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1. INTRODUCTION 
 
One of the main objectives of a sample survey is to 
compute estimates of means and totals of a number of 
characteristics associated with the units of a finite 
population U. The data are often used for analytic 
studies or analyses of a survey. This usually involves 
the comparison of means and totals for subgroups of the 
population. Such subgroups are referred to as domains 
of study. Hartley’s (1959) paper is one of the first 
attempts to unify the theory for domains. Hartley 
provided the theory for a number of sample designs 
where domain estimation was of interest. His paper 
mostly discussed estimators that did not make use of 
auxiliary information. He did, however, consider the 
case of the ratio estimator where population totals were 
known for the domains. The existence of multivariate 
auxiliary data raises a number of questions in the 
context of domain estimation. Some of those questions 
are as follows. What is the effect of having auxiliary 
information that is not known on a population basis for 
the given domain of interest? How do we compute valid 
variance estimates in the context of domain estimators 
that use auxiliary data? If more than one estimator is 
possible for point estimation and/or variance 
estimation, what criteria should be used to decide on 
how to chose the best estimator?  
 
Durbin (1969) supported the use of conditional 
inference to do such comparisons. To quote him, he 
stated, ”If the sample size is determined by a random 
mechanism and one happens to get a large sample, one 
knows perfectly well that the quantities of interest are 
measured more accurately than they would have been if 
the sample size had happened to be small. It seems self 
evident that one should use the information available on 
sample size in the interpretation of the result. To 
average over variations in sample size which might 
have occurred but did not occur, when in fact the 
sample size is exactly known, seems quite wrong from 
the standpoint of the analysis of the data actually 
observed”. Holt and Smith (1979) favored conditional 
inference, and applied it to study the properties of the 
post-stratified estimator, given simple random 
sampling. Rao (1985) introduced the idea of 
“recognizable subsets” of the population to formalize 
the conditioning process. Recognizable subsets are 
defined after the sample has been drawn. In the context 

of domain estimation the number of units belonging to 
a particular domain is a random variable. Recognizable 
subsets in that context are those where the sample size 
is fixed within each domain. Comparison of the 
conditional statistical properties (i.e., bias, mean 
squared error) of the different estimators can then be 
based on these subsets. The conditioning process is that 
population totals are known for each domain. In the 
case of simple random sampling, the number of units in 
the population domain is assumed known. 
 
The main purpose of this paper is to study the 
properties of a number of domain estimators of totals in 
the presence of auxiliary data. These properties will be 
established via conditioning on fixed sample sizes 
within each domain.  
 
 
2. USE OF AUXILIARY INFORMATION IN 

DOMAIN ESTIMATION 
 
Some notation is required to define the problem.  Let 
the finite population { }NkU ...,,...,,1=  be divided into 

D non-overlapping domains Dd UUU ...,,...,,1 .  Let 

∑=
U kyY  be the population total of a characteristic 

of interest "y".  Assume that the sampling plan, P(s), is 
an arbitrary one with first and second order inclusion 
probabilities k  and 

�k . The resulting sample is 

denoted "s", and units in domain dU  that are part of s 

are denoted sUs dd ∩= . An estimator of the domain 

total ∑=
dU kd yY  that does not use auxiliary data is 

given by 
 

∑∑ ==
s dkks kkHTd ywywY

d
,

ˆ , 

 

where 1−= kkw , dky  is equal to ky  if dsk∈  and 0 
otherwise. 
 
Auxiliary information in the form of a p-dimensional 
vector x may be available at different levels of 
aggregation. It may be known for each unit in the 
population, or for subsets ),...,1( GgUU g =⊆ of the 

population U that may coincide with the domains dU . 

