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1. Background

The National Survey of Parents and Youth
(NSPY) represents a major component in the evaluation
of an on-going national media campaign designed to
reduce illicit drug use among youth. In-person surveys
covering items on substance abuse, parenting practices,
and awareness of anti-drug media advertising are
conducted with up to two youths and one adult per
household. NSPY is organized into six-month long data
collection rounds. Semi-annual reports are published
after each wave (Hornik et al, 2000; Hornik et al, 2001).
NSPY reports are on a very tight schedule, with just
seven weeks for preparing analytic data sets. Allowing
two weeks for cleaning data, only five weeks are left for
repeatedly performing three types of modeling tasks:
weighting, imputation and the preparation of
counterfactual projections. Counterfactual projections
are used in NSPY analyses to estimate the direct short
term causal effect of the media Campaign, as described
in Section 4. The evaluation uses counterfactual
projections to assess confounder-adjusted Campaign
impact estimates from exposure-outcome relationships.

In view of this tight schedule, we gave high
priority to automating the preparation of analytic files
to the maximum extent possible in a way that
minimized human review and intervention, worked
within the available budget, and remained data-
sensitive. In the past, some automated systems were
developed at the U. S. Census Bureau for the Current
Population Survey. The software systems developed
there in the 1960s and 1970s performed nonresponse
adjustment and imputation automatically to produce
unemployment reports in 15 days after the end of data
collection. While these programs were fast, they were
not very data sensitive relying on a priori models and
the subsequent pooling of adjustment/imputation cells
with inadequate sample sizes (U.S. Bureau of the
Census, 1978, pages 57-58). Past proposals to adopt
more data-sensitive approaches have been rejected
because they were thought to excessively extend the
weighting and imputation process. After a review of
several approaches to automation, we opted for
exploring and applying methods based on Multiple
Additive Regression Trees, or MART for short – which

is the experimental software developed by Friedman
(1999) that he discussed in the prior talk.

MART was used to model categorical response
variables in terms of predictor vectors with both
numeric and categorical components, },...,{ 1 nxx=x .
MART maps each predictor vector x into a vector

},...,{ 1 Lpp=p of response probabilities. While
MART’s underlying theory is not simple (see Hastie,
Tibshirani and Friedman, 2001), in applications MART
functions similarly to ordinal logistic regression
(McCullagh, 1980) or classification tree methods such
as CHAID patterned after the original SEARCH
program by Morgan and Sonquist (1963). There were
several features that made MART an attractive option:

� Numeric and categorical predictors are allowed,
both with missing values;

� Estimates are invariant to monotone transformations
of predictor variables;

� Non-additive relationships are captured
automatically;

� Complex interactions among predictors are captured
automatically; and

� Runs relatively fast.

We present results for (1) nonresponse
propensity models; (2) ad exposure models to be used
to impute missing recall information for specific TV
and radio ads that were randomly excluded from
surveys; (3) exposure propensity models for generating
counterfactual weight projections; and (4) an
experiment to fine tune MART via cross-validation.

2. Nonresponse (NR) Adjustment

Standard procedure for NR adjustment is to form
a partition of the dataset and calculate NR-adjusted
weights by the formula:
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where ciδ indicates membership in cell c of the

partition, iϕ indicates response status, Biw and Riw

are pre- and post-NR adjustment weights, and cλ is the
weighted empirical response rate for cell c of the
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partition. The partition constitutes a model for response
status. Under the assumption that the propensity to
respond is uniform within each cell, adjusted weights
are asymptotically unbiased as the number of cases in
each cell increases. Since given a correct partition,
weights only increase variance, some practitioners (e.g.,
Little and Vartivarian, 2001) prefer to drop the prior
weights from the adjustment. However, retaining
weights results in robust estimation of model
parameters (Holt, Smith and Winter, 1980) a finding
that should apply to cell-specific response propensities
as much as to other model parameters, and, most
importantly, it assures consistency in the sense that the
sum of the adjusted weights in each cell is equal to the
sum of prior weights in each cell; i.e.,

cww
i

ciBi
i

ciRi ∀∑∑ = δδ . (2)

Consistency is important for estimates of finite
population counts as well as being useful for quality
control of the weighting process.

