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1. Introduction

The design effect is widely used in survey
sampling for planning a sample design and to report the
effect of the sample design in estimation and analysis. It
is defined as the ratio of the variance of an estimator
under a sample design to that of the estimator under
simple random sampling. An estimated design effect is
routinely produced by sample survey software such as
WesVar and SUDAAN.

This paper examines the relationship between the
design effects of the total estimator and the ratio mean
estimator, under unequal probability sampling. After a
brief review on various definitions and practical usage
of the design effect, we consider a decomposition of the
design effect of the total estimator in term of that of the
ratio mean. In addition, a model-assisted method is used
to derive some useful approximate formulae, with
which we make further comparison of the design effects
of the two estimators. The approximate formulae
derived here are also compared with the well-known
Kish's approximate formula (Kish, 1965, 1995).
Finally, we apply our formulae to an artificial
population created from a complex health survey data
for illustration.

2. Definition and Use of Design Effect in
Practice

The precursor of the design effect that has been
popularized by Kish (1965) was used by Cornfield
(1951). He defined the efficiency of a complex
sampling design as the ratio of the variance of a statistic
under simple random sampling without replacement
(srswor) with a sample size of n to the variance of the
statistic under the complex design with the same sample
size. The inverse of the ratio defined by Cornfield was
also used by other sampling statisticians. For example,
Hansen, Hurwitz, and Madow (1953, pp. 259-270)
discussed the increase of the variance due to clustering
effect of the cluster sampling over srswor. However, the
name, the design effect, or Deff in short was coined and
defined formally by Kish (1965, Section 8.2, p. 258) as
“the ratio of the actual variance of a sample to the
variance of a simple random sample of the same
number of elements.” The Deff for an estimate of the
population mean is given by

Deff = Var(y) /{(1- f) S2/n} 2.1)

where ¥ is an estimate of the population mean (Y)
under a complex design with the sample size of n, fisa

sampling fraction, and S,% =(N-2)""£N, (v, -Y)? is

the population element variance of the y-variable. In
general, the design effect can be defined for any
meaningful statistic computed from the sample selected
from the complex sample design.

The Deff is apopulation quantity that depends on
the sample design and the gtatistic. The same parameter
can be egtimated by different estimators and their
Deff's are different even under the same design.
Therefore, the Deff includes not only the efficiency of
the design but also the efficiency of the egtimator.
Sérndal et al. (1992, p. 54) made this point clear by
defining it as a function of the design (p) and the

estimator (é) for the population parameter . Thus,
we may write it as

Deff(p,8) = Var,(8) / Vargsyo (€) (2.2)

where é' is the usual form of estimator for @ under

srswor, which is normally different from 6. For
example, to estimate the population mean, one may use

the ratio mean ézzsvvi yi 1YW with sampling
weights w; but ¢ would be the sample mean YsYi/n.

We will see the effect of a particular statistic & on the
design effect in Section 3. In particular, we will show
that the Deff for the Hansen-Hurwitz (or Horvitz-
Thompson) estimator for the population total can be
very different from the ratio mean for the population
mean.

Cochran (1977, p. 85) stated “The design effect
has two primary uses — in sample size determination
and in appraising the efficiency of more complex
plans.” These are ill main uses of the design effect.
However, other important uses have emerged; to
compute the effective sample size and to modify the
inferential gtatistic in data analysis as Scott and Rao
(1981) used the average design effect to modify the

Pearson type ;{2 -test statistic for complex samples.

Kish (1992) later advocated using a dlightly
different Deff, which is called Deft and uses the simple
random sampling with replacement (srswr) variance in
the denominator. His logic was that without-
replacement sampling is a part of design and should be
captured in the definition. Deft is also easier to use for
making inferences. Another reason Kish quoted is that
the finite population correction factor (1- f) may be



difficult to compute in some situations. The new
definition is given by

Deft(p,6) = || Vary (6) / Vargsu (6)

(2.3)

or Deftz(p,é) :Varp(é?A)/Varsrs,\,r (é). Survey data
software such as WesVar and SUDAAN produce
Deft? instead of Deff.

