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Introduction

The focus of this paper is on the prediction of a finite
population total T by taking a sample of size n from a
population of size N units. For example, suppose we
wish to estimate the average total amount a university
student can expect to borrow before graduation in a
certain region of the country. We can use sample
survey information from graduating students to predict
the total loans for all students in that region and from
that we can estimate the average total amount a
student will borrow.

Classical theory models the data collection
procedure with a sampling design, a probability
function defined on the sample space, S, of all possible
samples of size n. The sampling design along with
unbiasedness requirements yields a frequentist
approach to relating observed with unobserved
population units. In contrast, a superpopulation model
provides the stochastic structure for Bayesian
inferential purposes. In this paper, under an ignorable
design, we develop a fully Bayesian approach to the
prediction of the population total T that is a function of
the mean of the posterior predictive distribution. We
show that the Bayesian estimator has the general form
of the familiar general regression estimator found in
model assisted survey sampling.

1. Matrix Empirical Bayes π-estimator

Gosh and Meeden (1997, p.164) present an empirical
Bayes estimator of the finite population mean for a
quantity of interest y1 , y2 , …, yN. In this section we

will present the results of Gosh and Meeden in a more
convenient form using matrices. Let s be a sample of
n elements from {1,2 …, N} and let r represent the (N
− n) non-sampled elements.

We can rewrite the results of Gosh and Meeden’s
population average estimate to an empirical population
total estimate in matrix form by assuming the
superpopulation model

Y = A1θ + e
where Y is N ¥ 1

Y =
 
 
  

s

r

y

y

such that ys is an n ¥ 1 vector of sampled units, and yr

is an (N− n) ¥ 1 vector of the non-sampled units.
Define A to be the known N ¥ N diagonal matrix

A =
 
 
  

s

r

A 0

0 A
,

where As is an n ¥ n diagonal matrix with diagonal

elements a1, a2 , …, an, and Ar is (N − n) ¥ (N− n)

diagonal matrix with diagonal elements an+1, an+2 ,

…, aN. Let 1 be an N ¥ 1 vector of ones

1 =
 
 
  

s

r

1

1
,

where 1s is an n ¥ 1 vector of ones, 1r is a (N − n) ¥ 1

vector of ones, θ is a 1 ¥ 1 unknown parameter, and e

∼ N(0,V), where N(u,W) denotes a multivariate
normal distribution with mean vector u and covariance
matrix W. Assume V is a known positive definite
diagonal matrix that may be partitioned as

V =
 
 
  

ss

rr

V 0

0 V
,

where Vss is an n ¥ n diagonal matrix with diagonal

elements 2
iσ for i = 1, 2, …, n, and Vrr is an (N − n) ¥

(N− n) diagonal matrix with diagonal elements 2
jσ

for j = n + 1, n +2, …, N. To estimate the population
average first note that the population total is

T = ′1 Y = [ ]  
′ ′  

  

s
s r

r

y
1 1

y
= ′ ′+s s r r1 y 1 y

Thus, our estimate of the population total involves
estimating the non-sampled units yr of the population
total T. The estimate of the population total for a fully
Bayesian method under squared error loss requires the
posterior predictive expectation E(yr|ys) for estimation

of yr. This posterior expectation can be obtained by
the nested expectations

E(yr|ys) = ( )| , ,E E 
 rθ y r s sy y θ y ,

where E
ry (·) is the expectation with respect to yr and

E
q
(·) is the expectation with respect to the posterior of

θ. Under model Y = A1θ + e, ( )| , ,E θ
ry r sy y =

Ar1rθ. Now, instead of taking the expectation
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E
q
(Ar1rθ), an empirical Bayes result ensues by

estimating the unknown parameter θ using a weighted
least squares estimate. Let Xs = As1s, then the least

squares estimate of θ is

( ) 11 1
L̂Eθ

−− −′ ′= s ss s s ss sX V X X V y

= ( ) 11 1−− −′ ′s s ss s s s s ss s1 A V A 1 1 A V y (1.1)

Thus, an empirical Bayes estimate of the population
total is

( )ˆˆ | , ,EB LET E θ′ ′= +
rs s r y r s1 y 1 y y

= ˆ
LEθ′ ′+s s r r r1 y 1 A 1

= ′s s1 y

+ ( ) 11 1−− −′ ′ ′r r r s s ss s s s s ss s1 A 1 1 A V A 1 1 A V y . (1.2)

