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1. Introduction

The design effect is widely used in survey
sampling for planning a sample design and to report the
effect of the sample design in estimation and analysis. It
is defined as the ratio of the variance of an estimator
under a sample design to that of the estimator under
simple random sampling. An estimated design effect is
routinely produced by sample survey software such as
WesVar and SUDAAN.

This paper examines the relationship between the
design effects of the total estimator and the ratio mean
estimator, under unequal probability sampling. After a
brief review on various definitions and practical usage
of the design effect, we consider a decomposition of the
design effect of the total estimator in term of that of the
ratio mean. In addition, a model-assisted method is used
to derive some useful approximate formulae, with
which we make further comparison of the design effects
of the two estimators. The approximate formulae
derived here are also compared with the well-known
Kish’s approximate formula (Kish, 1965, 1995).
Finally, we apply our formulae to an artificial
population created from a complex health survey data
for illustration.

2. Definition and Use of Design Effect in
Practice

The precursor of the design effect that has been
popularized by Kish (1965) was used by Cornfield
(1951). He defined the efficiency of a complex
sampling design as the ratio of the variance of a statistic
under simple random sampling without replacement
(srswor) with a sample size of n to the variance of the
statistic under the complex design with the same sample
size. The inverse of the ratio defined by Cornfield was
also used by other sampling statisticians. For example,
Hansen, Hurwitz, and Madow (1953, pp. 259-270)
discussed the increase of the variance due to clustering
effect of the cluster sampling over srswor. However, the
name, the design effect, or Deff in short was coined and
defined formally by Kish (1965, Section 8.2, p. 258) as
“the ratio of the actual variance of a sample to the
variance of a simple random sample of the same
number of elements.” The Deff for an estimate of the
population mean is given by

}/)-{(1/)(VarDeff 2 nSfy y= (2.1)

where y is an estimate of the population mean )(Y
under a complex design with the sample size of n, f is a

sampling fraction, and ( ) ∑ −−= =
− N
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the population element variance of the y-variable. In
general, the design effect can be defined for any
meaningful statistic computed from the sample selected
from the complex sample design.

The Deff is a population quantity that depends on
the sample design and the statistic. The same parameter
can be estimated by different estimators and their
Deff’s are different even under the same design.
Therefore, the Deff includes not only the efficiency of
the design but also the efficiency of the estimator.
Särndal et al. (1992, p. 54) made this point clear by
defining it as a function of the design (p) and the

estimator (θ̂ ) for the population parameter θ . Thus,
we may write it as

)ˆ(Var/)ˆ(Var)ˆ,Deff( srswor θθθ ′= pp (2.2)

where θ ′ˆ is the usual form of estimator for θ under

srswor, which is normally different from θ̂ . For
example, to estimate the population mean, one may use

the ratio mean ∑∑= s is ii wyw /θ̂ with sampling

weights iw but θ ′ˆ would be the sample mean ∑s i ny / .

We will see the effect of a particular statistic θ̂ on the
design effect in Section 3. In particular, we will show
that the Deff for the Hansen-Hurwitz (or Horvitz-
Thompson) estimator for the population total can be
very different from the ratio mean for the population
mean.

Cochran (1977, p. 85) stated “The design effect
has two primary uses – in sample size determination
and in appraising the efficiency of more complex
plans.” These are still main uses of the design effect.
However, other important uses have emerged; to
compute the effective sample size and to modify the
inferential statistic in data analysis as Scott and Rao
(1981) used the average design effect to modify the

Pearson type 2χ -test statistic for complex samples.
Kish (1992) later advocated using a slightly

different Deff, which is called Deft and uses the simple
random sampling with replacement (srswr) variance in
the denominator. His logic was that without-
replacement sampling is a part of design and should be
captured in the definition. Deft is also easier to use for
making inferences. Another reason Kish quoted is that
the finite population correction factor )1( f− may be
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difficult to compute in some situations. The new
definition is given by

)ˆ(Var/)ˆ(Var)ˆ,Deft( srswr θθθ ′= pp (2.3)

or )ˆ(Var/)ˆ(Var)ˆ,(Deft srswr
2 θθθ pp = . Survey data

software such as WesVar and SUDAAN produce
2Deft instead of Deff.

