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Balanced Repeated Replications (BRR) ia a variance
estimation method usually implemented for cases where
therearetwo units(bethey PSUs or otherwise) per stratum.
For each replication one of the units is dropped from the
sample and the weights of the other adjusted. BRR can be
appliedwhen thereare morethan two unitsper stratum, but
it is more difficult to implement.

Fay’s method for variance estimation (Judkins, 1990)
modifies the balanced repeated replications approach by
instead of del etingonehal f-sample, multiplying theweights
of onehalf-sampleby k (where 0 < k < 2) and the other by
2-k. Thuswhen one uses Fay's method every respondent
isused in every replicate, but the weightswill be different
from replicate to replicate.

This approach permits for ratio and small subpopulation
estimates where the denominator may be zero for some
half-sampleor the subpopul ationmay be not presentin the
half-sample. This paper examines an extension of Fay’'s
concept to the bootstrap.

One of the advantages of Fay's method is that a
denominator which could otherwise disappear for a given
replicatewill not disappear, for the unitswill betherewith
asmaller weight. An estimate will be obtained for every
replicate if one was obtained for the original sample.
Furthermore, under certain circumstances for linear
estimateswheretheestimatewoul d not disappear, theBRR
estimate will be the same as the estimate using Fay’'s
method.

The heuristic motivation for this paper came as severd
variance estimation approaches were compared as part of
asimulation study. While the design used did not permit
easy useof balancedhalf samplereplications, Monte Carlo
half-sample smulations were used. This approach
essentially sdlects haf the sample and weighs up the
estimate to the total sample. It takes more computer time
than BRR , but is easy to program and yields results
comparable to other methods. But it seems that Fay’s
approach can be easily extended to the Monte-Carlo half
sample, weighting half the sample up and the other half
down by the same percent.

This method led to consideration of whether the Fay
approach could be applied to other forms of variance
estimation. In the case of the bootstrap one can keep all the
unitsin each replicateand merely changetheweights. One
has essentially replicate weights which do not vanish for
any case.

Why would this method be expected to work at al?
Consider an estimate X from a sample. Let X' be an

estimateof thesameparameter derivedfromabootstrapped
sample. Now let 0 <k <1. It follows that one can obtain
an estimate of the same parameter by letting X” =kX’ +(1-
k)X. The extension can be conceived either as aweighted
average of each bootstrapped sample and the original
sample, or as atransformation of bootstrapweightswhere
the new weights are kw’+(1-kK)\w (where w’ is the
untransformed bootstrapped weight, and w is the original
weight.

Using this method every subpopulation present in the
origind sample will be present in each modified
bootstrapped sample. It can be shown that for linear
estimates the modified bootstrap’ s standarderror estimate
divided by k yields the same standard error estimate as
theregular bootstrap’ sstandard error estimate. Following
the Fay terminology, 100k will be called the perturbation
factor of the modified bootstrap, where a perturbation
factor of 100% gives one a standard bootstrap.

Thus the variance of this modified bootstrap will be
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and hence the result can be divided by k? to obtain the
same result as one would for the ordinary bootstrap,
provided one has alinear estimate where the denominator
never vanishes for each bootstrapped sample.  This,
however, cannot be said for other estimates. Indeed, if
there are weight adjustments and other deviations from
linearity, there will be differences in the two sets of
estimates.

Example 1: The EIA-878

The first example where the procedure was tested is the
EIA-878 gasoline survey. This is a survey of gasoline
pricesat the pump. For each station the weighted volumes
add to known values per cell. The survey is post-stratified
separately for each gasoline grade, and the total gasoline
price (combining grades) is obtained at the basic stratum
level. A regular bootstrap is used to obtain the variance of
the prices for publication cells which are in genera
combinations of sampling strata The sampling strata are
used to adjust weights to obtain correct volumes for
differentregions. Theterm publication cell isused for cells
where in principle one might consider publishing prices,
though some are too small to do so.

Given this design there are two kinds of estimates where
one might expect a different between the simple bootstrap
and the modified bootstrap. One such estimateisfor cells



that are particularly small. In this survey the geographical
regions(PADDs) served as sampling strata, but attainment
status regions within geographic regions were post-
stratificationcells. Becausethe sampling designallowsfor
varying sample sizes within post-stratification cells (and
thus publication cells) the bootstrap allowed for the
occasional bootstrap sample where the cell vanished.
Estimatesfor these cellsare among the oneswherethetwo
bootstrap methods can be expected to differ.

The second type of estimate where the two approachesare
likely to differ is in estimating prices for tota gas,
combiningthethreegrades. Becausethe post-stratification
adjusts separately for total volume for each of the three
grades, the modified bootstrap will yield different results
than the regular bootstrap. Using a single week,
bootstrapping1,000 samples, and using perturbation factors
of 100% and 80% one finds indeed that the modified
bootstrappedyieldsidentical resultsasthesimplebootstrap
for regular, midgradeand premium gasoline, exceptinvery
small cells (cells with only four tosix outlets per cell). In
these cases, the variance estimates are lower using the
modified bootstrap (perturbation of 80%).

