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1 Introduction

Survey researchers often adjust preliminary survey
analysis weights so that sample estimates match
known control totals for auxilliary variables. These
adjustments are attractive in that the resulting sta-
tistical estimates have desirable properties, including
reduced bias and increased efficiency in some circum-
stances. Over the years, many different approaches
for raking or calibration have been proposed. Singh
and Mohl (1996) provide a detailed description for
many of these methods.

There are two types of decisions that must be made
during any practical raking application. First, a spe-
cific raking algorithm must be chosen from the rather
large set of available methods. Deville and Sarndal
(1992) showed that a wide class of calibration esti-
mators are (first-order) asymptotically equivalent to
the generalized regression estimator. While this may
appear to suggest that choosing a method is not im-
portant, in practice one often finds that the different
raking/calibration algorithms produce very different
results in finite samples.

Historically, researchers have addressed this issue
using summary measures of fit that compare the
raked/calibrated weights relative to the base analytic
weights. Examples of comparative studies on cali-
bration methods are given in Deville, Sarndal and
Sautory (1993) and Stukel and Boyer (1993). Intu-
itively, a set of calibrated weights that match con-
trol totals and that is ”close” to the base weights
would be preferred to a set that was ”farther away”.
While these measures have some appeal, these de-
cisions rules are usually ad hoc and do not have a
formal statistical basis.

A second decision that must be made concerns the
selection of raking targets. In many situations there
are a large number of potential targets, and a re-

searcher must ones to include. If one set of raked
weights is constructed that simultaneously matches
all control totals, including a large number of tar-
gets may substantially increase the variability of the
raked weights and the associated sampling variabil-
ity of the survey estimates. From this perspective,
increased variability is the ”price” associated with
including a large number of targets. Although re-
search concerning approaches for selecting targets has
been limited, Chambers, Skinner, and Wang (2000)
(henceforth CSW) have recently described a number
of statistical approaches for selecting raking targets.

In this paper we examine the behavior of a vari-
ety of different raking algorithms within the context
of two examples from market research. The paper
illustrates the range of differences in raked weights
that can result in practice because of differences in
(and assumptions underlying) raking algorithms. In
addition, we develop several statistical decision-rules
for selecting raking targets, and evaluate their per-
formance within the context of the two examples.

The paper will proceed as follows: Section 1 pro-
vides some background concerning raking methods
and (1992) results concerning the asymptotic equiv-
alence of the various raking/calibration algorithms.
Section 2 develops two methods for selecting raking
targets, following the suggestions of Chambers , Skin-
ner, and Wang (2000). Section 3 presents some em-
pirical results using two examples from market re-
search surveys. Section 4 concludes and suggests av-
enues for future research.

2 Background

Deville and Sarndal (1992) and Deville, Sarndal and
Sautory (1993) (henceforth DSS) consider the follow-
ing notation. Let n, N denote the sample size and
population size respectively. Let dk represent the
usual design-based survey weight (the base weight)
for respondent k. Let yk be the value of a variable
of interest for the kth population element, and let
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xk={xk1, ...xkJ} be a vector of J auxiliary variables.
For the auxilliary variables, we assume that the pop-
ulation totals or benchmark constraints are known,
i.e. τj=

∑N
i=1 xij .

The basic idea behind calibration is to develop new
weights {wk, k=1...n} for each respondent such that
the survey sample produces estimates that match the
population or benchmark totals. Following D-S, this
can operationalized as a minimum-distance problem,
with different calibration estimators employing dif-
ferent distance measures.

