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1. INTRODUCTION

Recently, nonresponse rates have been increasing
in many surveys, making the nonresponse problem
more and more important. There has been much ac-
tivity in estimating survey nonresponse. The main
difficulty in modeling of nonresponse is in building
a sensible relation between the respondents and the
nonrespondents. This is especially important when
there is very limited information from the nonre-
spondents. While the method of ratio estimation is
simple, it treats the respondents and the nonrespon-
dents symmetrically, and therefore, it is inaccurate
when respondents and nonrespondents actually dif-
fer. For many surveys the units are households, and
the response is binary. Thus, we propose a method
to estimate the proportion of households possessing
a characteristic (e.g., doctor visits) using a Bayesian
method which allows linking respondents and non-
respondents and pooling of data across areas.
The National Health Interview Survey (NHIS) is

one of the surveys conducted by the National Cen-
ter for Health Statistics to assess some aspect of the
health status of the U.S. population. By estimating
the proportion of households with at least one doc-
tor visit in the past two weeks, we can have some in-
formation about the household doctor visits for the
U.S. population. The main issue we consider here is
how to account for the bias due to nonresponse in the
NHIS. Nonresponse arises mainly from refusals, non
contacts, those households with language difficulties,
and others. Thus, there may be differences between
respondents and nonrespondents. The ratio method,
used previously for the NHIS, assumes that the pro-
portion of the characteristic for the respondents and
the nonrespondents is the same. Therefore, the ra-
tio method will be inaccurate for the situations in
which respondents and nonrespondents differ. We
use the NHIS data to demonstrate our method to
estimate the proportion of households with at least
one doctor visit in the past two weeks.
Little and Rubin (1987) describe two types of

models which differ according to the ignorability of
nonresponse. In the ignorable model the distribu-
tion of the variable of interest for a respondent is the

same as the distribution of that variable for a non-
respondent with the same values of covariates. In
addition, the parameters in the distributions of the
variable and the response must be distinct. All other
models are nonignorable. We consider a model that
centers a nonignorable model on an ignorable one.
In this model an odds ratio (the odds of a house-
hold doctor visit among the responding households
versus the odds of a household doctor visit among
all households) is used to control the extent of non-
ignorability, and thereby in the Bayesian approach
inducing uncertainty about ignorability. We will call
this family of models the expansion model because
when the odds ratio is unity, the model is ignorable.
Little and Rubin (1987) distinguish between two

classes of models for missing data. In the selection
approach the hypothetical complete data are mod-
eled, and a model for the nonresponse mechanism is
added conditional on the hypothetical data (Heck-
man 1976). In the pattern mixture approach the
population is stratified into two patterns, respon-
dents and nonrespondents, each being modeled sep-
arately and the final answer is obtained by a proba-
bilistic mixture of these two. The selection approach
is more natural for our problem because it links the
respondents and nonrespondents directly and all pa-
rameters are identified, albeit weakly. A “borrowing
of strength” across states leads to improved infer-
ence.
The NHIS data are collected from the fifty states

and the District of Columbia. For each area (a state
or the District of Columbia) there are counts on
the number of households, the number of respond-
ing households, and the number of household doctor
visits. Like most nonresponse models, many of the
parameters in our expansion model are weakly iden-
tifiable. Thus, in the spirit of small area estimation,
our expansion model “borrows strength” across the
areas. Stasny (1991) used a hierarchical Bayes non-
ignorable selection model to study victimization in
the National Crime Survey. She used a Bayes empir-
ical Bayes approach, in which maximum likelihood
estimates are substituted for the unknown hyperpa-
rameters. Nandram and Choi (2001) provide several
extensions of this work.
Our objective is to describe the expansion model,

to show how to fit it using a full Bayesian method,
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to apply it to the NHIS unweighted data on doctor
visit in the past year, and to assess its properties.