When the population parameter is the total (),
the unbiased estimator is the (weighted) sample total,
namely, Y =Y. wy; , where W, isthe properly defined
sampling weight and the summation is over the sample

s. When the mean is the parameter of interest, it is
usually estimated by the ratio mean, that is,

\?:st, Yi/>sW . It is a specid case of the ratio
estimator, > W Y; /XWX , where x; =1 foradl ies.
One common misconception about the design

effects of Y and Y is that they in values are similar.
However, it has been observed that the design effect of

Y, deftz(p,\?), is much larger than that of the ratio

mean, deftz(p,\%) for human populations. For

example, see Kish (1987) and Hansen, Hurwitz, and
Madow (1953, p. 608). Some explanation can be found
in Sérndal et al. (1992, p. 65 and p. 133) who showed

that deftz(p,\?) depends on the relative variation of

the y-variable under Bernoulli sampling and a special
case of one-stage cluster sampling. This dependence
contradicts what the design effect is intended to
measure as Kish (1995) explicitly described: “Deft are
used to express the effects of sample design beyond the

elemental variability (S§/n), removing both the units

of measurement and sample size as nuisance
parameters. With the removal of S, the units, and the
sample size n, the design effects on the sampling errors
are made generalizable (transferable) to other statistics

and to other variables, within the same survey, and even
to other surveys.” His statement is loosely true for the

ratio mean \% as the usual approximate design effect
formula is independent of a particular y-variable. A
frequently used approximate formula for the Deft? of
the ratio mean is given by Kish (1987)
Deft?(p,Y) ={1+ p(b -D}(1+ovs) (24
where p is an unequal probability sampling of clusters
design, p is the intraclass correlation (often called
within cluster homogeneity measure), b is the average

cluster size, and cv\%, is the relative variance of the
sampling weights. Gabler, Haeder, and Lahiri (1999)
justified expression (2.4) using a superpopulation
model. This formula is valid only when there is no

correlation between the sampling weights and the
survey variable (y). However, if the correlation is
present, the formula must be modified as studied by
Spencer (2000). We aso examine this point further
along with Spencer's approximate formulae in
Section 4.

However, when one comes to the Horvitz-
Thompson type of total estimator, the situation becomes
very different. Particularly, when the weights are poorly
correlated with the y-variable and the weights vary a
lot, the design effect for the total estimator can be much
greater than that for the ratio mean. In Section 3, we
analyze this fact in detail for unequa probability
sampling.

3. Decomposition of Design Effect of Sample
Total Under Unequal Probability Sampling

Consider a sample design (denoted by p) with a
sample size of n drawn by unequal probability
sampling with replacement from a finite population U
of size N. Let y, denote the y-value of element k and
let py denote the associated selection probability,
where > px=1. Note that the n draws are
independent since sample selection is with replacement.
If px are proportiona to a positive size measure X ,
that is, py <X, then the sampling scheme is
probability proportional to size (pps) sampling.

Let ki represent the element selected on the i-th
draw. Then the Hansen-Hurwitz' s estimator of the finite
populationtotal, Y =Y Vi , iSgiven as

A 1 n
Y _Hglyk‘ /P - (XY

It is easy to see that Ep(yki / pki):Y and thus Y is
the average of n unbiased estimators of Y. For
simplicity, we use i to denote k; unless any confusion

arises. The variance of \? can be written as
~\ 1
va(¥)==3, pllyi / p)-YP
n
1 (3.2
==Xy P (- pY)°

(see Sarndal et al., 1992, pp. 51-52).
Now consider the estimation of the finite

population mean, Y =Y /N . It can be estimated by the
ratio mean Y =Y/N where N=3",/(np) is an

estimator of the population size N. Using Taylor
linearization, as shown in Sirndal et al. (1992, pp. 172-

176), Y can be approximated as

Y=Y+Nld, (33)



where d=n"'y N d;/p with d, =y, -Y. Using

expression (3.3), an approximate variance of Y is
obtained as

51 ~
Zﬁzu pld?  (3.4)

where the equation holds since Y, d;j =0.

AVar(Y)= N-2Var(d) = N

Now we derive the design effects of Y and \? .
Under srswr of size n, the total estimator is given by

\?s = Nyg and its variance by Varggyr (\?s): stiln,
where Y5 =% Ly y;/n.

From (3.2) and assuming N is large (so that
N /(N —-1)=1), an approximate design effect of Y is
obtained as

._l . — D 2
Yu Ny -Y)

Also, since Varggy (Ys) =S5 /n, where Yg=7s, it
follows from (3.4) that

(3.5)

Sy B = Y)?
Yy N(y; -Y)?
Note that Deft>(Y) comes closer to Deft?(Y) and

both approach to 1 as p; approaches to a constant, say

1/N, for dl ieU . Note aso that sample design p is
omitted from expressions (3.5) and (3.6) for brevity’'s
sake.