Standard procedures partition observations prior
to or during data collection, and then collapse cells with
thin samples. A priori collapsing rules can be applied
automatically without any information from the sample
or by an analyst applying general collapsing rules in
terms of cell sample sizes and cell response rates. The
first variant is fast but is data-blind, the second is slow
but is data-sensitive. Both procedures tend to have ad
hoc elements, though the first is a priori ad hoc, and the
second is post-hoc. The present work continues the
tradition of Göksel, Judkins, and Mosher (1992);

Judkins and Lo (1993) to make NR adjustment data-
sensitive yet analyst independent. These authors used
CHAID and logistic regression for partitioning. CHAID
tended to result in overfit, while logistic regression is
insensitive to interactions and nonlinear terms and both
procedures require some analyst intervention. We
viewed MART as a solution that might overcome all the
disadvantages of earlier methods.

We used a version of the well-known
Pool-Adjacent-Violators algorithm (Barlow et al, 1972)
to group MART-predicted probabilities into
nonresponse adjustment cells that were in sort on
predicted nonresponse probabilities. This step is similar
to the use of logistic regression in Judkins and Lo
(1993). Unfortunately, the empirical response rates
turned out to exhibit unacceptably large variation across
the cells. The cells with low predicted response rates
actually had empirical response rates of cλ = zero,
resulting in infinite adjusted weights. We treated
complete identification of nonrespondents as resulting
from overfit and adopted an ad hoc procedure to deal
with it. After considerable experimentation, we found
that a partition developed by applying MART and then
MUD – the name we gave to our partitioning algorithm
– to a 50 percent training sample gave reasonable
empirical response rates when it was applied to the full
sample (see Figure). Although we have not tested the
MART-MUD algorithm against CHAID or logistic
regression, we are pleased with the ability of the
algorithm to accept a large number of covariates and
operate with little human intervention.

MART and MUD on 50% training sample, applied to full sample
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3. Ad Imputation

Campaign exposure was estimated by total
respondent recall based on all anti-drug ads aired by the
media campaign just prior to interviews. To estimate
recall for a single ad, respondents were shown the ad in
full length on a laptop computer and were asked to say
how often they had seen it in recent months. Because of
time limitations, this procedure was performed only for
random ad samples – for the rest, responses were
imputed. We compared results from hot-deck
imputation and imputation based on MART-predicted
probabilities.

Hot-deck imputation was implemented by using
proprietary software called WESDECK [Winglee,
Ryaboy and Judkins, 1993]. MART-based imputation
was performed by drawing samples from the unique
response probability distributions estimated by MART.
MART had two a priori advantages over WESDECK, it
could use more predictors, and predictors were allowed
to have missing values. (A missing value would have to
be treated as a valid level by WESDECK, and this tends
to yield poor results.)

MART and hot-deck performance were
compared on the basis of seven ads targeted to youth
with no missing responses (see below). As a simple
form of cross-validation, the data were randomly split
into four roughly equal parts by ad, and models were
trained on three random quarters for imputing
observations in the omitted fourth. Both procedures
produced an imputed value for every observation. With
the MART-based imputation, a single model was
constructed for all ads pooled in order to
‘borrow-strength’ from the possible similarity of
ad-exposure/ad response relationships across the ads
with 0-1 indicator variables included among predictors
to account for the possibly unique effect of individual
ads.

Response frequencies were grouped into five
levels (e.g., 0, 1, 3, 7.5 and 12.5) that reflected the
number of times ads were seen per month. Graphical
comparisons suggested that MART slightly
outperformed WESDECK for most ads. Average
squared misclassification errors were computed using
the formula
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where iO and jP respectively represent the i-th actual

and j-th imputed response values, and ijp is the

proportion of times when an actual response at level i is
imputed at level j. The table below shows the results by
ad.

In 5 of the 7 comparisons, MART outperformed
the hot deck in terms of the squared misclassification
error. For two of the ads, 5 and 18, this was not so.
Subsequent investigations showed that for ads 5 and 18,
an unusually large proportion of the responses fell in
category 0 – meaning that, in our sample, few people
ever saw those ads. This was not so for the rest of the
ads. The hot deck imputed only actual values for any
ad. This prevented hot deck from wandering very far
from actual observed values. However, the way we
used MART for imputing ads, this was not so. In our
‘stacked analysis’, we pooled data across all ads to
strengthen the model, but apparently, we did not restrict
the MART-predicted probabilities sufficiently to
prevent the imputation of values that never actually
occurred, although could have occurred, in a larger data
set. Although, for a couple of anomalous
advertisements, which did not conform to the general
pattern, pooling data across the ads proved to be a
sub-optimal way of using MART, in general, data
pooling considerably improved performance.

