the results for 
the different states were pooled to obtain a global picture.
Division of differences by the frame estimate permitted
an examination of the results across states.  



All sample based estimates tended to underestimate
variances (compared with the frame estimate) except the
simple bootstrap for the ratio, but the modified bootstrap
outperformed the regular bootstrap and the standard error
formula for the two linear  estimates.  

The simple bootstrap had the largest value for the ratio
estimate, but the standard deviation was much larger
than for the others so the results were not significant.
The results are probably due to some extreme estimates.

What is true of the pooled state estimates is not
necessarily true for all individual states and none of
three estimates from samples tended to be very close to
the criterion.

Conclusions:

The simulations are for now inconclusive.  One issue is
the importance of the perturbation factor.  In BRR, Fay
started using one factor and subsequent simulations
showed that a different factor was appropriate.  For the
bootstrap, there may be a relationship between the

perturbation factor and the accuracy -- the data suggests
at least a relationship between the perturbation factor and
the magnitude of the estimates.  The original motivation
of the modified bootstrap -- avoiding the vanishing
denominator -- is accomplished by using a perturbation
factor close to 100% without altering the simple
bootstrap estimates that much.  But if one uses an
estimate drawn through multiple samples from the
frame, the simulations suggest that an 80% perturbation
factor improves accuracy of estimates when the sample
sizes are such that vanishing denominators are likely. 
Further simulations and theoretical work may be in
order.
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Table 1: Means of Absolute Relative Errors
National Estimates

METHOD   Total Population     Total Units             Ratio

Formula .113 .110 .230 

Regular Bootstrap .114 .111 .227*

Modified Bootstrap .114 .111 .228 

* Significantly lower than the other two methods (p<.001)

Table 2: Means of Absolute Relative Errors
Pooled State Estimates

METHOD   Total Population    Total Units             Ratio

Formula .572 .572 .592 

Regular Bootstrap .563 .564 .948*

Modified Bootstrap .558 .558 .550 

* Only value not significantly different from the other two in the column.