When the population parameter is the total (Y),
the unbiased estimator is the (weighted) sample total,

namely, ∑= s ii ywŶ , where iw is the properly defined
sampling weight and the summation is over the sample
s. When the mean is the parameter of interest, it is
usually estimated by the ratio mean, that is,

∑∑= s is ii wywŶ . It is a special case of the ratio

estimator, ∑∑ s iis ii xwyw , where 1≡ix for all si ∈ .
One common misconception about the design

effects of Ŷ and Ŷ is that they in values are similar.
However, it has been observed that the design effect of

Ŷ , )ˆ,(deft 2 Yp , is much larger than that of the ratio

mean, )ˆ,(deft 2 Yp for human populations. For
example, see Kish (1987) and Hansen, Hurwitz, and
Madow (1953, p. 608). Some explanation can be found
in Särndal et al. (1992, p. 65 and p. 133) who showed

that )ˆ,(deft 2 Yp depends on the relative variation of
the y-variable under Bernoulli sampling and a special
case of one-stage cluster sampling. This dependence
contradicts what the design effect is intended to
measure as Kish (1995) explicitly described: “Deft are
used to express the effects of sample design beyond the

elemental variability ( nS y /2 ), removing both the units

of measurement and sample size as nuisance
parameters. With the removal of yS , the units, and the

sample size n, the design effects on the sampling errors
are made generalizable (transferable) to other statistics
and to other variables, within the same survey, and even
to other surveys.” His statement is loosely true for the

ratio mean Ŷ , as the usual approximate design effect
formula is independent of a particular y-variable. A

frequently used approximate formula for the 2Deft of
the ratio mean is given by Kish (1987)

)cv1)}(1(1{)ˆ,(Deft 22
wbYp +−+= ρ (2.4)

where p is an unequal probability sampling of clusters
design, ρ is the intraclass correlation (often called

within cluster homogeneity measure), b is the average

cluster size, and 2cvw is the relative variance of the
sampling weights. Gabler, Haeder, and Lahiri (1999)
justified expression (2.4) using a superpopulation
model. This formula is valid only when there is no

correlation between the sampling weights and the
survey variable (y). However, if the correlation is
present, the formula must be modified as studied by
Spencer (2000). We also examine this point further
along with Spencer’s approximate formulae in
Section 4.

However, when one comes to the Horvitz-
Thompson type of total estimator, the situation becomes
very different. Particularly, when the weights are poorly
correlated with the y-variable and the weights vary a
lot, the design effect for the total estimator can be much
greater than that for the ratio mean. In Section 3, we
analyze this fact in detail for unequal probability
sampling.

3. Decomposition of Design Effect of Sample
Total Under Unequal Probability Sampling

Consider a sample design (denoted by p ) with a
sample size of n drawn by unequal probability
sampling with replacement from a finite population U
of size N. Let ky denote the y-value of element k and

let kp denote the associated selection probability,

where ∑ = 1kU p . Note that the n draws are
independent since sample selection is with replacement.
If kp are proportional to a positive size measure kx ,

that is, kk xp ∝ , then the sampling scheme is
probability proportional to size (pps) sampling.

Let ik represent the element selected on the i-th
draw. Then the Hansen-Hurwitz’s estimator of the finite
population total, ∑= kU yY , is given as

∑
=

=
n
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It is easy to see that YpyE
ii kkp =)/( and thus Ŷ is

the average of n unbiased estimators of Y . For
simplicity, we use i to denote ik unless any confusion

arises. The variance of Ŷ can be written as
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(see Särndal et al., 1992, pp. 51-52).
Now consider the estimation of the finite

population mean, NYY /= . It can be estimated by the

ratio mean NYY ˆ/ˆˆ = where ∑= =
n
i inpN 1 )(1ˆ is an

estimator of the population size N. Using Taylor
linearization, as shown in Särndal et al. (1992, pp. 172-

176), Ŷ can be approximated as

dNYY ˆˆ 1−+=& , (3.3)



where ∑= =
−

ii
n
i pdnd 1

1ˆ with Yyd ii −= . Using

expression (3.3), an approximate variance of Ŷ is
obtained as

∑
−−− =≡ U ii dp

n
NdNY 2122 1

)ˆ(Var)ˆ(AVar (3.4)

where the equation holds since ∑ =U id 0 .

Now we derive the design effects of Ŷ and Ŷ .
Under srswr of size n, the total estimator is given by

ss yNY =ˆ and its variance by =)ˆ(Varsrswr sY nSN y /22 ,

where ∑= = nyy i
n
is 1 .