Likewise, the varianceestimatesfor total gasolineare aso
lower for the modified bootstrap than for the simple
bootstrap. In each case the results are till of a similar
magnitude. For example, estimates for a very small cell
went down from a standard error of 4.0 centsto 3.7 cents.
And one total gasolineestimate in a larger cell went from
1.8 centsto 1.5 cents. Decreasing the perturbation factor
continued to decrease the non-linear estimates, while
leavingthelinear estimatesunaffected. Theestimatewhich
went from 4 to 3.7 went down to 3.5 with a perturbation
factor of 50%.

Thisled usto try aperturbationfactor of 99%. Theresults
were practically identical to the perturbation factor of
100%. Unlike the regular bootstrap, this method
guarantees a denominator for every bootstrappedestimate
(the regular bootstrap -- or perturbation factor of 100% --
computes variances using only the bootstrapped samples
where the denominator does not vanish)but does not alter
theresults, at least for the kind of estimatesthat have been
examined here.

Example 2: The Zip Code simulation

The second example uses a file of zipcode areas. One
thousand samples of 100 zip code areas with 1990 census
populationsgreater than zero and at least one housing unit
weredrawn. For each sample, estimates were obtained for
average population per zip code area, average number of
housing units per zip code areaand theratio of population
to housing units. The estimates were obtained for the total
sample and for states with at least three zip code areasin
the sample.

One thousand bootstraps were conducted for each sample,
using perturbation factors of 100% and 80%. In addition
standard errors were estimated from the frame by
calculating them directly using only those samples where
a least three units entered the sample.  This approach
means that there were fewer than 1,000 samplesfor which
estimates were possible for each state (though 1,000
samples yielded national estimates).

Thus there are four standard error estimates for states and
the nation:

1) Estimateobtai nedfromthevarianceof sampleestimates.
This is one estimate, while the others are estimated
separately for each sample.

2) Use of the standard error formula.
3) Regular bootstrap (perturbation factor of 100%).
4) Modified bootstrap (perturbation factor of 80%).

The standard error differences for pairs of estimates are
divided by thefirst of these, and then theresults are tested
for significance across all the samples for which the
estimates were possible. The state estimates were aso
pooled to examine the results, even though the different
states were not independently sampled.

Table1 summarizestheresults.Asexpected, thetotal units
and the total population national estimates were identical
for the two bootstraps. The standard error for the ratio
estimate was lower using the modified bootstrap. All
samplebased estimateswere on the averagelower thanthe
frame based estimate, and the standard formula yielded
dightly higher standard errors than either bootstrap. The
sample based estimates were off by 0.9% to 1.5% for
population and units, and by about 10% for the ratio.

Absolute relative errors were calculated for the three
sampl e based methods and the differences were tested for
significance across the 1,000 simulations. Each

bootstrap sample used in the regular bootstrap was then
combined with the original sample to form a modified
bootgrap sample. Matched pairs t-tests were used to test
for significant differences across the simulations The
regular bootstrap outperformed the modified bootstrap as
well asthe standard error formula at the .01 level.

The state estimates were then pooled. No state had three
zZip codes in every sample. It was however, possible to
compare results across al samples with at least three
representatives for that state. In addition, the results for
the different states were pooled to obtain a global picture.
Division of differences by the frame estimate permitted
an examination of the results across states.



All sample based estimates tended to underestimate
variances(comparedwith theframe estimate) except the
simplebootstrapfor theratio, but the modified bootstrap
outperformedtheregul ar bootstrap and the standard error
formulafor thetwo linear estimates.

The simple bootstrap had the largest value for the ratio
estimate, but the standard deviation was much larger
than for the others so the results were not significant.
Theresultsare probably dueto some extremeestimates.

What is true of the pooled state estimates is not
necessarily true for al individual states and none of
three estimates from samples tended to bevery closeto
the criterion.

Conclusions:

The simulations arefor now inconclusive. Oneissueis
the importance of the perturbationfactor. In BRR, Fay
started using one factor and subsequent simulations
showed that a different factor was appropriate. Forthe
bootstrap, there may be a relationship between the

Table 1: Means of Absolute Relative Errors

perturbationfactor and the accuracy -- the data suggests
at least arel ationshipbetween theperturbati onfactor and
the magnitudeof the estimates. The origina motivation
of the modified bootstrap -- avoiding the vanishing
denominator -- is accomplished by using aperturbation
factor close to 100% without atering the simple
bootstrap estimates that much. But if one uses an
estimate drawn through multiple samples from the
frame, the simulationssuggest that an 80% perturbation
factor improves accuracy of estimateswhen the sample
sizes are such that vanishing denominaors are likely.
Further simulations and theoretical work may be in
order.
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National Estimates

METHOD Total Population Total Units Ratio
Formula 110 230
Regular Bootstrap 111 227*
Modified Bootstrap 11 228

* Significantly lower than the other two methods (p<.001)

Table 2: Means of Absolute Relative Errors
Pooled State Estimates

METHOD Total Population Total Units Ratio
Formula 572 .592
Regular Bootstrap 564 948+
Modified Bootstrap 558 .550

* Only value not significantly different from the other two in the column.



