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Introduction

The focus of this paper is on the prediction of afinite
population total T by taking a sample of size n from a
population of size N units. For example, suppose we
wish to estimate the average total amount a university
student can expect to borrow before graduation in a
certain region of the country. We can use sample
survey information from graduating studentsto predict
the total loans for all studentsin that region and from
that we can estimate the average total amount a
student will borrow.

Classical theory models the data collection
procedure with a sampling design, a probability
function defined on the sample space, S, of all possible
samples of size n. The sampling design along with
unbiasedness requirements yields a frequentist
approach to relating observed with unobserved
population units. In contrast, a superpopul ation model
provides the stochastic structure for Bayesian
inferential purposes. In this paper, under an ignorable
design, we develop a fully Bayesian approach to the
prediction of the population total T that isafunction of
the mean of the posterior predictive distribution. We
show that the Bayesian estimator has the general form
of the familiar general regression estimator found in
model assisted survey sampling.

1. Matrix Empirical Bayes 7-estimator

Gosh and Meeden (1997, p.164) present an empirical
Bayes estimator of the finite population mean for a
quantity of interest y; , ¥, , ..., Y. Inthis section we
will present the results of Gosh and Meeden in amore
convenient form using matrices. Let s be a sample of
n eementsfrom {1,2 ..., N} and let r represent the (N
— n) non-sampled elements.

We can rewrite the results of Gosh and Meeden's
popul ation average estimate to an empirical population
total estimate in matrix form by assuming the
superpopulation model

Y =A10 +e

|

whereY isNx 1

such that y isan n x 1 vector of sampled units, and y,

is an (N- n) x 1 vector of the non-sampled units.
Define A to be the known N x N diagonal matrix
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where Ag is an n x n diagonal matrix with diagonal
gdementsa;, a, , ..., a,, and A, is (N —n) x (N-n)

diagonal matrix with diagona elements a,,q, a,., ,
..., @y, Let 1bean Nx 1 vector of ones

where 15isan nx 1 vector of ones, 1, isa(N-n) x 1
vector of ones, B isalx 1 unknown parameter, and e
~ N(O\V), where N(u,W) denotes a multivariate

normal distribution with mean vector u and covariance
matrix W. Assume V is a known positive definite
diagonal matrix that may be partitioned as

Vi O
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where Vg isan nx n diagonal matrix with diagonal
elements o7 fori=1,2, ...,n,andV,, isan (N—n) x
(N—n) diagona matrix with diagonal elements O'jz
forj=n+1,n+2, ..., N. Toestimate the population
average first note that the population total is

’ 7t oqr ys ’ ’
T=1Y= 1| L]{y‘r}ﬂskﬂryr
Thus, our estimate of the population total involves
estimating the non-sampled unitsy, of the population

total T. The estimate of the population total for afully
Bayesian method under squared error loss requires the
posterior predictive expectation E(y, |y,) for estimation

of y,. This posterior expectation can be obtained by
the nested expectations

E(rly) = Eo| By, (¥r 1¥s:0)|Ys .

whereEyr (+) is the expectation with respect to y, and
Eg(-) isthe expectation with respect to the posterior of
6. Under model Y = A16 + e E, (y/|ys,0,)=
A,1,6. Now, instead of taking the expectation



Eg(A;1,0), an empirical Bayes result ensues by

estimating the unknown parameter 6 using a weighted
least squares estimate. Let X = Al then the least

sy
squares estimate of © is
A -1
7y =1 Iy g —
O = (stss Xs) XsVsslys

= (1;Asvs_slAsls)_ll’sAsVs_s s (1.1)

Thus, an empirical Bayes estimate of the population
total is

Tes =1Ys +1 By, (Yr |ysvéLE1)
::IéYS"'l;ArlréLE
=1gys
-1
FEAL (LAVEAL ) LAVGYs.  (12)

Next we use the matrix form of the empirical Bayes
estimate and derive the Horvitz-Thompson estimator
using the assumptions noted by Gosh and Meeden.
Let m; represent the inclusion probability for an

individual k from afinite population of size N wherei
=1,2,...,N. Definew tobean N x N diagonal matrix
whose diagonal elements, ; =, i = 1,2,...N, arethe

inclusion probabilities. We can writer as

Imsi O
Tl

where g isan nx ndiagona matrix and rr, isan (N -
n) x (N — n) diagonal matrix. One of the conditions of
the inclusion probabilities is that Zil\:'qu =n. In

matrix form this condition for the sum of the diagonal
elements of T can be written as