In addition, we see from expressions (3.5) and
(3.6) that the only difference between these expressions
is in the square deviations of the numerator. Using the
standard ANOVA decomposition to the numerator of
(3.5), we can write

Yo Py - pY)2 =3y Py - Y)?
+N2Y 25, pi(p - P)?
—2NYy By = Y)(pi - P)
where P =¥, p; /N =1/N . Hence, we have

Deft2(Y) = (36)

Deft2(Y) = Deft2(Y) + 12 sy pi(p - P)’
CV3
_ii “1v. _ V(o —P
CV§YZU P (i —=Y)(pi —P)
=Deft?(Y) +g(CV{) (3.7)

where CV, =S, /Y denotes the coefficient of
variation (CV) of the y-variable. The last two terms are
denoted by g asafunction of CV)?.

Note that g is a decreasing function of CV)% and

thus Deft?(Y) becomes larger than Deft?(Y) as CVS
decreases. This imbalance can be dramatic when p;’s

vary alot, p;'sand (y —\7)2’3 are uncorrelated, and

CV)% issmall (see Section 5 for an example).

When p’s and (y; —Y)?'s are uncorrelated,
which happens often in social or health surveys, we can

approximate ¥, pr(y, ~¥) by nWy (y ~¥)? and

then expression (3.6) can be simplified as
Deft2(Y)=nW /N,

where W =3, w /N with w;, =1/(np;). Later we

will see that nW /N can be estimated by 1+ cv?,

where cv\%, is the relative variance of the sampling
weights, w; 's.

Remark 3.1 (Binary Variable: total vs. proportion).
For a binary variable, we can show that

CV?i(l—\?)/\?. When p=Y is close to 1, then

g(CV)%) in (3.7) can be very large, while g(CV&)
becomes small and thus the two design effects are close
asY —0.

Remark 3.2 (Comparison with a Mode-based
Approach). The difference between Deft?(Y) and

Deftz(\?), that is, the quantity g(CV?) in decom-
position (3.7), cannot be revealed by a model-based
approach used by Gabler, Haeder, and Lahiri (1999),
since y; ’'s are treated as random variables while w;’s
as fixed constants. Under the model-based approach,

Deft2(Y) is different from Deft2(Y) by a factor of
(N/N)?, which is negligible in comparison with

g(CV)?) . More discussion will comein Section 4.

4, Design Effects when the Survey Variable is
Linearly Related with the Sampling Weight

Assuming a linear relation between the y-value
and the selection probability, Spencer (2000) derived an
approximate formula to the design effect of the Hansen-
Hurwitz estimator under unequal probability sampling
with-replacement. However, it appears that he did not
recognize the difference between the design effects of
the total and the ratio mean estimators, as he compared
directly his approximate formula for the total estimator



with Kish's approximate formula 1+ cv\%,, which was

originaly derived for the ratio mean estimator. In this
section, we use Spencer’s set-up to derive approximate
formula for the mean estimator and then we compare
them with those for the total estimator in the same
context of Section 3.

Consider the linear regression of selection

probability p; ony; given by

(S1) Yi =A+Bp +§.
The least-square regression coefficients of this model at
the population level are given by A=Y —BP and

B= Yy(%—Y)(p—P)/Xy(p—P)*. As before
w = 1/(np;)) and W =>,w /N. The ratio mean
estimator has an approximate variance AVar(\?)=
N723 w (Y, _Y)? as given in (3.4). Since Y = A+
BP and y;-Y=B(p; -P)+g, we have 3w x

(Vi -Y)? =Y, e°w —2BY, W /N + B*(W /N -1/n).

In paralel with Spencer (2000), under (S1) we can
write

N2AVar(Y |S)
= (N-DRp, S»Sy+(N-1)(A-RG)SW (4.1)
— 2BRgySeSy + B2(W /N -1/n)

where S;, S, S, denote the (finite) population
standard deviations of the g's, the e,2’s, the W 's,
respectively, and Rqy, Rg,. Ryp denote the
population correlations of pairs (g , W ), (e;2 W ) and
(i PP, example, Ry, =
Sy (% ~ V)W -W)/ {(N-1)SyS,} . To obtain (4.1),
we have used the following expressions given in
Spencer (2000, Section 5): ¥, &’w =(N-DR, X

respectively.  For

S,Sy+(N-DWSJ(1-R%) and ¥ ew =(N-1)x
RanSeSy - I the regression mode! (S1) fits well to the

population and the error variance is roughly
homogeneous so that
(2 Rew=0 and R, =0,
then expression (4.1) further simplifiesto
N2AVar(Y |S1,S2
¥ ) 4.2

= (1-R%,)S2(N-)W + B2(W /N ~1/n)

Since Varggy &5)2332/ /n, the design effect of Y
under (S1) and (S2) isgiven as

Deft?(Y | S1,S2)
2

= U-RENW N+ L (WIN-1) (43
Sy N
y
R 2
=(1-RZ)nW /N+| 2| (nW/N-1),
(1-Rp) [Cvp]( )
where the second expression follows since

B=Ry,S,/Sp and P=1/N. Notethat S, denotes
the population standard deviation of the p; 'sand CV
is the coefficient of variation of p; ’s.