We denote such totals ∑=
gU kg xX , and they are 

estimated by ∑=
gs kkHTg w xX ,

ˆ . New weights kw~  

incorporating the auxiliary data can either be 
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constructed via calibration or linear regression 
procedures (LR). We chose the LR approach. In the 
case of G groups, the LR estimator is given by 

gHTgg

G

g
HTr YY BXX ˆ)ˆ(ˆˆ

,
1

′−+= ∑
=

�
,  

where  

∑∑
−




 ′=
gg s kkkks kkkkg cywcw //ˆ

1

xxxB , and kc  

are suitable positive constants. 
 
The use of auxiliary data in the domain context offers a 
wide range of choices for various levels at which 
auxiliary totals are used and regression models are 
constructed. To simplify matters, we assume that g=1 
(e.g.: a single group U), yielding the simple regression 

estimator BXX ˆ)ˆ(ˆˆ ′−+= HTHTr YY
�

. We consider six 
possibilities for estimating the domain population total 

dY . These possibilities differ based on whether we use 

the domain totals dX or the population total X , and 
whether we construct the regression estimator at the 
domain or at the population levels. The estimators are 
categorized into Horvitz-Thompson and “Hájek” types. 
We will elaborate on the difference between them in the 
next two subsections. 
 
2.1. Horvitz-Thompson type estimators 
 
Case 1  
 
We assume that the auxiliary information is only 
available at the population level U, and that the 
regression model is estimated using the entire sample 
s . The dependent variable is dky , taking on the value 

ky  if k is in the domain and 0 otherwise, and kx  is the 
explanatory variable vector. The corresponding 
regression parameter is 

∑∑
−






 ′
=

s
k

dkkk
s

k

kkk

c

yw

c

w xxx
B

1

1
ˆ , 

and the resulting estimator of the population total dY  is  
 

1,,
ˆ)ˆ(ˆˆ

1
BXX ′−+= HTHTdrd YY

�
.  (2.1) 

 
Case 2  
 
If the auxiliary data totals are available at the domain 
level, ∑=

dU kd xX , then two possible estimators of 

dY  can be constructed depending on how the 
population regression B parameter is estimated. If the 
population parameter is estimated by using the 

observations within the sample ds , then the resulting 
regression estimator is 
 

2,,,
ˆ)ˆ(ˆˆ

2
BXX ′−+= HTddHTdrd YY

�
, (2.2) 

where ∑∑
−






 ′
=

dd s
k

kkk
s

k

kkk

c

yw

c

w xxx
B

1

2
ˆ . 

Case 3  
 
If the parameter is estimated using the entire available 
sample information, then the regression estimator is   
 

3,,,
ˆ)ˆ(ˆˆ

3
BXX ′−+= HTddHTdrd YY

�
, (2.3) 

where ∑∑
−






 ′
=

s
k

kkk
s

k

kkk

c

yw

c

w xxx
B

1

3
ˆ . 

2.2. Hájek type estimators 
 
Estimators (2.1)-(2.3) are of a Horvitz-Thompson 
nature. The “Hájek” versions of these cases are 

obtained by replacing HTdY ,
ˆ , HTd ,X̂ , and HTX̂ by 

∑
∑

=
d

d

s k

s kk

dHAd w

yw
NY ,

ˆ , 
∑

∑
=

d

d

s k

s k

dHAd w

w
N

kx
X ,
ˆ , and 

by 
∑

∑=
s k

s k
HA w

w
N

kx
X̂ . The resulting estimators are: 

Case 4 

1,,
ˆ)ˆ(ˆ~

1
BXX ′−+= HAHAdrd YY

�
  (2.4) 

 
Case 5  

2,,,
ˆ)ˆ(ˆ~

2
BXX ′−+= HAddHAdrd YY

�
  (2.5) 

and 
 
Case 6 

3,,,
ˆ)ˆ(ˆ~

3
BXX ′−+= HAddHAdrd YY

�
  (2.6) 

 
 
3. PROPERTIES OF THE DOMAIN 

ESTIMATORS 
 
It is not clear which of the above estimators is the best 
in terms of the smallest bias and MSE. Such a 
comparison should be done conditionally. Since 
conditional inference in survey sampling can be stated 
in the case of simple random sampling, we limit our 
study to it. 
 