2. NHIS DATA

One of the variables we use in the NHIS is the
number of doctor visits by the members of an entire
household in the past two weeks. It is standard prac-
tice to use the binary variable, doctor visit, which is
0 if the number of doctor visits by all members of a
household is 0, and 1 otherwise.
The NHIS nonresponse can be classified mainly

as refusals, non contacts and those households with
language difficulties, and others. They may arise
nonrandomly. For example, the refusal problem may
be confined to some special groups such as recent
immigrants, who are not representative households,
and therefore, nonresponse from this source can be
considered nonrandom nonresponse. We observed
that the average NHIS nonresponse rate was about
2-3 percent until the 1980’s; it has been increasing
annually and reached 8-13 percent in 1999.
The NHIS frame is basically a two stage stratified

sample survey design of probability proportional to
population size (pps). The first stage is the selec-
tion of primary sampling units within strata with
pps design, and the second stage is the selection
of segments with equal probability. All the sample
households in each segment are interviewed. Thus,
we assume that the sample design does not cause
any selection bias beyond the nonresponse bias we
address here. Also, it is not unreasonable to treat
the states as exchangeable in our model and to as-
sume that this design feature does not interfere with
our model approach.
Weighting in the NHIS is a multi-stage scheme,

and one of the stages is ratio adjustment for nonre-
sponse at the segment level. This ratio is the propor-
tion of all sample persons to the respondents in the
segment. This estimate is adequate when respon-
dents and nonrespondents are similar. However, this
method can fail badly when these two groups differ
according to important characteristics which an in-
vestigator wants to study. We address nonignorable
nonresponse problems by expanding the method of
random weighting, and the Bayesian method is in-
troduced as a possible alternative to impute the
NHIS nonresponse.
We analyze the nonresponse unweighted data for

the 10 states from the 50 states and the District of
Columbia which have varying rates of nonresponse
and visits among respondents in the 1995 household
survey. The 10 states are the ones with smallest re-
sponse rates (at least 7.2% nonrespondents). These
states are Colorado, Delaware, District of Columbia,

Florida, Louisiana, Maryland, Nevada, New York,
South Carolina ,and West Virginia (see Table 1).

Table 1: NHIS 1995 data by state

st y r − y n − r p̂obs p̂seg δ̂

CO 144 385 62 .27 .27 .90
DE 37 63 12 .37 .37 .89
DC 31 66 14 .32 .32 .87
FL 706 1542 219 .31 .31 .91
LA 186 389 54 .32 .32 .91
MD 223 446 69 .33 .33 .91
NE 60 113 14 .35 .34 .93
NY 860 1962 278 .31 .30 .91
SC 153 311 43 .33 .33 .92
WV 68 143 22 .32 .32 .91

NOTE: 10 states with least 7.2% observed nonresponse
rate

In Table 1 we present ni, ri ,and yi which are the
numbers of sampled households, responding house-
holds and households with doctor visits, respec-
tively, over the past year. The fourth column has
the observed proportion p̂obs,i = yi/ri of responding
households with at least one doctor visit. Hawaii
and Maine reported the highest p̂obs,i of doctor visits
with 38% for each of these states. Colorado and Ore-
gon reported the lowest p̂obs,i of doctor visits with
27% for each of these states.
The fifth column shows the proportion p̂seg,i =

yi/ri of responding households with at least one
doctor visit by a weighted average over the seg-
ments where the weights are inversely proportional
to the sample size within segments based on the
assumption of ignorability nonresponse. For these
states the observed rates p̂obs,i = yi/ri and the rates
p̂seg,i = yi/ri based on the segments are very sim-
ilar within the segments. This is true because the
proportions of households with doctor visits are very
similar within the segments.
Finally, the sixth column also has the observed

proportion δ̂i = ri/ni of responding households by
state unlike the weighted average of the segment
data. The response rates range from 0.87 in the
District of Columbia to 0.99 in Idaho.

3. METHODOLOGY FOR
NONIGNORABLE NONRESPONSE

In this section we describe our model, show how to
fit it and how to make inference about the parame-
ters. Our analysis uses all 50 states and the District
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of Columbia, but we present only 10 states in Table
1. Let � be the number of areas. We assume that a
sample of ni households is taken from the ith area,
i = 1, . . . , �.
Let the binary characteristic be yij = 1 if at least

one member of household j in area i visited doctor’s
office and yij = 0 otherwise. The response variable
rij = 1 if household j in area i is a respondent and
rij = 0 otherwise. We use a probabilistic structure
to model yij and rij , and this is the expansion model.
Let ri =

∑ni

j=1 rij be the number of households
with respondents and yi =

∑ni

j=1 yij the number of
households with at least one doctor visit, and ni−ri
is the number of nonrespondents.