Next we use the matrix form of the empirical Bayes
estimate and derive the Horvitz-Thompson estimator
using the assumptions noted by Gosh and Meeden.
Let pi represent the inclusion probability for an

individual k from a finite population of size N where i
= 1,2,…, N. Define p to be an N ¥ N diagonal matrix
whose diagonal elements, pii ∫ pi, i = 1,2,…N, are the

inclusion probabilities. We can write p as

p =
 
 
  

s

r

0

0

π
π

where ps is an n ¥ n diagonal matrix and pr is an (N -

n) ¥ (N - n) diagonal matrix. One of the conditions of

the inclusion probabilities is that
1

N
ii

n= =∑ π . In

matrix form this condition for the sum of the diagonal
elements of π can be written as

n = ′1 Π1 = [ ]    
′ ′    

      

s s
s r

r r

0 1
1 1

0 1

π
π

= ′ ′+s s s r r r1 1 1 1π π ,
which implies

n′ ′= −r r r s s s1 1 1 1π π . (1.3)

Let A = π, V = π(I − π)
−1π where I is the N ¥ N

identity matrix

I =
 
 
  

s

r

0

0

Ι
Ι

such that Is is an n ¥ n identity matrix and Ir is an (N −
n) ¥ (N − n) identity matrix. Using equations (1.3) and
the assumptions made for A and V, the empirical
Bayes estimator (1.2) becomes

( ) 1
ÊBT − ′ ′= + −

 s s s s s s1 1 I π π y

= 1−′s s s1 π y (1.4)
Equation (1.4) is the matrix representation of the
Horvitz-Thompson estimator, sometimes referred to as
the π-estimator, for the population total.

2. General Regression Estimator

In this section we introduce the general regression
estimator and present it in a more convenient form
using matrices. This facilitates subsequent derivations.

As a means to possibly improve the basic p-
estimator using auxiliary information, Sarndal et al.
(1992) employ classical sampling design theory, using
inclusion probabilities, and the regression model Y =
Xb + e where e ∼ N(0,V). The latter is used, however,
only as a means to obtain an estimate of b. Hence,
unbiasedness and variance expressions are derived
under the sampling design. In short, Sarndal et al.
(1992) do not assume that the regression model
generated the sample. Thus, the general regression
estimator (GRE) derived in Sarndal et al. (1992) is
model assisted but not model dependent. Sarndal et al.
(p.225, 1992) define the GRE as

GRE
1 =1 =1 1

ˆˆ
pn N n

jkk
j jk

k kk j k k

Xy
T X

= =

 
≡ + −  

 
∑ ∑ ∑ ∑β

π π
,

where yk is a variable of interest, like loan amount, for

k = 1, 2,…, N, pk is the inclusion probability, ˆ
jβ is an

unknown regression coefficient for j = 1, 2,…, p, and
xjk is a known auxiliary variable. Notice that the GRE

is equal to the π-estimator plus an adjustment term.
Using a regression model to assist in the estimate for β
≡ (β1,…,βp)′, Sardnal et al. (1992, p. 228) suggest the

estimate

β̂ ≡
1

2 2
1 1

n n
k k k k

k kk k k k

y

σ π σ π

−

= =

 ′
 
 
 
∑ ∑

X X X
.

Still, under a simple random sampling design in which

( ) 1
,n

N

−=π I β̂ is the least squares estimator

( ) 11ˆ −−′ ′≡s s s sX X Xβ Σ S
-1

ys, where S is a p ¥ p

positive definite covariance matrix. Now, using the
notation established in Section 1, the GRE can be
rewritten as

GRET̂ = ( )1ˆ ˆ−′ ′ ′+ −s s s s s s1 X 1 y Xβ π β . (2.1)

Assuming S = s
2
I and a simple random sampling

design we can express (2.1) as



[ ]GRE
ˆˆ N

T
n

′ ′= + −s s s s s1 X 1 I P yβ

where, again, ( ) 1ˆ −′=s s sX Xβ Xsys is the least square

estimator of b and Ps = Xs ( ) 1−′ ′s s sX X X is the

projection matrix onto the column space of Xs.

3. An Empirical Bayes General Regression Estimator

In this section we introduce a superpopulation model
and obtain an empirical Bayes estimator of the
population total. Our empirical Bayes estimator of the
population total T = ′s1 ys + ′r1 yr requires derivation
of the mean of the posterior predictive distribution
E(yr|ys). Finally, we show that our empirical Bayes
estimator is equal to the general regression estimator.