The choice between these estimators will depend on the 
conditional bias and conditional mean squared error 
associated with each. 
 



Estimators (2.1) - (2.6) may be expressed as: 
 

 ∑=
s dkdkkrd yawY

�,
ˆ    (2.7) 

where dka  is an adjustment factor that may or may not 
be domain dependent.  Table 1 provides a summary of 
these factors. The adjustment factors for the Hájek 

analogues of 
2,

ˆ
rdY
�

 and 
3,

ˆ
rdY
�

 are obtained by replacing 

1 with ∑
ds kd wN / , and HT with HA in the definition 

of dka  in Table 1. However, by virtue of HAdY ,
ˆ  the 

dka ’s for 
1,

~
rdY

�
 are now domain dependent and 

resemble those of 
3,

ˆ
rdY
�

 rather than 
1,

ˆ
rdY

�
. 

 
Table 1: Adjustment Factors for Horvitz-Thompson 

Regression Estimators 
 

 
The corresponding variance expression for simple 
random sampling without replacement is given by 

,
1

)(1
)ˆ(

2
2

, −
−−= ∑

n

eaea

n

f
NYv s dkdk

rd �
 (2.8) 

where dka ’s are the appropriate adjustment factors and 

jdkdkk ye Bx ˆ′−= , ( j = 1, 2, 3) are estimated residuals 

that depend on the regression estimator used, and 

∑
=

=
n

k
kdkd ea

n
ea

1

1
. We will provide examples of the 

required computations in the next section.  
 
3.1 Conditional Bias 
 
We examine the conditional bias of the estimators (2.1) 
to (2.6).  As all these estimators are unconditionally 
unbiased, we compare their unconditional variance for 
the case where the error structure kc  is proportional to 

kx′ , where  is an arbitrary vector.  This last 
condition is satisfied when there is an intercept in the 
regression model linking the independent ky  variables 

to the kx  dependent variables, or when the error 

structure kc  is proportional either to one of the 

elements in the kx  vector or to a linear combination of 

them (i.e. kkc x′= ). 
 
We assume that the survey design is simple random 
sampling without replacement, as this greatly facilitates 
the task of obtaining conditional expectations.  For a 
given sample domain ds , let dn  be the realized sample 

size, and let ),...,( 1 kpkk zz=z .  The following result can 

be used to evaluate the conditional bias of estimators 
(2.1) to (2.6). 
 

 
Result 1: Given that kz  is a p-dimensional vector, and 

that 1≥dn , the conditional expectation of sz  (the 

sample mean of the kz ’s) is given by: 

)~(
1

)|( UU
d

dd
Uds dW

Ww
nE zzzz −

−
−+=   (3.1) 

where:  ∑∑ −− ==
U kUs ks Nn zzzz 11 , ; 

nnwN ddU kdU
dd

/;~ 1 == ∑− zz  ; and NNW dd /= . 

 
Remark 1: The proof of this result is obtained using 
conditional arguments.  A consequence of the above 

result is that an estimator s
ˆ  (say) will be nearly 

conditionally unbiased for its population parameter U  

(say) if either dw  is close to dW , or if 
dUs

~
 (the 

population domain mean for dU ) is close to U . 

 

Estimator Adjustment Factor dka  Residual ke  

1,
ˆ

rdY
�

 

 
Domain Independent 
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k
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k

kkk
HT ∈




 ′′−+
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1
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
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otherwise

skify

k
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1

1

ˆ

ˆ
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2,
ˆ

rdY
�

  

 
Domain Dependent 







∈




 ′′−+
−

∑
otherwise    0

 ,)ˆ(1
1
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k

k
s

k
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w
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

 ∈′−

otherwise

skify dkk

0

ˆ
2Bx

 

3,
ˆ

rdY
�

  

 
Domain Dependent 












∉




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,
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3B̂xkky ′−  