Average squared imputation error in recall frequency by
ad

Ad Hot deck MART
ad2 31.76 28.02
ad5 13.95 17.81
ad7 24.09 21.30
ad10 27.01 26.33
ad11 28.85 27.04
ad18 5.44 10.02
ad19 31.31 27.30

4. NSPY Contest Between MART and Ordinal
Logistic Regression for Modeling Exposure
Propensity

In NSPY, a three- or four-level ordinal variable
for exposure is used to estimate exposure-related
outcome-changes after appropriate adjustment for the
potential confounding due to pre-campaign respondent
characteristics. The overall objective is to measure short
term direct exposure effects. We opted to control for
bias due to potential confounding by propensity scoring
of exposure. The method of propensity scoring has been
developed by Rosenbaum and Rubin (1983), Joffe et al,
(1999) and Imbens (2000), and for our application, it
includes the following steps:

1. Estimate exposure propensity models in terms of
covariates.

2. Develop counterfactual (CF) weights by expanding
sampling weights to reflect exposure propensity
differences among individuals with the same actual
exposure.



3. Average outcomes in the CF world by exposure
level using the CF weights.

4. Compare CF outcome averages across exposure
level.

Two methods competed for estimating exposure
propensities in Step 1: ordinal logistic regression (Joffe
et al, 1999) and a new approach based on MART. The
method requiring ordinal logistic regression (OLR) was
implemented by Itzhak Yanovitsky and Elaine Zanutto
from the University of Pennsylvania; the MART
approach was implemented by the authors of this paper.

The test dataset comprised about 1,500
observations and 266 predictors. We used default
MART parameters but set the loss function to penalize
misclassifying a level 1 (3) response as a level 3 (1)
response more than misclassifying it as a level 2
response.

As before, MART-predicted probabilities proved
inconsistent. We developed a procedure that iterated
between consistency and renormalization steps until
convergence was established. The consistency step
ensured the validity of (2) above, the renormalization
assured that propensities summed to 1. Counterfactual
projection weights based on MART were then
calculated by adjusting weights inversely to
propensities
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With stepwise ordinal logistic regression,
counterfactual weights were derived using a 5-level
respondent partition that was obtained by grouping
respondents after they were sorted on the final model’s

β̂X where X denotes the covariate vector, and β̂ the
parameter estimate. Each cell of the partition included
about 20 percent of the total sample.

Based on statistical theory, good propensity
models balance all available covariates across exposure
levels (Rosenbaum and Rubin, 1983). Operationally,
this is infeasible to assess with even a small number of
covariates since all order interations and arbitrary
transformations must be considered. However, we did
assess balance in the limited sense of requiring the
constancy of counterfactual confounder mean
projections across propensity classes for a few binary
and continuous predictors. The constancy requirement
is intuitive: if a method is to eliminate bias from
exposure-outcome relationships, it should leave little
variation in the counterfactual means of confounders
across exposure levels. We assessed constancy using
two criteria, one involved a highly approximate

chi-square significance test, the other the informal
inspection of the relative range of the three
counterfactual means computed as
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In the final analysis, OLR was selected in favor
of MART for exposure propensity modeling in NSPY.
We note that MART-predicted propensities had to be
made consistent in a separate step (see above). In terms
of statistical performance, MART and OLR were
judged to perform equally well when compared on
balance, overfit, and the separation of propensities.
There was also a tie on timing, in part because of the
additional step required to achieve consistency with
MART, and in part because in the test data set, OLR
models worked adequately even without interactions.
The decisive factor in favor of OLR was that it was
assumed to give a higher level of comfort to social
scientists in the target audience.

5. Fine Tuning of MART Parameters and
Measuring Performance via Calibration Plots

Finally, we used a NSPY test data set with 2,996
observations to assess the calibration properties of
MART models with different tuning parameters (see
Table 1) for a 3-level response variable from 120
predictors. In the context of weather forecasting, Dawid
(1982 and 1985) called a forecaster well-calibrated if,
of those events to which the forecaster assigns a
probability of say 30 percent, the long-run proportion
that actually occurs also turns out to be near 30 percent.
In the same spirit, one can say that a procedure for
predicting class membership probabilities from
covariate vector x in the form )|( xcp is well-calibrated
if a fraction of about p of events with predicted
probability p actually occur (Venables and Ripley,
2000).