3.1 Expansion Model

The expansion model for nonignorable nonre-
sponse is

yij | pi
iid∼ Bernoulli (pi)

rij | πi, γi, yij = 1
iid∼ Bernoulli (γiπi)

rij | πi, γi, yij = 0
iid∼ Bernoulli (πi). (1)

The γi are the ratios of the odds of success (doctor
visit) among respondents to the odds of success (doc-
tor visit) among all individuals in the ith area. The
γi show the extent of nonignorability of the nonre-
spondents and, in fact, incorporate the uncertainty
about ignorability into the model. If γi = 1, the
model becomes ignorable and there is no difference
between respondents and nonrespondents.
The parameters of interest are γi, δi and mainly

pi where δi is the probability of responding in area
i and is given by

δi = πi{γipi + (1 − pi)}. (2)

Assuming all areas are similar, we take the pa-
rameters (pi, πi, γi) to have a common distribution.
This assumption is useful because it helps in the es-
timation for the parameters such as πi and γi and,
therefore, δi, that are weakly identified by the data.
For pi, we take parameters

pi | µ1, τ1
iid∼ Beta (µ1τ1, (1− µ1)τ1). (3)

Note that E(pi | µ1, τ1) = µ1 and var(pi | µ1, τ1) =
µ1(1−µ1)/(τ1+1). This reparameterization is useful
because the parameters µ1 and τ1 are approximately
orthogonal.
We wish to center the γi at unity (i.e., center on

an ignorable model). It is possible to do so by as-
suming that the γi have a common mean of unity.
Thus, one can assume that γi | ν iid∼ Γ(ν, ν), γi > 0,

where E(γi | ν) = 1 and V ar(γi | ν) = 1/ν. Thus,
we can center our expansion model on an ignorable
model with γi fluctuating about unity with a stan-
dard deviation 1/

√
ν a priori. But there is the issue

that 0 < γiπi < 1.
Thus, we assume that the parameters (πi, γi) are

jointly independent with

πi | µ2, τ2
iid∼ Beta (µ2τ2, (1− µ2)τ2)

and
γi | ν, πi

iid∼ Gamma(ν, ν), (4)

0 < γi < 1/πi and 0 < πi < 1.
Thus, the joint prior distribution for (pi, πi, γi)

is the product of the densities in pi | µ1, τ1
iid∼

Beta (µ1τ1, (1− µ1)τ1) and p(πi, γi | µ2, τ2, ν).
For a full Bayesian analysis, prior distributions are

needed for the hyperparameters µ1, τ1, µ2, τ2 and
ν. Thus, we take µr

iid∼ Beta(1, 1), r = 1, 2. That is,
uniform proper prior densities are used for µ1 and
µ2. We also use proper prior distributions for τ1, τ2
and ν. These prior distributions are similar to the
uniform shrinkage proper prior distributions. Specif-
ically, we take p(ν) = 1/(ν+1)2, ν ≥ 0 and p(τr) =
1/(τr+1)2, τr ≥ 0, r = 1, 2 with independence over
µ1, τ1, µ2, τ2 and ν. These prior distributions dis-
courage the posterior modal estimates of τ1, τ2 and ν
to be on the boundary of the parameter space which
will affect inference.
It is pertinent to compare the model of Stasny

(1991) with ours. We note that in Stasny’s model
πi0 ≡ γiπi and πi1 ≡ πi in (1). The prior density in
(3) is similar. The key difference is that while prior
densities are assigned to γi and πi in our model,
they are assigned to πi0 and πi1 in Stasny’s model.
In Stasny’s model parameters like µ1 and τ1 are as-
sumed fixed but unknown, and these hyperparam-
eters are estimated using the maximum likelihood
method. We provide a full Bayesian analysis. Our
expansion model as described here allows different
degrees of nonignorability in different areas, states
or domains.
Since the number of visits among the nonrespon-

dents is unknown, we denote it by the latent vari-
able zi, and hence, the number of households with
no visits among them is ni − ri − zi. We note that
the distributions of the zi can be obtained from the
distributions of ri and yi through multinomial sam-
pling.
The augmented likelihood function can be repre-

sented by a four-cell multinomial probability mass
function of yi, ri − yi, zi and ni − ri − zi with
probabilities γiπipi, πi(1 − p), (1 − γiπipi), and
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(1 − πi)(1 − pi), respectively. Then it is easy to
show that the augmented likelihood function is pro-
portional to f(y, r, z | p,γ,π) =

∏�
i=1 f(yi, ri, zi |

pi, γi, πi).
Using Bayes’ theorem, it is convenient to make

the transformation φi = γiπi with other parameters
πi, pi, and zi not transformed, the joint posterior
density of all the parameters can be written down.
Inference about pi, δi and γi can be obtained by

using this posterior density function. Because the
posterior density is complex, we use Markov chain
Monte Carlo (MCMC) methods.