.0
R ke
= Kl +4 1,

which implies
Lm 1 =n-1mls . (1.3
Lete A=m V=mn(l - n)_lnwherel istheN x N

identity matrix
| = 0
|0,

such that I gisan nx nidentity matrix and I . isan (N —

n) x (N —n) identity matrix. Using equations(1.3) and
the assumptions made for A and V, the empirical
Bayes estimator (1.2) becomes

-I:EB :[1,3"'1,3('5_“5)“;1}3/5

=Lms'ys (14)
Equation (1.4) is the matrix representation of the
Horvitz-Thompson estimator, sometimes referred to as
the ~estimator, for the population total.

2. General Regression Estimator

In this section we introduce the genera regression
estimator and present it in a more convenient form
using matrices. Thisfacilitates subsequent derivations.

As a means to possibly improve the basic m-
estimator using auxiliary information, Sarndal et al.
(1992) employ classical sampling design theory, using
inclusion probabilities, and the regression modd Y =
XB + ewheree~ N(Q,V). Thelatter isused, however,
only as a means to obtain an estimate of B. Hence,
unbiasedness and variance expressions are derived
under the sampling design. In short, Sarndal et a.
(1992) do not assume that the regresson mode
generated the sample. Thus, the general regression
estimator (GRE) derived in Sarnda et al. (1992) is
model assisted but not model dependent. Sarndal et al.
(p.225, 1992) define the GRE as

n p N n X:
£ Yk A ik
TGREEZ—JFZﬂj{ Xk =, j
k=17k j=1  \k=1 k=1 "k
wherey, isavariable of interest, like loan amount, for
k=1, 2,..., N, n istheinclusion probability, BJ- isan

unknown regression coefficient for j = 1, 2,..., p, and
X Is aknown auxiliary variable. Notice that the GRE

is equal to the m-estimator plus an adjustment term.
Using aregression model to assist in the estimate for
= (Bl,...,Bp)’, Sardnal et al. (1992, p. 228) suggest the

estimate
& _ [ w0 XXk T Xy Yk
B=| X5 | 2o
k=1 Ok”7Tk / k=10k7k
Still, under asimplerandom sampling design in which

n:(g)fll,ﬁ is the least sguares estimator

. oo \-1o, -1 _
BSE(XSZ xs) X, Ty, where = isap x p

positive definite covariance matrix. Now, using the
notation established in Section 1, the GRE can be
rewritten as

Tore = 1'XBs +1;n;l(YS - X;Bs) . (2D

Assuming X = cszl and a simple random sampling
design we can express (2.1) as



- ’ o N 7
Tere = 1XB5+F13[|5_P5]YS

where, again, s :(X’SXS)_lxsys is the least square
estimator of B and Pg = XS(X’SXS)_lx’S is the

projection matrix onto the column space of X,

3. An Empirical Bayes General Regression Estimator

In this section we introduce a superpopulation model
and obtain an empirical Bayes estimator of the
population total. Our empirical Bayes estimator of the
population total T = 15y, + 1y, requires derivation
of the mean of the posterior predictive distribution
E(y,lyy. Finaly, we show that our empirical Bayes

estimator isequal to the general regression estimator.

Royal and Pfeffermann (1982) focus attention on
necessary assumptions needed for robustness of their
statistical procedures for predicting the population
total T given yg. They consider their procedure robust
if the posterior probability distribution of T using
model Y = XB + e is not greatly affected by instead
using model Y = Xp + Uy + e whereU are additional
regressors with a fixed coefficient wvector .
Niewenbroek and Renssen (1997) consider estimating
the population total T by using two or more surveysto
obtain common variables, U, as additional regressors
observed in both surveys for which the corresponding
population totals are unknown and combining them
with auxiliary variables, X, which have known
population totals. They then use these common
variables as a tool to improve the estimate of the
population total by using what they call an adjusted
general regression estimator.