Table 1. Model parameters

Parameter
Number
of levels Level

Tree size 2 3, 5

Learning rate 3 0.01, 0.08, 0.25

Sampling fraction 3 0.5, 0.60, 0.75

Cost matrix 2 1: 0, 1, 1 2: 0, 1, 4
1, 0, 1 1, 0, 1
1, 1, 0 4, 1, 0



For each parameter combination, one model was
fitted using the full data set. To cross-validate these
estimates, the full data set was split at random into ten
roughly equal parts, and models trained on each of the
ten sets of nine random parts were used to
'cross-predict' estimates for the corresponding omitted
random tenth. Full sample estimates and cross-predicted
estimates were also derived for stepwise logistic
regression.

Following Venables and Ripley, we examined
the (smoothed) observed proportion of correct
predictions as a function of the corresponding estimated
probabilities. For well-calibrated predictions, observed
proportions and estimated probabilities would be
identical, and observed proportions, when plotted on the
vertical axis against estimated proportions on the
horizontal axis, would range along the 45 degree line.
Departure from well-calibration was quantified by the
mean squared difference between actual lines and the
45 degree line. When based on cross-predicted
probabilities, actual lines depict calibration (Venables
and Ripley, 2000) and the mean squared difference is
calibration error. When based on predicted
probabilities, the corresponding terms are
pseudo-calibration and pseudo-calibration error. Similar
concepts apply to models estimated from stepwise
logistic regression. When calibration and
pseudo-calibration lines are displayed together with 45
degree lines, for well-calibrated probabilities all lines
overlap. If calibration curve soars above the 45 degree
line, then the rank order for the predicted probabilities
contains more information than is being captured in the
predicted probabilities themselves. We refer to this
unexpected phenomenon in the current context as
overshrinking.

Main results are as follows. Stepwise logistic
regression resulted in smaller pseudo-calibration error
(0.033) than any of the MART models (>0.06). The
calibration error of stepwise logistic regression was
bracketed by the calibration errors of MART models
(0.008-0.03). Depending on tuning parameters, MART
models may overfit, overshrink, or be well-calibrated,
or are essentially error-free. The stepwise model
slightly overfits.

6. Summary and Discussion

This paper described current applications of
MART to NSPY data for nonresponse adjustment and
exposure imputation. In both applications, the software
performed adequately after the development and
implementation of special additional procedures. Thus,
in neither application would MART be viewed as
providing purely ‘off-the shelf’ solutions.

As a third potential application to NSPY data,
MART-based models to be used for propensity
modeling of exposure were compared to models derived
using stepwise ordinal logistic regression. In terms of
statistical performance, the two methods performed
equally well. However, MART-based estimates for
exposure propensity required special post-processing to
assure that counterfactual projection weights derived
from the propensities satisfied consistency
requirements. In the absence of evidence for better
statistical performance by MART-based propensity
estimates, the more familiar statistical approach was
selected for implementation.

In the course of developing and testing these
applications, we noted that MART-predicted
probabilities were typically not well-calibrated. A
cross-validation experiment was then performed to
examine calibration in relation to MART’s tuning
parameters. The results confirmed, that for a wide range
of tuning parameters, MART-predicted probabilities are
indeed not well calibrated in the sense of Dawid.

It is not yet clear whether the proper choice of
tuning parameters might not resolve the calibration
problems we encountered in these applications. The
survey data set that served as the basis for these
analyses was medium sized when it comes to data
mining software. There were about 1,500-3,000
observations but more than 100 predictor variables.
Moreover, as it is often the case for social surveys,
statistical relationships tend to be somewhat weak and
strong high-level interaction are rare. Work on
optimizing MART tuning parameters has so far been
performed using data sets with observation/predictor
ratios well above the 3000/100-1500/260 ratio range for
the NSPY data (Hastie et al., 2001), and often strong
interactions were suspected or introduced to document
MART’s ability to identify them. Our experiments
suggest that tuning parameters suggested on the basis of
past experimentation may not be optimal for the type of
survey data that were analyzed in this paper.

It would be of great practical help to survey data
analysts to have ready access to automated
model-building techniques. Our experiments with
MART-based models indicate that although using
MART can result in acceptable model quality,
considerable additional work will be needed to develop
guidance on tuning parameter settings appropriate for
working with survey data.
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