4. ANALYSIS OF NHIS DATA

We discuss the goodness of fit of the expansion
model, and inference on the NHIS data using this
model.

4.1 Assessment of the Model

We assess our model by using a Bayesian cross val-
idation analysis to obtain deleted residuals. These
residuals are studied in the usual way. We obtain
the predictive distribution of yi/ri | y(i), r(i) where
y(i) and r(i) are the vectors of all yi and all ri, re-
spectively with the ith state deleted. We assess how
yi/ri differs from its predicted value under the ex-
pansion model. To assess the model fit, we computed
DRESi = (yi/ri − Ê(yi/ri | y(i), r(i)))/(Ŝtd(yi/ri |
y(i), r(i))), i = 1, . . . , �. Then we plotted DRESi

versus E(yi/ri | y(i), r(i)).
Except for Maryland and Oregon, all the points

are between -2.0 and 2.0. For Maryland DRESS is
2.31, and for Oregon DRES is -2.24. It is inter-
esting that Maryland has an observed value of .33
and a predicted value of .27 while Oregon, a state
among those with the smallest observed rates, has
an observed value of .27 and a predicted value of .33,
thereby incurring large residuals. The observed re-
sponse rate for Maryland is .91, among the smallest
observed response rates, versus .98 for Oregon, the
largest observed response rate. While the number of
points above the zero is 31 out of 51, the difference
is not statistically significant for a standard large
sample approximation. Also, a simple linear regres-
sion of DRES on PRED has adjusted R2 = 6.6%,
and the Pearson correlation is negative. Also, dele-
tion of Maryland and Oregon reduces the adjusted
R2 to 0.0%. Thus, there is a very weak relationship
between DRES and PRED.
We also investigated whether the residuals are re-

lated to the sample size within states. We cross-
classified the DRES (> 0 and ≤ 0) and sample size
a (> a and ≤ a). Using Fisher’s exact two-sided test

on SAS, the P-values at a = 100, 200, and 500 are
.271, .204, and .778, respectively. Thus, the sign of
DRES is not associated with the sample size.

4.2 Posterior Inference for Expansion Model

Next, we apply our methodology to the NHIS
data. Then, we perturb a key assumption in our
model to investigate how sensitive inference is to this
assumption.
In columns 2, 3, and 4 of the first part in Table 2

we present 95% credible intervals for the pi, δi, and
γi for the original expansion model.

Table 2: 95% Credible interval for p, δ and γ by
Models

St p δ γ

Expansion

CO (.30, .36) (.87, .92) (.70, .84)
DE (.31, .38) (.86, .94) (.68, .94)
DC (.30, .38) (.84, .93) (.61, .90)
FL (.33, .37) (.90, .92) (.81, .87)
LA (.32, .37) (.89, .93) (.79, .90)
MD (.33, .39) (.89, .93) (.78, .89)
NE (.31, .38) (.89, .96) (.77, .97)
NY (.33, .36) (.90, .92) (.80, .86)
SC (.32, .38) (.89, .94) (.79, .92)
WV (.31, .38) (.88, .94) (.73, .92)
Alternative
CO (.28, .33) (.87, .91) (.90, 1.06)
DE (.29, .36) (.87, .94) (.91, 1.11)
DC (.29, .35) (.85, .94) (.89, 1.09)
FL (.29, .33) (.89, .92) (.98, 1.08)
LA (.30, .35) (.89, .93) (.92, 1.07)
MD (.30, .35) (.88, .92) (.92, 1.12)
NE (.29, .35) (.89, .95) (.93, 1.11)
NY (.29, .32) (.89, .91) (1.00,1.10)
SC (.29, .35) (.89, .93) (.93, 1.11)
WV (.29, .35) (.87, .94) (.91, 1.11)

NOTE: see Table 1 for p and δ.