Consider the superpopulation model

Y=XB+Uy+e (3.1

Here X is N x p with full column rank and

such that Xg is n x p and X, is (N-n) x p.
Furthermore, U isN x g with full column rank and

such that Ugisn x gand U, is (N—n)xq. Finaly,y
isq x 1lande~ N(0,V), with V known such that

Vi O
|: O : VI’I’:|

To estimate T, we shall utilize E(y,|lys). To obtain the
latter we first estimate B by regressing yg on Xg
resulting in an empirical Bayesian procedure. We have

-1 -1
B|ys~N[(><;vs;1><s) XVaYs: (XeVs'Xs) j
Substituting into (3.1) we have
Y = XBS+Uy+e. 3.2

Using modd (3.2) we want an estimator of the
population total T= 15ys+1;y, . Wemust obtain the

mean of the posterior predictive distribution wt(y, ly,).

Using the improper prior mt(y) «< constant, the
posterior predictive distribution has the form

(¥ y9= o T (Ve [v.BsUr Vi )
X ﬂ(y‘ys,ﬁs,us,vss)dy, (3.3
wherethe likelihood of y, |y, Bs , X, U,V is
f(yr ‘y,BS,Xr JURS
=N(yr [XBs+Urn V). 34)
The posterior of y‘ys,Bs,Us,V$ can be shown to be
77 1YsBs, Us, Ves) =
N (¥ (U0 MUV s X o).

(u;v;slus)_lj . (3.5)
Thus, using (3.4) and (3.5), (3.3) becomes
(Y ly9=
qu f (yr Bs,Ur,’Y,O'Z)Z!(’Y‘Bs,ys,us,az)d’y

= Jra N (Yr ‘XrBs +Ur 7, Vi )X (36)

~ -1
N [y (UV'Us) ULV (vs — XoBs), (USVes'Us ) jdv.

Using equation (3.6), the mean of the posterior
predictive distribution we(y, lyg) is

E(y,lyy = J. J. YrN(Yr‘XrBs+Ur71Vrr)
RIRN-N

Ey|:Eyr (Yr ‘stur ¥ Vi )‘BS'yS'US'V53:|
X Bs+U; (U’sVsislUs)ilU;Vél(YS - XsBs)

where er(~) and Ev(') denote expectations with
respect to the distributions of y, and vy, respectively.



Thus, our empiricall Bayesian estimate of the
population total is

Tes = 1Ys+1; E(Y,ly9)
= Lys+ Y [Xr Bs
+ U, (U’svs_slus)_luévs_sl(YS _XSBS):| .

A special case to our Empirical Bayes estimator |eads
to an Empirical Bayesian justification for the general
regression estimator. First, we use the notation in
section Land let V =m(l —m) ‘mand U=mn1". Then,
using equation (1.3) the mean of z(y |ys,ﬁs, Us, Vgs)
becomes

(UVs'Us) MUV (vs —Xofis) =

’ -1,/ — N
(2f m 1 ] 1s(ls_7"’5)7"751(3/3_XsBs)- (3:8)
Using equation (3.8) then the right hand side of (3.7)
becomes
Te= 1XBs + Lms* (Vs —Xobs) -

Therefore, with V = (1 — n)_ln, U =x1 and using
the mean of the posterior predictive distribution
(Y, lyg asour estimator for the unknown quantity y,

in T, we have shown that our empirical Bayesian
estimator for the population total is the genera
regression estimator (2.1).

4. The Superpopulation Model
Consider the superpopulation model
Y =XB+Uy+e 4.2)
where X is N x p with full column rank, U isN x g

with full column rank, Bispx 1, vyisgx 1, e ~

N(O,V), where N(u,W) denotes a multivariate normal
distribution with mean vector u and covariance matrix
W. AssumeV isaknown positive definite matrix that
may be partitioned as

Ve 1V
V = __SS_T__S_I‘ ,
Vrs Vrr

whereVgisn x n, Vg isn x (N —n), V g is(N —n)
xn,andV, is(N —n) x (N —n). Assumef andy
are conditionally independent, given y,, each with
improper uniform  prior  distributions.  Using

superpopulation mode (4.1), we shall obtain the
posterior predictive distribution of y, |y, Then, under

squared error loss, we use the mean of the posterior
predictive distribution, E(y,ly,), to estimate 1[y, in
the population total T= 15ys+1;y,.