To illustrate, DSS consider distance measures
Gk(w, d) satisfying certain regularty conditions
with gk(w, d)= ∂Gk/∂w. Calibration estima-
tors are chosen to minimize distance measured as∑n

k=1 Gk(wk, dk) subject to the J calibration con-
straints. Let λ be a vector of lagrange multipliers.
It follows that

gk(wk, dk − x′kλ) = 0. (1)

In what follows, it is useful to write this as

wk = dkFk(x′kλ). (2)

It is informative to examine the minimization using
G=(wk-dk)2/dk which is the linear regression or un-
restricted modified minimum chi-square method. In
this situation, Equation (2) implies that

wk = dk(1 + x′kλ) (3)

where

λ = (
n∑

k=1

dkqkxkx′−1
k )(tx − ˆtxπ (4)

The regression estmator can be written as:

ˆtyreg = ˆtyπ + (tx − ˆtxπ)′B̂ (5)

where

B̂ = (
n∑

k=1

dkxkx′−1
k )

n∑
i=1

dkxkyk (6)

The variance of the generalized regression estimator
is ∑

k

∑
l

(πkl − πkπl)π−1
kl (ekdk)(eldl) (7)

where ek = yk−x′kB. This quantity can be estimated
using êk = yk −x′kB̂ with wk replacing dk. D-S show
that all of the calibration estimators corrsponding to
different distance measures have the same first-order
asymptotic distribution, in the sense that N−1( ˆtyw −

ˆtyreg) is Op(n−1).

The formula in (5) provides some intuition con-
cerning the source of increased variability associated
with raking. B̂ is the vector of design-based regres-
sion coefficients, and cacluating B̂ requirs inverting
the X-matrix. As targets are added, X eventually
becomes more and more ill-conditioned, inflating the
varaicne (̂b) and the regresison estimator of the total.

3 Selecting Targets

Partition the X matrix associated with a set of targets
into two subsets (X1, X2). We consider the situation
where we would like to evaluate the raked solution
using X1 only, with the solution using both X1 and
X2. Perhaps the simplest approach is to consider the
design-based regression of Y on X and to test the
null hypothesis B2=0.

consider two procedures for selecting raking targets

4 Examples

We consider data from two market research surveys.
Both surveys investigated business purchasing behav-
ior. Samples were drawn from a national list of busi-
ness locations. Both samples followed simple strati-
fied designs, with primary stratifictaion by industry
group and number of employees. Locations were sam-
pled with equal probabilities within primary strata.
Base weights to be used as starting values in the rak-
ing algorithms include a simple within-stratum non-
response adjustment. In the first survey, weights were
calibrated to obtain benchmark spending targets for
the industry under consideration. In the second sur-
vey, weights were calibrated to obtain the spending
targets for three product categories, and to match
benchmark totals for geographic representation in 4
census regions.

Table 1: Survey 1: Distribution of Weights, Alterna-
tive Methods
Method Mean Max Std. Dev.

1 12,950 137,948 25,211
2 12,950 110,841 23,279
3 12,950 121,445 24,123

Tables 1 and 2 present summary statistics for the
distribution of the weights for Methods 1-3. Note
that the mean weight is identical across the methods
in each table, but that the extreme values and stan-
dard deviation vary substantially across the mthods.
Tables 1-2 clearly demonstrate that the different al-
gorithms produce very different results. Overall vari-



Table 2: Survey 2: Distribution of Weights, Alterna-
tive Methods
Method Mean Max Std. Dev.

1 123 1923 261
2 123 1108 216
3 123 987 205

ability of the raked weights tends to lower for Meth-
ods 2 and 3, but there appears to be no clear clear
ranking between Methods 2 and 3 across studies.

We also compare the second order asymptotic vari-
ance of the estimates, expressed relative to the vari-
ance of the generalized regression estimator, for sev-
eral survey items. For the first study, we examined
a variable concerning future purchase intentions. For
this item, the variances for Methods 2 (96%) and 3
(94%) were lower in each case. For the second survey,
we examined a general purchase propensity measured
on a 100 point scale. For this survey, estmated vari-
ances were lower for Method 2(92%) and Method 3
(96%).

5 Conclusions

This paper compared the performance of various rak-
ing/calibration algorithms by exmainig the second
order asymptotic distribution of the differetn esti-
mates. Second order approximations were found to
provide some assistance in choosing between the var-
ious methods. Future research will broaden the set of
raking algorithms examined in this study, and will ex-
amine (through simulation) the actual finite sample
performacne of
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