Some of the intervals do not contain the observed
values of the pi. For example, Colorado, Florida
and New York do not contain the observed propor-
tions. This implies that the ratio method may pro-
vide unreasonable estimates for the true proportions
for these states. As for the δi, there are some vari-
ations among the states where for the 95% credible
intervals the upper ends are reasonably close, but
the lower ends differ. But, in general, the response
rates are similar. These intervals are useful because
they provide information about the sample size that
might be required for a future survey. For example,
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for the District of Columbia the 95% credible inter-
val for δi is (0.612, 0.903). This means that if a fu-
ture survey requires 1,000 respondents from the Dis-
trict of Columbia, the interviewer might need to visit
1107-1634 households, with a much sharper state-
ment for many of the states. It is clear that many
of the intervals for the γi do not contain 1, and so
for these states the nonresponse mechanism should
be considered nonignorable, and therefore the ratio
estimator should not be used.
We also cross-classified the DRES (> 0 and ≤ 0)

and nonignorability (95% credible interval for γi is
to the left of 1 versus it contains 1). Again using
Fisher’s exact two-sided test on SAS, the P-value is
0.554. Thus, the goodness of fit is not associated
with ignorability.

5. ALTERNATIVE MODEL AND
SIMULATION

First, we assess the assumption on the γi in (4) by
introducing an alternative (but less favored) model.
Finally, we describe a simulation study on the expan-
sion model to investigate how well it can reproduce
the true parameter values. In this simulation study
we also compare inference for the original expansion
model with the alternative expansion model, an ig-
norable model and a nonignorable model (see Stasny
(1991) for these latter two models).

5.1 An Alternative Expansion Model

Next, we show how to assess the effect of the
assumption γi | ν, πi

iid∼ Gamma(ν, ν), 0 < γi <
1/πi and 0 < πi < 1 in our model. We retain
the same conditions for rij and pi. We obtain
a new prior density for (πi, γi). For γi we take
γi | πi

ind∼ U(2−π−1
i , π−1

i ), 2−π−1
i < γi < π−1

i and

for πi we take πi | µ2, τ2
iid∼ Beta (µ2τ2, (1− µ2)τ2).

Note that we have eliminated the parameter ν
from the original model. Thus, the joint prior den-
sity for πi, γi | µ2, τ2 is p(πi, γi | µ2, τ2). Then,
we take the hyperparameters µ1, µ2

iid∼ Beta(1, 1) ,
and p(τ1) = 1/(τ1 + 1)2, τ1 ≥ 0 and independently
p(τ2) = 1/(τ2 + 1)2, τ2 ≥ 0.
Using Bayes’ theorem, again it is convenient

to make the transformation φi = γiπi with
other parameters πi, pi, and zi not transformed,
the joint posterior density of all the parameters
(z,p,π,φ, µ1, τ1, µ2, τ2) for given data (y, r) can be
obtained apart from a constant of proportionality.
A strategy for the computations is similar to that

used for the original model. The bottom three

columns in Table 2 contain the corresponding quan-
tities for the alternative expansion model. First, in-
ference for the pi and the δi are similar with much
more similarity for the δi. For the pi, the intervals
based on the alternative model overlap on the left of
the intervals based on the original model. For the γi,
the intervals based on the alternative model overlap
on the right of the intervals based on the original
model. We note that | γi − 1 |< π−1

i − 1, so that the
credible interval for γi always contains 1. In fact, the
alternative model actually pins down the posterior
densities of the γi very close to 1. In other words,
the alternative model should not be used to assess
ignorabilty.
Thus, while the two models differ considerably

with respect to the γi, inference about the pi and
the δi is very similar.

5.2 Simulation Study

We perform a simulation study to assess how well
the expansion model can reproduce the true param-
eters, and we compare the expansion model, alter-
native expansion model, an ignorable model and a
nonignorable model. We do so by using the reduced
set of ten states in Table 1. We also compare 95%
credible intervals of the pi for the expansion, alter-
native, ignorable and nonignorable models at two
values of the γi.
We have compared four models: the expansion

model, alternative expansion, an ignorable model
and a nonignorable model (see Stasny 1991) in the
simulation study. However, for the ignorable and
the nonignorable models, unlike Stasny (1991) who
used a Bayes empirical Bayes analysis, we provide
a full Bayesian analysis of these latter two models
as well as using Markov chain Monte Carlo meth-
ods. We consider two values of the γi. Because the
true γi are close to one, we pick all the γi = 1 for a
choice of ignorability and to enforce nonignorability,
we choose γi = .75. At each of these two values, we
obtained 100 data sets as described above. Then,
we fit the four models to these data sets. We obtain
95% credible intervals for the pi, the parameters of
central interest.
In Table 3 we present these intervals for γi = 1 and