Since E(W)=N/n and E(wW?)=NW/n, we
have E(W?)/E2(w)=nW/N. Based on these

relations, Spencer substituted nW /N in his derivation
(Section 5) by an estimate

Yo /n
(Zsw /n)?
Note that expression (4.4) is equivalent to Kish's

approximate formula 1+cv\%, for the ratio mean

(4.4)

estimator Y . Substituting further Ry, and CV, by

their respective sample estimates, say lyp and cvp, in

expression (4.3), we obtain the following estimator of
the design effect of the ratio mean estimator:
2

i r
deft?(Y | SL,S2) = (1+cvg) A1) +Lgcvvzv
oV
Kish's formula immediately follows by setting ry, =0,

that is,

(4.5)

deft2(Y |S1, 2,1y, = 0) =1+ o, (4.6)

Meanwhile, Spencer (2000) derived the
population design effect for the total estimator under
(S1) and (S2) asfollows:

Deft?(Y | S1, S2)
= (1~ R2,)NW /N +(A/S,)? ("W /N ~1) (4.73)
which can berewritten using A=Y —BP as
Deft?(Y | S1, S2)
R 1 2
=(1-RZ)NW/N+| —2 ——= | ("W/N-1
(1-Rip) [cvp va] ( ) (4.70)

An estimator of this approximate design effect is then
given by



deft?(Y | S1,S2)
2
r (4.8
=1+ cv\%,)(l— rﬁp) + [Lp—i] cv\%,
CVp vy
If Fyp = 0, then Spencer’ s formulasimplifies to
2.5 2 CV\%,
deft“(Y [S1,32,ry, =0) =1+cvy, +—, (4.9

cv
y

which does not reduce to Kish's formula unless

cva,/cvf,:o.

Remark 4.1 (Spencer’s approximate formula). In his
original derivation, Spencer proposed the following
formulato estimate the design effect:

(1—r3p)(1+cvev)+(a/sy)2cv3\,,
where a and sy are the sample estimates for A and
Sy , respectively or 1+cv$\,+cv3va2 /sf, as a specia
case for Myp =0 with saying that “this is close to
Kish’'s approximation when a/sy iS near zero.”

However, if Mo =0, then a=\? and a/sy =1/cvy,
and it becomes exactly (4.9).

Remark 4.2 (Comparison of Deftz(\?) and
Deftz(\?)). Using Cauchy-Schwarz inequality, it is
easy to show that nW /N >1. Assume y; >0 so that
CVy>0. From (43) and (4.7b), it follows that

Deft?(Y [S1,S2) > Deft?(Y [SLS2)  iff 2Ry <

CV,/CVy (theequality holdsiff 2Ry, =CV,/CVy).
If Ryp =0, Deft?(Y|SLS2)> DeftX(Y |SLS2) and
the equality holds under srswr, in which case
Deft?(Y) = Deft2(Y)=1.

Under ppswr (i.e, PjoX), P =X />y X
and thus we have CV,=CV, and Ry,=Ry
provided p; <1 for al ieU . Therefore, we have
Deft?(Y |SLS2) = Deft®(Y [SLS2)  iff 2R, <
CV,/CVy . On the other hand, the inequality can be
reversed when RyX is large (i.e, close to 1) and even

Deftz(\?) can be well below 1. This happens

frequently in business surveys where the y-variable is
heavily skewed to the right and the size measure

variable (x) is highly correlated with the y-variable (see
also Lehtonen and Pahkinen, 1995, p. 110).