Result 2: If kz  is the domain variable dky , then we 

obtain from result 1 that
dUddHTd ywNnYE ~)|ˆ( , = . The 

conditional bias of HTdY ,
ˆ  is therefore: 

 

dUdd

ddHTddHTd

yWwN

YnYEnYBias
~)(

)|ˆ()|ˆ( ,,

−=
−=

    (3.2) 

 
Remark 2: The post-stratified analogue of HTdY ,

ˆ ,  

∑=
s d

d

d
POSTd y

n

N
Y ,
ˆ , is conditionally unbiased (Rao, 

1985). 
 
Result 3: Ignoring terms of ( )nO /1 , the approximate 

conditional bias of HTd

HT

RATd Y
X

X
Y ,,

ˆ
ˆ

ˆ =  can then be shown 

to be: 

)~()~(

)~(~)(
UUdUdU

UdU
Udd xxwxWx

xWx
yWwN

dd

d

d −+−
−

−  

 
If either dd Ww ≡ ( ≡ means close to) or 

dUdU xWx ~≡ (implying that UU d = ), then this bias is 

approximately equal to 0. This conditional bias can be 

worse than the one associated with HTdY ,
ˆ  if 

dUU xx ~> : 

hence, in that case it is better to use HTdY ,
ˆ . 

 
The above results can be shown using Result 1 and the 
Taylor series approximation method. Noting that the 

difference dRATd YY −,
ˆ  can be written as 

HT

dHTd
dRATd

X

XRYX
YY

ˆ
)ˆˆ(ˆ 1,

,

−
=−  where XYR dd /1 = , the 

conditional bias of RATdY ,
ˆ  given dn  is 

[ ]























 −
=− d

HT

dHTd
ddRATd n

X

XRY
EXnYYE

ˆ

ˆˆ
)ˆ( 1,

,    (3.3) 

 

The first order Taylor series expansion of 1ˆ −
HTX  around 

)|ˆ( dHT nXE  is  
 






 −−=
)|ˆ(

)|ˆ(ˆ
1

)|ˆ(

1
ˆ
1

dHT

dHTHT

dHTHT nXE

nXEX

nXEX
,    (3.4) 

 
and from Result 1, we have that 
 









−

−
−+= )~(

1
)|ˆ(

dd UU
d

dd
UdHT xx

W

Ww
xNnXE  (3.5) 

We obtain the required result by substituting (3.4) and 
(3.5) into (3.3), and simplifying the algebra. 
 
Remark 3: Using similar arguments, it can be shown 
that the conditional bias of the post-stratified ratio 

estimator HTd

HTd

d
POSTRd Y

X

X
Y ,

,

,
ˆ

ˆ
ˆ =  is negligible. 

Result 4: The conditional biases of 
jrdY

�,
ˆ  (j = 1, 2, 3) 

can be obtained using similar arguments.  For instance, 

it can be shown that the conditional bias of 
1,

ˆ
rdY

�
 is 

approximately given by: 
 

[ ][ ] ,)|()|()|ˆ(

~)()|ˆ(

1

, 1

dsdSdHT

Udddrd

nEnEnXEX

yWwNnYBias

d

d

HG −′−

+−=
�

(3.6) 

 
where the conditional expectations of  
 

( )∑ ′=
s kkks c/xxG  and ( )∑=

s kdkks cy
d

/xH  can 

be obtained using Result 1. 
 

The Hájek versions of 
jrdY

�,
ˆ , such as the post-stratified 

estimator, are approximately conditionally unbiased. 
 
3.2 Conditional Mean Squared Error 
 
We would like to show that the conditionally unbiased 
estimators have a smaller conditional mean squared 
error than their conditionally biased counterparts. 
 