The predictive distribution is (Geisser, 1993,
p.49)

e\ Iys)=

_[ _[ Yr |y$, Y, B
RPRA

('Y|B ys) (B|ys)d7d[3: (4.2)

where f denotes the appropriate joint or conditional

density and ©' denotes v-dimensional real space.

Noticethat, if y, isindependent of y,, then

n(yrly9= [ [ f(ye[v:B)7(v|B.ys)7(Blys)dydB.
RP RY

In the following sections we derive the distributionsin

the integrand of (4.2).

5. The Marginal Density of y,
In general, independence between y, and y, may not
obtain. Thus, to derive the conditional distribution
f(y,lysB:Y) we use a well-known method of

nonsingular linear transformation from multivariate
analysis. The distribution of y, is

fly lysv.B)=
(Yr (X, B+Ur'Y)+VrsV_l( -(X sB+Us'Y))
Vir _Vrsvs_slvsr ) (5.1)

and the distribution of y,
f(ys11.B) = N(ys| XS+ Ust V) -

6. Posterior Digtributions for gand ¥

In this section we obtain the conditional and
marginal components of the posterior =(y,Blyy) =

(YB.ys) m(Blyg). Sincen(y,B) o constant, we have
(7,Blys) = n(viB.yo 7(Blys
o< f(ydlr.B) = N(ygXB + Ugr V).

Thus, the quadratics in the exponential terms in
n(YIB.yy and m(Blys) are derived from the normal

density N(yJX {8 + Ugy,V):
[ —(Xf+Usy) } o [YS (XsB+ USY):|
= y;Vs_slys - YV s_slst - YV gslusy
~BXVeYs — YUVGYs + BXVe X B
+ BXVEUgY + YULVEIX B
+ YUNVGUgY (6.1)



The quadratic form in w(y|3,yy) will be derived from

the components of equation (6.1) containing gamma
coefficients:

YUVS'UgY = YoV Ugt = YURVSYs
+ BXVSUGY + YUVEIX B
= YUVEUGY - 2(y6-BXo)Vs'Usy.  (6.2)
Since VS‘Sl is positive definite and symmetric, then it
has full-rank factorization
Vel = KiKy (6.3)
where K is anonsingular n x n matrix. Let Ug =
K 1Ug and define the projection matrix
PUS = 05(0;05)_10’5
Using (6.3), we can rewrite (6.2) as
YUV Ust - 2(y6—B'XE) Vs Usy
= YUK 1K Ugy — 2(ys —B'Xs)K1KqUsy

= (OSY)’(OSY) _Z[PGSKl(YS_XsB)I Ugy. (6.4)

Define
Cy = Py Ka(ys—XeB). (6.5)

Notethat C; isa constant with respect toy. Theright
hand side of equation (6.4) becomes

(037), (037) - Z[PﬂsKl(ys _Xsﬂ)] Usy
= (Us7) (Ugr) - 2C0sr + CiCy — CICy.

Thus, using (6.3) and (6.5) the quadratic in the
exponential term of z(y|B,ys) is

Qs = (Us )(Usy) 2C;0gy + CiC;

(Osy- Cl)( s1-C1)

40

X[Usy—PasKl(ys—XSB) ]

S R CA U RTAT= )| SUAV=TA
<[ 1- (U UV (vs- X B) |.

Thus,

n(1iB.y=

N {Y‘(UéVglUs)lUéVssl (¥s

) (v |

=N [’y|ﬂ7,Vy} . (6.6)

Now we find the exponential term of the marginal
distribution (Blyy). From (6.5) we have

CiC, = [PﬂsKl(ys_st)I [PasKl(yS—XsB)]
= BXKIP KX B — 2ysK 1Py KX B
+YeK Py Kys. 6.7)
Using (6.3), the remaining term of equation (6.1)

containing P that was not used to obtain the
exponential term in wt(Y|B,y,) is

BXVaXB — 2yVg!X B

= PXKIKXP - 2ysKiKXB.  (68)
Thus, the exponential term in wt(Blyy) will be derived
from the combination of equation (6.7) and equation