From (3.2) and assuming N is large (so that

1)1/( =− &NN ), an approximate design effect of Ŷ is
obtained as

∑ −
∑ −

=
−

U i

U iii

YyN

Ypyp
Y

2

21
2

)(

)(
)ˆ(Deft & . (3.5)

Also, since nSY ys /)ˆ(Var 2
srswr = , where ss yY =ˆ , it

follows from (3.4) that
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Note that )ˆ(Deft2 Y comes closer to )ˆ(Deft 2 Y and

both approach to 1 as ip approaches to a constant, say

N/1 , for all Ui ∈ . Note also that sample design p is
omitted from expressions (3.5) and (3.6) for brevity’s
sake.

In addition, we see from expressions (3.5) and
(3.6) that the only difference between these expressions
is in the square deviations of the numerator. Using the
standard ANOVA decomposition to the numerator of
(3.5), we can write
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where YS yy =CV denotes the coefficient of

variation (CV) of the y-variable. The last two terms are

denoted by g as a function of 2CVy .

Note that g is a decreasing function of 2CVy and

thus )ˆ(Deft2 Y becomes larger than )ˆ(Deft 2 Y as 2CVy

decreases. This imbalance can be dramatic when ip ’s

vary a lot, ip ’s and 2)( Yyi − ’s are uncorrelated, and
2CVy is small (see Section 5 for an example).

When ip ’s and 2)( Yyi − ’s are uncorrelated,
which happens often in social or health surveys, we can

approximate
21 )(∑ −−

U ii Yyp by ∑ −U i YyWn 2)( and
then expression (3.6) can be simplified as

NWnY /)ˆ(Deft2 =& ,

where ∑= U i NwW / with )/(1 ii npw = . Later we

will see that NWn / can be estimated by 2cv1 w+

where 2cvw is the relative variance of the sampling
weights, iw ’s.

Remark 3.1 (Binary Variable: total vs. proportion).
For a binary variable, we can show that

YYy /)1(CV 2 −=& . When Yp = is close to 1, then

)CV( 2
yg in (3.7) can be very large, while )CV( 2

yg

becomes small and thus the two design effects are close
as 0→Y .

Remark 3.2 (Comparison with a Model-based

Approach). The difference between )ˆ(Deft 2 Y and

)ˆ(Deft 2 Y , that is, the quantity )CV( 2
yg in decom-

position (3.7), cannot be revealed by a model-based
approach used by Gabler, Haeder, and Lahiri (1999),
since iy ’s are treated as random variables while iw ’s
as fixed constants. Under the model-based approach,

)ˆ(Deft 2 Y is different from )ˆ(Deft 2 Y by a factor of
2)/ˆ( NN , which is negligible in comparison with

)CV( 2
yg . More discussion will come in Section 4.

4. Design Effects when the Survey Variable is
Linearly Related with the Sampling Weight

Assuming a linear relation between the y-value
and the selection probability, Spencer (2000) derived an
approximate formula to the design effect of the Hansen-
Hurwitz estimator under unequal probability sampling
with-replacement. However, it appears that he did not
recognize the difference between the design effects of
the total and the ratio mean estimators, as he compared
directly his approximate formula for the total estimator



with Kish’s approximate formula 2cv1 w+ , which was
originally derived for the ratio mean estimator. In this
section, we use Spencer’s set-up to derive approximate
formula for the mean estimator and then we compare
them with those for the total estimator in the same
context of Section 3.

Consider the linear regression of selection
probability ip on iy given by

(S1) iii eBpAy ++= .
The least-square regression coefficients of this model at

the population level are given by PBYA −= and

=B ∑∑ −−− U iU ii PpPpYy 2)())(( . As before,

=iw )/(1 inp and ∑= U i NwW / . The ratio mean

estimator has an approximate variance =)ˆ(AVar Y

22 )(∑ −−
U ii YywN as given in (3.4). Since += AY

PB and iii ePpBYy +−=− )( , we have ∑ ×U iw
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In parallel with Spencer (2000), under (S1) we can
write
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where eS , 2eS , wS denote the (finite) population

standard deviations of the ie ’s, the 2
ie ’s, the iw ’s,

respectively, and ewR , weR 2 , ypR denote the

population correlations of pairs ( ie , iw ), ( 2
ie , iw ) and

( iy , ip ), respectively. For example, =ywR

})1{())(( wyU ii SSNWwYy −−−∑ . To obtain (4.1),

we have used the following expressions given in

Spencer (2000, Section 5): ∑ ×−=U weii RNwe 2)1(2

)1()1( 22
2 ypywe

RSWNSS −−+ and ∑ ×−=U ii Nwe )1(

weew SSR . If the regression model (S1) fits well to the
population and the error variance is roughly
homogeneous so that