Remark 4: The conditional mean squared error of the 

Horvitz-Thompson estimator, dHTd YY ˆˆ
, = , is uniformly 

greater than that of the post-stratified count estimator, 

d

d
dPOSTCd

N

N
YY

ˆ
ˆˆ

, = . We consider two cases: (i)  

dd N
N

n
n ≥ , and (ii) dd N

N

n
n < . When case (i) occurs, 

the result follows directly from the expressions of 
conditional variance. For case (ii) we have to show that 





 +−<



 − dd

d

d
dd N

n

N
n

n

f
N

n

N
n

1
. Since this 

condition is always true, the result follows. 
 



3.3 Unconditional Variance 
 
The form of the population variance estimator given by 
expression (2.8) is unconditional. The unconditional 
population variances for the domain estimators with the 
auxiliary data available at the domain or population 
level can be compared directly.  
 
Remark 5: The unconditional population variance of 

the ratio estimator, HTdRATd Y
X

X
Y ,,

ˆ
ˆ

ˆ = , is uniformly 

greater than that of the corresponding post-stratified 

counterpart, HTd

HTd

d
POSTRd Y

X

X
Y ,

,

,
ˆ

ˆ
ˆ = . The proof follows 

from showing that the regression parameter, which 
minimizes the residual sum of the squares within the 

domain, is HTdHTd XY ,,
ˆ/ˆ . 

 
Remark 6: The unconditional population variance of 

)( 2

ˆ
rdY

�
is smaller than the one for )( 1

ˆ
rdY

�
, provided that 

N> p+ 1, where p+1 refers to the number of auxiliary 
variables (including an intercept term), SRSWOR 
sampling, and ck  is constant. 
 
3.4. Specific domain estimators 
 
We have selected eight estimators that we will classify 
as belonging to one of the preceding six cases. We shall 
examine the estimators’ properties in terms of relative 
bias, relative mean squared error, relative variance, and 
coverage probability, along with their expected 
conditional behavior. This is done using a Monte Carlo 
simulation study. 
 
 Several estimators belong to the six cases. We 
target those that use a single auxiliary variable, be it 
categorical (count) or continuous (x variable), i.e., ratio 
type. 
 
Case 1: 
Auxiliary information is available at the population 
level. Linear regression modeling is performed at the 
level of the entire sample using the y variable as a 
domain variable. We consider expansion and ratio 
estimators defined as 

dHTd YY ˆˆ
, =  and 

X

X
YY dRATd ˆ
ˆˆ

, = . 

The residual terms used in the computation of variance 
are defined in Table 2. The adjustment factor is one for 
the expansion estimator. For the ratio estimator we have 
a choice of either 

HTX
X

ˆ or one. Corresponding estimated 

variances are denoted 1v and 2v . Since 
HTX
X

ˆ tends to 1 

as both the population and sample sizes tend to infinity, 
we would not expect the two choices of dka to result in 
markedly different variances.  
 
Case 2: 
Auxiliary data are available at the domain level. Linear 
regression is confined to the domain level as well. Two 
estimators, post-stratified count and post-stratified 
ratio, are studied. The corresponding estimated domain 
totals are 

d

d
dPOSTCd

N

N
YY

ˆ
ˆˆ

, =  and  
d

d
dPOSTRd

X

X
YY

ˆ
ˆˆ

, = . 

The residuals are once again defined in Table 2. Just as 
we have done for Case 1, we use two forms of dka ’s in 
the variance expressions. The first one is defined in 

Table 1 (
2,

ˆ
rdY

�
), while the other is reduced to one. 

 
Case 3: 
Auxiliary information is available at the population 
level. However, linear regression is performed using the 
entire sample. Two estimators, alternate expansion and 
alternate ratio, are investigated. The corresponding 
expressions for estimated domain totals are 
 

sdddALTEd yNNYY )ˆ(ˆˆ
, −+=  

and 

X

Y
XXYY dddALTRd ˆ

ˆ
)ˆ(ˆˆ

, −+= . 

The form of the residual terms is given in Table 2. 
Variances are again computed using dka ’s as defined in 

Table 1 (
3,

ˆ
rdY
�

), or by replacing the dka ’s with one. 