Royal and Pfeffermann (1982) focus attention on
necessary assumptions needed for robustness of their
statistical procedures for predicting the population
total T given ys. They consider their procedure robust

if the posterior probability distribution of T using
model Y = Xβ + e is not greatly affected by instead
using model Y = Xβ + Uγ + e where U are additional
regressors with a fixed coefficient vector γ.
Niewenbroek and Renssen (1997) consider estimating
the population total T by using two or more surveys to
obtain common variables, U, as additional regressors
observed in both surveys for which the corresponding
population totals are unknown and combining them
with auxiliary variables, X, which have known
population totals. They then use these common
variables as a tool to improve the estimate of the
population total by using what they call an adjusted
general regression estimator.

Consider the superpopulation model

Y = Xb + Ug + e. (3.1)

Here X is N ¥ p with full column rank and

X =
 
 
  

s

r

X

X

such that Xs is n ¥ p and Xr is ( )N n− ¥ p.

Furthermore, U is N × q with full column rank and

U =
 
 
  

s

r

U

U

such that Us is n × q and Ur is ( )N n− ¥ q. Finally, g

is q × 1 and e ∼ N(0,V), with V known such that

V =
 
 
  

ss

rr

V 0

0 V
.

To estimate T, we shall utilize E(yr|ys). To obtain the

latter we first estimate b by regressing ys on Xs
resulting in an empirical Bayesian procedure. We have

b|ys ~ N ( ) ( ) 11 1 11
,

−− − −− ′ ′ ′ 
 

s ss s s ss s s ss sX V X X V y X V X .

Substituting into (3.1) we have
ˆ= + +sY X U eβ γ . (3.2)

Using model (3.2) we want an estimator of the
population total T = ′ ′+s s r r1 y 1 y . We must obtain the

mean of the posterior predictive distribution p(yr|ys).

Using the improper prior p(g) µ constant, the
posterior predictive distribution has the form

p(yr|ys)= ( )ˆ, , ,q f∫ r s r rry U V
�

γ β

( )ˆ, , , dπ× s s s ssy U Vγ β γ , (3.3)

where the likelihood of yr
ˆ

sγ, β , Xr ,Ur,Vrr is

( )ˆ, , , ,f r s r r rry X U Vγ β

= N ( )ˆ ,+r r s r rry X U Vβ γ . (3.4)

The posterior of ˆ, , ,s s s ssy U Vγ β can be shown to be

ˆ( | , , , )s s s ssπ y β U Vγ =

N ( 1 1 1 ˆ( ) ( ),− − −′ ′ −s ss s s ss s s sU V U U V y Xγ β

( ) 11 −− ′ 


s ss sU V U . (3.5)

Thus, using (3.4) and (3.5), (3.3) becomes

p(yr|ys)=

( ) ( )2 2ˆ ˆ, , , , , ,q f d∫ r s r s s sy U y U
�

σ π σβ γ γ β γ

= ( )ˆ ,q N +∫ r r s r rry X U V
�

β γ ¥ (3.6)

( ) 11 1 1 1ˆ( ) ( ), .N d
−− − − − ′ ′ ′− 

 
s ss s s ss s s s s ss sU V U U V y X U V Uγ β γ

Using equation (3.6), the mean of the posterior
predictive distribution p(yr|ys) is

E(yr|ys) = ( )ˆ ,
q N n

N
−

+∫ ∫ r r r s r rry y X U V
� �

β γ

= ( )ˆ ˆ, , , , , ,E E 
  ry r s r rr s s s ssy U V y U Vγ β γ β

= ( )1 1 1ˆ ˆ( )− − −′ ′+ −r s r s ss s s ss s s sX U U V U U V y Xβ β

where Eyr
(◊) and E

g
(◊) denote expectations with

respect to the distributions of yr and g, respectively.



Thus, our empirical Bayesian estimate of the
population total is

EBT̂ = ′ ′+s s r1 y 1 E(yr|ys)

= ′ +s s1 y ˆ′
r r s1 X β

+ ( )1 1 1 ˆ( )− − − ′ ′ −
r s ss s s ss s s sU U V U U V y X β .