(S2) 0and0 2 == &&

weew RR ,

then expression (4.1) further simplifies to
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Since nSY ys /)ˆ(Var 2
srswr = , the design effect of Ŷ

under (S1) and (S2) is given as
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where the second expression follows since

pyyp SSRB /= and NP /1= . Note that pS denotes

the population standard deviation of the ip ’s and pCV

is the coefficient of variation of ip ’s.

Since nNwE i /)( = and nWNwE i /)( 2 = , we

have NWnwEwE ii /)(/)( 22 = . Based on these

relations, Spencer substituted NWn / in his derivation
(Section 5) by an estimate

( )2
2

/

/

∑

∑
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Note that expression (4.4) is equivalent to Kish’s

approximate formula 2cv1 w+ for the ratio mean

estimator Ŷ . Substituting further ypR and pCV by

their respective sample estimates, say ypr and pcv , in

expression (4.3), we obtain the following estimator of
the design effect of the ratio mean estimator:

(4.5)cv
cv
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Kish’s formula immediately follows by setting ypr =0,

that is,

.cv1)0,S2S1,|ˆ(deft 22
wyprY +== (4.6)

Meanwhile, Spencer (2000) derived the
population design effect for the total estimator under
(S1) and (S2) as follows:
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which can be rewritten using PBYA −= as
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An estimator of this approximate design effect is then
given by
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If 0=ypr , then Spencer’s formula simplifies to

2

2
22

cv

cv
cv1)0,S2S1,|ˆ(deft

y

w
wyprY ++== , (4.9)

which does not reduce to Kish’s formula unless

0cv/cv 22 =yw .

Remark 4.1 (Spencer’s approximate formula). In his
original derivation, Spencer proposed the following
formula to estimate the design effect:

,cv)/()cv1)(1( 2222
wywyp sar ++−

where a and ys are the sample estimates for A and

yS , respectively or 2222 /1 yww sacvcv ++ as a special

case for 0=ypr with saying that “this is close to

Kish’s approximation when ysa / is near zero.”

However, if 0=ypr , then Ya ˆ= and yysa cv/1/ = ,

and it becomes exactly (4.9).

Remark 4.2 (Comparison of )ˆ(Deft2 Y and

)ˆ(Deft2 Y ). Using Cauchy-Schwarz inequality, it is

easy to show that 1/ ≥NWn . Assume 0≥iy so that

0CV >y . From (4.3) and (4.7b), it follows that

)S2S1,|ˆ(Deft)2SS1,|ˆ(Deft 22 YY ≥ iff ≤ypR2

yp CV/CV (the equality holds iff ypypR CV/CV2 = ).

If 0=ypR , ≥)S2S1,|ˆ(Deft2 Y )S2S1,|ˆ(Deft2 Y and

the equality holds under srswr, in which case

=)ˆ(Deft2 Y 1)ˆ(Deft2 =Y .

Under ppswr (i.e., ii xp ∝ ), ∑= U iii xxp

and thus we have xp CVCV = and yxyp RR =

provided 1<ip for all Ui ∈ . Therefore, we have

)S2S1,|ˆ(Deft)S2S1,|ˆ(Deft 22 YY ≥ iff ≤yxR2

yx CV/CV . On the other hand, the inequality can be

reversed when yxR is large (i.e., close to 1) and even

)ˆ(Deft2 Y can be well below 1. This happens
frequently in business surveys where the y-variable is
heavily skewed to the right and the size measure

variable (x) is highly correlated with the y-variable (see
also Lehtonen and Pahkinen, 1995, p. 110).

5. Example

In this section we discuss comparison between
the design effects of the sample total and the ratio mean
estimator using an artificial dataset created from a
health survey. The dataset is a subset of the adult data
from the U.S. third National Health and Nutrition
Examination Survey (NHANES III), which is given as a
demo file in WesVar version 4. From the dataset,
N=5,000 records were selected by simple random
sampling without replacement to construct an artificial
finite population. Sampled were only the records with
complete responses to the four variables CIGNUM
(number of cigarettes smoked per day), SYSTOLIC
(average systolic blood pressure), DIASTOL (average
diastolic blood pressure) and HEIGHT (height without
shoes - inches). The inverse of the final weight in the
demo file was used as the measure of size (MOS) for
our sampling experiment. Note that the final weight in
the demo file is different from the NHANES III final
weight that was obtained by further adjusting the
weight by poststratification.