γi = .75. At γi = 1, the intervals are all very similar
across the models, although the intervals for the non-
ignorable model are wider. At γi = .75, the intervals
for expansion model and the alternative model are
very similar. As seen in the bottom half of Table 3,
the intervals for the ignorable model are to the left of
those for the expansion and the alternative models
with almost no overlaps, while there are substantial
overlaps with those of the nonignorable model. Also,
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the intervals for the nonignorable model are much
wider than those for the expansion and the alter-
native models. Here the ignorable model is clearly
inappropriate, and it is unfair to compare it with the
other three nonignorable models.
The first half of Table 3 shows that the three non-

ignorable models can produce inference similar to
the ignorable model when there is ignorability. The
bottom half of Table 3 shows that while the three
nonignorable models can produce comparable infer-
ence under nonignorabilty, the ignorable model can
not cope with this situation.

Table 3: 95% Credible interval for p by model

St. p Expan. Alter. Igno Nonig.

γi = 1

CO .34 .31-.37 .30-.36 .31-.36 .31-.39
DE .34 .29-.37 .29-.37 .30-.37 .27-.42
DC .34 .29-.37 .29-.37 .29-.37 .28-.42
FL .34 .31-.35 .32-.35 .32-.35 .33-.37
LA .34 .31-.37 .30-.36 .30-.36 .31-.38
MD .32 .30-.36 .30-.35 .30-.35 .30-.37
NE .32 .29-.36 .29-.36 .29-.36 .27-.40
NY .31 .30-.33 .29-.32 .30-.33 .30-.34
SC .33 .29-.35 .30-.36 .30-.36 .30-.38
WV .33 .29-.37 .29-.36 .30-.36 .28-.39
γi = .75

CO .34 .31-.37 .29-.35 .25-.30 .26-.36
DE .34 .29-.37 .28-.35 .24-.30 .22-.37
DC .34 .29-.37 .28-.35 .24-.30 .23-.38
FL .34 .32-.36 .30-.33 .26-.29 .27-.35
LA .34 .31-.37 .29-.35 .24-.30 .26-.35
MD .32 .30-.36 .29-.34 .24-.29 .25-.34
NE .32 .29-.37 .28-.35 .24-.30 .23-.36
NY .31 .30-.33 .27-.30 .24-.27 .25-.32
SC .33 .30-.36 .29-.35 .24-.29 .25-.35
WV .33 .30-.37 .28-.35 .24-.30 .24-.36

NOTE: Expansion, Alternative, Ignorable,
Nonignorable. The end points of intervals are averages

over the 100 simulated 95% credible intervals.

6. CONCLUSION

We have presented a Bayesian method to estimate
the proportion of doctor visits and the probability
that a household responds in the NHIS. In doing so
we have been able to incorporate a degree of un-
certainty about the ignorability of the nonresponse
mechanism. We proposed a model and assessed one
of its critical assumptions.
Our method is potentially useful to incorporate

uncertainty about ignorability of the nonresponse
mechanism for many surveys. We have shown that

it is possible to decide for which states the nonre-
sponse mechanism can be treated as ignorable. For
these states it is possible to use the ratio method for
nonresponse adjustment. For the other states one
must be reluctant to use the ratio method. In either
case our method provides adjusted estimates for pi

and δi based on the extent of nonignorability.
We studied the sensitivity of the original expan-

sion model to its specifications. Perturbation of the
distribution assumption on the γi in an alternative
model leads to similar inference about pi and δi as
in the original model. When the nonresponse mech-
anism is ignorable, there is similarity in inference
about pi for the two expansion models, an ignorable
model and a nonignorable model. When the non-
response mechanism is nonignorable, there is agree-
ment in inference about pi for the two expansion
models and a nonignorable model, but no agreement
with the ignorable model. The nonignorable model
provides estimates of pi with larger variability for
both situations.
There are two possible extensions to our work.

Even though the segments are small, many of them
do not have nonrespondents. Thus, it may be useful
to include the segments as an additional stage in the
hierarchical model. Another important extension is
to polychotomous (more than two cells) data that
are so prominent in many complex surveys. While
we are currently investigating nonignorable nonre-
sponse regression models elsewhere, the issue of co-
variate is a distinct problem.
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