5. Example

In this section we discuss comparison between
the design effects of the sample total and the ratio mean
estimator using an artificial dataset created from a
health survey. The dataset is a subset of the adult data
from the U.S. third Nationa Health and Nutrition
Examination Survey (NHANESII1), whichisgiven asa
demo file in WesVar version 4. From the dataset,
N=5,000 records were selected by simple random
sampling without replacement to construct an artificial
finite population. Sampled were only the records with
complete responses to the four variables CIGNUM
(number of cigarettes smoked per day), SYSTOLIC
(average systolic blood pressure), DIASTOL (average
diastolic blood pressure) and HEIGHT (height without
shoes - inches). The inverse of the final weight in the
demo file was used as the measure of size (MOS) for
our sampling experiment. Note that the final weight in
the demo file is different from the NHANES |1l fina
weight that was obtained by further adjusting the
weight by poststratification.

Table 1. Parameters of the artificial population

Variable(y) | Y Y cV, Ry

CIGNUM 18,620 372 | 23781 -.0966
SYSTOLIC | 640,288 | 128.06 | .1700 .1300
DIASTOL | 377,920 | 7558 | .1628 0278
HEIGHT 331,269 | 66.25 | .0606 -.1058
B 1| 1/5000 | 1.3910 | 1.0000
W 846,946 | 169.39 | 1.2350 -.4104

Table 1 presents several parameters of the
artificial population on the selected four variables

including the selection probabilities p;’s and the
sampling weights w;’s. The survey variables are
weakly correlated with the selection probability, where
Ryp ranges from -1058 to .1300. Cv, for
SYSTOLIC, DIASTOL and HEIGHT is less than .20,
while for CIGNUM it is 2.3781, which is much larger
than others.
We used ppswr with n=100.

Table 2 displays the decomposition of the
population design effect in (3.7) for the four survey
variables. Since CIGNUM has a large CV,, the

difference between Deft?(Y) and Deft?(Y) is small.
However, the difference is very large for the other three

variables due to small CV,,, which causes g(CVi) to

become dominant in Deftz(\?) for these three
variables.



Table 2. Decomposition of design effect in (3.7)

Variable | Deft2(Y) | Deft3(Y) g(Ccvy)
CIGNUM 4.837 5.676 837
systoLic | 2833 | 78205 75.372
DIASTOL 3028 | 91377 88.349
HEIGHT 3488 | 668.036 664.548

Table 3 shows Pearson’s correlations of the
sampling weights w; with e and e,z, and approximate

values to the population design effects of the ratio mean
and the sample total estimators. Although the plots of

data points (Xi,y;) show less than perfect linear
relationships between x and y; (i.e, p and v;),
Table 3revealsthat Rey and R —arenearly zero and

the approximate formulae (4.3) and (4.7a) under (S1)
and (S2) trace fairly closely the true design effect given
in Table 2.

Table3. Approximate design effects under linear
relation between p, 'sand y;’s

Goodness of Fit Approximate Deft?
vaiable | Rew | R2w | Deft?(Y) | Deft?(y)
CIGNUM 0.079 0.097 3.368 3.930
SYSTOLIC | -0.093 | -0078 | 3.351 83.293
DIASTOL -0.022 | -0.045 3.386 92.857
HEIGHT 0.058 0.016 3.364 660.107

6. Concluding Remarks

Kish originally intended the design effect as a
measure of the effect of the sample design in parameter
estimation, which is independent of the elemental
variability of a particular y-variable, the unit of
measurement, and the sample size. He is largely
successful for the ratio mean estimator to achieve this
goa. Probably due to this success, it is commonly
misconceived that the design effect of the total
estimator is similar to that of the ratio mean estimator.
However, as clearly demonstrated in this paper, the
design effect of the Horvitz-Thompson type estimator
for the total under an unequal probability sampling
design is not only dependent on the variability of y-

variable (CVy, ) but also can be greatly influenced by it.

Another important factor in determining the design
effect is the correlation (Ry,) between the selection

probability and the y-variable as shown in Section 4.
Kish's approximate design effect formulae were
derived assuming tecitly that this correlation is zero.
This may be the reason why the design effect is not
used in business surveys, where the correlation is

usually large and the design effect can be much smaller
than 1. However, we can use the design effect in
business surveys as well to measure the gain by the
sample design (instead of the loss, which is usualy the
case in socia surveys) over the simple random
sampling. Business surveys often employ pps sampling
or size-stratification. In this context, it would be worth
while to pursue further on this research to take into
account of without-replacement sampling and the finite
population correction (fpc). The fpc can be important
particularly in business surveys. We are currently
working on the extension of our formulae to multi-stage
sampling. We will aso try to tackle these problems if
time permits.

Lastly, we would like to point out the importance
of an efficient estimation technique such as

poststratification for estimation of the total, when Ry,
is closeto zero.
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