Table 1. Parameters of the artificial population

Variable (y) Y Y yCV ypR
CIGNUM 18,620 3.72 2.3781 -.0966
SYSTOLIC 640,288 128.06 .1700 .1300
DIASTOL 377,920 75.58 .1628 .0278
HEIGHT 331,269 66.25 .0606 -.1058

ip 1 1/5,000 1.3910 1.0000

iw 846,946 169.39 1.2350 -.4104

Table 1 presents several parameters of the
artificial population on the selected four variables
including the selection probabilities ip ’s and the

sampling weights iw ’s. The survey variables are
weakly correlated with the selection probability, where

ypR ranges from -.1058 to .1300. yCV for

SYSTOLIC, DIASTOL and HEIGHT is less than .20,
while for CIGNUM it is 2.3781, which is much larger
than others.
We used ppswr with 100=n .

Table 2 displays the decomposition of the
population design effect in (3.7) for the four survey
variables. Since CIGNUM has a large yCV , the

difference between )ˆ(Deft2 Y and )ˆ(Deft 2 Y is small.
However, the difference is very large for the other three

variables due to small yCV , which causes )CV( 2
yg to

become dominant in )ˆ(Deft2 Y for these three
variables.



Table 2. Decomposition of design effect in (3.7)

Variable )
ˆ

(Deft 2 Y )ˆ(Deft 2 Y )CV( 2
yg

CIGNUM 4.837 5.676 .837
SYSTOLIC 2.833 78.205 75.372
DIASTOL 3.028 91.377 88.349
HEIGHT 3.488 668.036 664.548

Table 3 shows Pearson’s correlations of the

sampling weights iw with ie and 2
ie , and approximate

values to the population design effects of the ratio mean
and the sample total estimators. Although the plots of
data points ),( ii yx show less than perfect linear

relationships between ix and iy (i.e., ip and iy ),

Table 3 reveals that ewR and
we

R 2 are nearly zero and

the approximate formulae (4.3) and (4.7a) under (S1)
and (S2) trace fairly closely the true design effect given
in Table 2.

Table 3. Approximate design effects under linear
relation between ip ’s and iy ’s

Goodness of Fit Approximate 2Deft

Variable ew
R we

R 2 )
ˆ

(Deft 2 Y )ˆ(Deft 2 Y

CIGNUM 0.079 0.097 3.368 3.930
SYSTOLIC -0.093 -0.078 3.351 83.293
DIASTOL -0.022 -0.045 3.386 92.857
HEIGHT 0.058 0.016 3.364 660.107

6. Concluding Remarks

Kish originally intended the design effect as a
measure of the effect of the sample design in parameter
estimation, which is independent of the elemental
variability of a particular y-variable, the unit of
measurement, and the sample size. He is largely
successful for the ratio mean estimator to achieve this
goal. Probably due to this success, it is commonly
misconceived that the design effect of the total
estimator is similar to that of the ratio mean estimator.
However, as clearly demonstrated in this paper, the
design effect of the Horvitz-Thompson type estimator
for the total under an unequal probability sampling
design is not only dependent on the variability of y-
variable ( yCV ) but also can be greatly influenced by it.

Another important factor in determining the design
effect is the correlation ( ypR ) between the selection

probability and the y-variable as shown in Section 4.
Kish’s approximate design effect formulae were
derived assuming tacitly that this correlation is zero.
This may be the reason why the design effect is not
used in business surveys, where the correlation is

usually large and the design effect can be much smaller
than 1. However, we can use the design effect in
business surveys as well to measure the gain by the
sample design (instead of the loss, which is usually the
case in social surveys) over the simple random
sampling. Business surveys often employ pps sampling
or size-stratification. In this context, it would be worth
while to pursue further on this research to take into
account of without-replacement sampling and the finite
population correction (fpc). The fpc can be important
particularly in business surveys. We are currently
working on the extension of our formulae to multi-stage
sampling. We will also try to tackle these problems if
time permits.

Lastly, we would like to point out the importance
of an efficient estimation technique such as
poststratification for estimation of the total, when ypR

is close to zero.
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