A special case to our Empirical Bayes estimator leads
to an Empirical Bayesian justification for the general
regression estimator. First, we use the notation in

section 1 and let V = π(I − π)
−1π and U = π ′1 . Then,

using equation (1.3) the mean of ˆ( | , , , )π s s s ssy β U Vγ

becomes

( )1 1 1 ˆ( )− − −′ ′ −s ss s s ss s s sU V U U V y X β =

[ ] ( ) ( )1 1 ˆ− −′ ′ − −r r r s s s s s s s1 1 1 I π π y X βπ . (3.8)

Using equation (3.8) then the right hand side of (3.7)
becomes

EBT̂ = ˆ′ s1 Xβ + ( )1 ˆ−′ −s s s s s1 π y X β .

Therefore, with V = π(I − π)
−1π, U = π ′1 and using

the mean of the posterior predictive distribution
p(yr|ys) as our estimator for the unknown quantity yr
in T, we have shown that our empirical Bayesian
estimator for the population total is the general
regression estimator (2.1).

4. The Superpopulation Model

Consider the superpopulation model

Y = Xb + Ug + e, (4.1)

where X is N ¥ p with full column rank, U is N ¥ q

with full column rank, b is p ¥ 1, g is q ¥ 1, e ∼
N(0,V), where N(u,W) denotes a multivariate normal
distribution with mean vector u and covariance matrix
W. Assume V is a known positive definite matrix that
may be partitioned as

V =
 
 
  

ss sr

rs rr

V V

V V
,

where Vss is n × n, Vsr is n × (N − n), Vrs is (N − n)

× n, and Vrr is (N − n) × (N − n). Assume b and g

are conditionally independent, given ys, each with
improper uniform prior distributions. Using
superpopulation model (4.1), we shall obtain the
posterior predictive distribution of yr|ys. Then, under
squared error loss, we use the mean of the posterior
predictive distribution, E(yr|ys), to estimate ′r r1 y in

the population total T = ′ ′+s s r1 y 1 yr.

The predictive distribution is (Geisser, 1993,
p.49)

p(yr|ys)=

( ) ( ) ( ),
p q

f d d∫ ∫ r s s sy y y y
� �

π π, γ,β γ β β γ β , (4.2)

where f denotes the appropriate joint or conditional
density and �

v denotes v-dimensional real space.

Notice that, if yr is independent of ys, then

p(yr|ys)= ( ) ( ) ( ),
p q

f d d∫ ∫ r s sy y y
� �

π πγ,β γ β β γ β .

In the following sections we derive the distributions in
the integrand of (4.2).

5. The Marginal Density of yr
In general, independence between yr and ys may not
obtain. Thus, to derive the conditional distribution
f(yr|ys,b,g) we use a well-known method of
nonsingular linear transformation from multivariate
analysis. The distribution of yr is

f(yr|ys,g,b)=

( ) ( )( )( 1 ,N −+ + − +r r r rs ss s s sy X U V V y X Uβ γ β γ

)1−−rr rs ss srV V V V (5.1)

and the distribution of ys

( | )f sy γ,β = N( | , )+s s s ssy X U Vβ γ .

6. Posterior Distributions for b and g

In this section we obtain the conditional and
marginal components of the posterior p(g,b|ys) =

p(g|b,ys) p(b|ys). Since p(g,b) µ constant, we have

p(g,b|ys) = p(g|b,ys) p(b|ys)

µ f(ys|g,b) = N(ys|Xsb + Usg,Vss).

Thus, the quadratics in the exponential terms in
p(g|b,ys) and p(b|ys) are derived from the normal

density N(ys|Xsb + Usg,Vss):

( ) ′− +  s s sy X Uβ γ 1−
ssV ( )− +  s s sy X Uβ γ

= 1−′s ss sy V y -

1−′s ss sy V X β -

1−′s ss sy V U γ

-

1−′ ′s ss sX V yβ -

1−′ ′s ss sU V yγ + 1−′ ′s ss sX V Xβ β

+ 1−′ ′s ss sX V Uβ γ + 1−′ ′s ss sU V Xγ β

+ 1−′ ′s ss sU V Uγ γ . (6.1)



The quadratic form in p(g|b,ys) will be derived from
the components of equation (6.1) containing gamma
coefficients:

1−′ ′s ss sU V Uγ γ - 1−′s ss sy V U γ - 1−′ ′s ss sU V yγ

+ 1−′ ′s ss sX V Uβ γ + 1−′ ′s ss sU V Xγ β

= 1−′ ′s ss sU V Uγ γ - 2 ( ) 1−′ ′ ′−s s ss sy X V Uβ γ . (6.2)

Since 1−
ssV is positive definite and symmetric, then it

has full-rank factorization
1−

ssV = 1 1′K K (6.3)

where 1K is a nonsingular n ¥ n matrix. Let sU� =

1 sK U and define the projection matrix

suP
�

= 1( )−′ ′s s s sU U U U� � � � .