 
Case 4: 
This is the first of the Hájek type estimator classes. It 
mirrors Case 1; however, by virtue of the Hájek 
adjustment it is now domain dependent. The 
corresponding x-variable ratio estimator, Hájek ratio, of 
a domain total is. 

.
ˆ

ˆ
)ˆ(

ˆ
ˆˆ

,
X

Y
XX

N

N
YY d

d

d
dHAJRd −+=  

In the case of count auxiliary information the estimator 
reduces to (2.2). The residuals for variance calculations 
are provided in Table 2. 
 
Case 5:  
In the special case of the ratio estimator, the Hájek 
version of (2.2) reduces to its Horvitz-Thompson 
counterpart. This means that Case 5 reduces to Case 2.  
 
 
 



Case 6: 
To study the properties of estimators in this class, we 
use the following candidate 

X

Y

N

N
XX

N

N
YY

d

d
dd

d

d
dMODRd ˆ

ˆ
)

ˆ
ˆ(

ˆ
ˆˆ

, −+= , 

denoted the modified alternate ratio. Estimated 
variances are computed using residuals corresponding 
to those of the alternate ratio estimator. 
 
Table 2. Definition of error terms. 
 
Estimator Error Term  

HT  
(Case 1) 

)(dyye sdkk −=  
N

Y
s

HTddy ,
ˆ

)( =  

RAT  
(Case 1) kddkk xRye

~−=  
HT

HTd

X

Y
dR ˆ

ˆ
,~ =  

POSTC  
(Case 2) dsdkdkdk yye 1−=  

d

HTd

d N

Y
sy ˆ

ˆ
,=  

POSTR  
(Case 2) dkddkk xRye ˆ−=  

HTd

HTd

X

Y
dR

,

,

ˆ

ˆˆ =  

ALT-E  
(Case 3) skk yye −=  

N
Y

s
HTy

ˆ
=  

ALT-R  
(Case 3) kkk xRye ˆ−=  

HT

HT

X

YR ˆ

ˆˆ =  

RAT-H 
(Case 4) kddkk xRye

~−=  
HT

HTd

X

Y
dR ˆ

ˆ
,~ =  

MOD-R  
(Case 6) kkk xRye ˆ−=  

HT

HT

X

YR ˆ

ˆˆ =  

Note: dk1  is an indicator variable defined as 1 if dsk ∈  
and 0 otherwise. 
 
4. SIMULATION STUDY 
 
To assess the conditional and unconditional properties 
of all the estimators defined in Section 3, a small 
simulation study was run. The population auxiliary 
variable was generated using a -distribution to reflect 
the highly skewed nature of business populations, to 
which the conditional approach is uniquely applicable. 
Many social surveys would benefit from this 
methodology as well, especially where demographic 
domains are very small. Also, taking into account that 
most auxiliary information is well correlated with 
survey data, the population dependent variable was 
generated via a ratio model. 
 
The auxiliary variable is generated using the gamma 
distribution ),( ba , where 3=a  and 16=b . The 
dependent variable is also generated by a gamma 
distribution, ),( BA . The parameters A and B are 

defined to satisfy kk xyE =)( and kk xyV 2)( = . The 

correlation between X and Y is 
222,

bb

b
YX

+
=

σ
. 

The population ratio XY /= is specified by the user, 

and 2σ is assigned a value to achieve the desired 
correlation. To allow for modeling small and large 
domains, a population of 1,000 observations was 
divided into two domains of 900 and 100 units. A 
common correlation value was used for both domains, 
0.90 to represent a high correspondence between x and 
y, or then in decrements of 0.10 down to a correlation 
of 0.10 to examine the impact of a weakened 

yx − relationship on the estimators under investigation. 