(6.8):
BXK1K1XB — BXK 1Py KX B
— 2YeKIK X +2ysK 1Py K1 X B
=BXK (15— Py, JK1XB
~ YK (15— Py, JK1X B (69)
Let X and Ug be partitioned as follows
Xg = [Xg | Xp [+ 1 Xp ]
and
Ug = [Ug Uy 1 Uq ]
where X; and U; arenx 1 column vectors of X and
Ug respectively fori=1,2,...,pandj=1,2 ...,q

Since stsl is symmetric and positive definite then the
bilinear form xi’vgsluj qualifies as an inner product
for . Assume the column space of X, C(Xy), is
orthogonal to the column space of Ug, C(U), with
respect to V', denoted by C(X9) L, 1 C(Uy). Since
C(Xg) L,-1C(Uy then XVelUg = 0 or equivalently
ULV<iXs = 0 (Harville, 1997, p. 257). In particular,
CX9 L,1CUY implies X{Vg'u; = 0 or
U’jVs‘lei =0fori=1,2,..,pandj=12,...,0. In
addition, since X,V<lUg = 0then X isorthogonal to
U, denoted by X L Ug (Harville, 1997, p. 257).
Since X4 L U, this implies the column vectors of X

are independent of the column vectors of Ug. Let Xg
= K;Xg and notice UgX¢=0. Thus, (6.9) becomes



BXKE(1sPo, KX~ 25aK (15 Py, JKoXeB
= BXXB —2yeKiXB. (6.10)
Define the projection matrix
7 VZAY, -1 4
Py, = Xs(XeXs) ~Xs.

Then we can rewrite (6.11) as

BXXB —2yeKiX B

= (%) (XB) ~2(Px_Kuys) XB-

Since C, = P>~(SK1ys is a constant with respect to 3,
we have

(XsB) (XsB) —2C5(XgB)+C5C,—C5C, .
Thus, the quadratic in the exponential of the
distribution of w(Bly,) is

R= (XsB) (XsB) — 2C5(XB)+CiCy
= (B_ (x;Vs;le)_l X’sVs_leSj’ x’svs_slxs

— _1 7 -
(B_(XSV$1XS) XSV$ Sj :
This suggests that the marginal distribution (Bly,) is
T(Blyy)

=N {B‘(x;v,;lxs)‘l x;v,z&ys,(x;vgxs)‘l}

=N [Blup. V3 . (6.11)
7. The Bayes Estimator

In this section we combine the results of Sections 4
and 5 and derive our Bayesian estimator of the
population total.

While obtaining the marginal distribution 7(Bly,)

in the last section we assumed C(Xg) L, 1 C(Uy).
Consequently, (6.6) becomes
T(YB.Yg) =

-1
N {v‘(ugvsus)lugv; (Vs —XsB),(UeVs'Us) }

-1
= N{v‘(ugvsus)1u;v$lys,(u;v$1us) }

=1(y|Ys) (7.1)
Subgtituting equations (5.1), (7.1) and (6.11) into
formula (4.2) we obtain

(Y, lyg =

[ [ 100 1veuBT(r Iy r(Blys)dydp
RPRA
:.[ .[N(yr |(XrB+Ur’Y)

RPRA
-1 -1
ViV (Vs = (XB+UgY)), Vir = VsV Vs |

xN{v‘(u;vglus)‘l u;v;slys,(u;v;&uss)‘l}

xN{B‘(x;vglxs)‘lx;vglys,(x;vsglxs)‘l}

dydp. (7.2)

To obtain the posterior predictive mean we manipulate
(7.2) to obtain the nested conditional means

B,y = Eg{Ey[ Ey, (v Vs 1:B)| Vs |lvs)
= (XrﬂB +Urﬂy)+vrsV§sl(y$_(XsﬂB +Usﬂy)) -

Thus, our estimate of the population total under
squared error lossis

Te = LYs + 1 E(Yr 1Ys)
= Lys+1 {(XrﬂB+Urﬂy)

+VreVas(vs = (Xettg + Ustiy) )} (7.3)

If we assume V = xi(l — n)_ln, U = nl then (7.3) can
be shown to have the form of the general regression
estimator (2.1) with an adjusted error term:

To = VXup + L™ (Vs —meXsitg )
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