Slopes of 0.11 =dβ  and 0.32 =dβ  were used for large 
and small domains, with a sampling fraction of 0.25 for 
the entire sample resulting in the selection of 250 units 
for each iteration. A population ratio was assigned 
independently to each domain. For each combination of 
correlation coefficient and population ratio 100,000 
iterations were executed to guarantee convergence. 
 
To assess the unconditional properties of the estimators, 
several performance measures were computed. They 
were absolute relative bias (ARB), relative MSE 
efficiency (RMSE), and coverage rate (CR), each in 
turn given by 
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the true population total to the number of replicates. 
Relative mean square error efficiency is given in terms 
of the post-stratified ratio estimator as it is virtually 
unbiased and serves as a good benchmark, against 
which the other estimators may be measured. 
 
The two graphs below summarize the unconditional 
analysis in the context of small domains and gradually 
strengthening the relationship between x and y in terms 
of relative mean square error efficiency and coverage 
rates. We will comment only on the properties of the 
estimators in the case of large domains. The results for 
the absolute relative bias are not provided as it remains 
virtually unchanged as the relationship between x and y 



weakens, since the estimators under investigation are 
unconditionally unbiased. 
 
Figure 1. Unconditional relative MSE efficiency. 
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The relative MSE efficiency drops off substantially 
with the strengthening yx −  relationship. Part of this 
phenomenon can be attributed to the increasing 
dispersion of the dependent variable as we weaken its 
correlation with the auxiliary vector.  This is further 
aggravated by the relatively small size of the domain in 
question. 
 
The post-stratified ratio offers a substantial 
improvement over the other estimators in the face of 
strengthening correlation between x and y. In the case 
of large domains its dominance is less pronounced as 
the estimators are less influenced by small sample 
instability. 
 
Figure 2. Unconditional coverage rates. 
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The coverage rates are similar across all the estimators 
with the modified alternate ratio performing slightly 
better than the rest when the yx −  relationship is 
strong. As it weakens, it exhibits the same coverage rate 

characteristics as its counterparts. For large domains the 
advantage of the modified alternate ratio estimator 
disappears. 
 
Taking into account both the relative MSE efficiency 
and coverage rates, the post-stratified ratio and the 
modified alternate ratio estimators have the best 
properties, with the latter having a slight edge over the 
former in terms of coverage rates in the context of small 
domains. 
 
The conditional relative bias and coverage rates of the 
estimators are summarized graphically below for a 
range of realized domain sample sizes in the context of 
small domains, as well as a strong and weak yx −  
relationship. 
 
Figure 3. Conditional relative bias for 90.0, =YX , 

0.11 =dβ , and 0.32 =dβ . 
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Figure 4a. Conditional coverage rates for 90.0, =YX , 

0.11 =dβ , and 0.32 =dβ . 
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Figure 4b. Conditional coverage rates for 60.0, =YX , 

0.11 =dβ , and 0.32 =dβ . 
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5. CONCLUDING REMARKS 
 
The simulation study identified two estimators, post-
stratified ratio (POSTR) and modified alternate ratio 
(MODR), whose performance in terms of unconditional 
relative mean squared error efficiency and coverage 
rate, was superior to the other estimators under 
investigation. Within the confines of the simulation 
study, POSTR exhibited a weaker coverage rate than 
MODR due to its propensity to be influenced by small 
sample anomalies. This is true only if all domains 
within the sample behave similarly and one can gain 
strength from borrowing data across domains. 
 
 We can explain this by examining the difference in 
the definitions of POSTR and MODR. The former uses 

dd XY ˆ/ˆ while the latter does XY ˆ/ˆ . MODR can be 
viewed as a semi-synthetic version of POSTR. It is 
much less affected by small sample related fluctuations, 
hence its superior coverage rate characteristics. Both 
outperform count based estimators over a wide range of 
correlation between x and y. 
 
 Another interesting observation worth noting is 
that calibrating to an auxiliary variable does not have a 
substantial impact on the magnitude of the mean 
squared error in the context of conditional analysis. In 
some cases calibration actually reduced the nominal 
coverage rates. 
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