Using (6.3), we can rewrite (6.2) as
1−′ ′s ss sU V Uγ γ - 2 ( ) 1−′ ′ ′−s s ss sy X V Uβ γ

= 1 1′ ′ ′s sU K K Uγ γ - 2 ( ) 1 1′ ′ ′ ′−s s sy X K K Uβ γ

= ( ) ( )′
s sU U� �γ γ - 2 ( )1

′ − su s s sP K y X U
�

�β γ . (6.4)

Define
C1 = ( )1 −

su s sP K y X
�

β . (6.5)

Note that C1 is a constant with respect to g. The right

hand side of equation (6.4) becomes

( ) ( )γ γ′
s sU U� �

- 2 ( )1 β γ′ − su s s sP K y X U
�

�

= ( ) ( )γ γ′
s sU U� �

- 2 1 γ′ sC U� + 1 1′C C - 1 1′C C .

Thus, using (6.3) and (6.5) the quadratic in the
exponential term of ( | , )π syγ β is

sQ ≡ ( ) ( )′
s sU U� �γ γ - 2 1′ sC U� γ + 1 1′C C

= ( ) ( )1 1
′− −s sU C U C� �γ γ

= ( ) 1
 ′′ ′ ′− −
  ss s s uU y X K P

�

�γ β

( )1
 × − −  ss u s sU P K y X

�

� γ β

= ( )1 1 1 1( )− − − −′ ′ ′ ′− −
 s ss s s ss s s s ss sU V U U V y X U V Uγ β

× ( )1 1 1( )− − − ′ ′− −  s ss s s ss s sU V U U V y Xγ β .

Thus,

p(g|b,ys)=

( ) ( ) 11 1 1 1( ) ,N
−− − − − ′ ′ ′− 

 
s ss s s ss s s s ss sU V U U V y X U V Uγ β

≡ ,N  
 Vµγ γγ . (6.6)

Now we find the exponential term of the marginal
distribution p(b|ys). From (6.5) we have

1 1′C C = ( )1
′ − su s sP K y X

�

β ( )1 − su s sP K y X
�

β

= 1 1′ ′ ′
ss u sX K P K X

�

β β - 2 1 1′ ′
ss u sy K P K X

�

β

+ 1′ ′
ss u sy K P Ky

�

. (6.7)

Using (6.3), the remaining term of equation (6.1)
containing b that was not used to obtain the
exponential term in p(g|b,ys) is

1−′ ′s ss sX V Xβ β - 2 1−′s ss sy V X β
= 1 1′ ′ ′s sX K K Xβ β - 2 1 1′ ′s sy K K X β . (6.8)

Thus, the exponential term in p(b|ys) will be derived
from the combination of equation (6.7) and equation
(6.8):

1 1′ ′ ′s sX K K Xβ β - 1 1′ ′ ′
ss u sX K P K X

�

β β

- 2 1 1′ ′s sy K K X β +2 1 1′ ′
ss u sy K P K X

�

β

= ( )1 1′ ′ ′ −
ss s u sX K I P K X

�

β β

- ( )1 1′ ′ −
ss s u sy K I P K X

�

β . (6.9)

Let Xs and Us be partitioned as follows

Xs = 1 2 p  X X X�

and

Us = 1 2 q  U U U� ,

where Xi and Uj are n ¥ 1 column vectors of Xs and

Us respectively for i = 1, 2, …, p and j = 1, 2, …, q.

Since 1−
ssV is symmetric and positive definite then the

bilinear form 1
i j

−′ ssX V U qualifies as an inner product

for �

n
. Assume the column space of Xs, C(Xs), is

orthogonal to the column space of Us, C(Us), with

respect to 1−
ssV , denoted by C(Xs) ⊥ 1−

ssV
C(Us). Since

C(Xs) ⊥ 1−
ssV
C(Us) then 1−′s ss sX V U = 0 or equivalently

1−′s ss sU V X = 0 (Harville, 1997, p. 257). In particular,

C(Xs) ⊥ 1−
ssV
C(Us) implies 1

i j
−′ ssX V U = 0 or

1
j i

−′ ssU V X = 0 for i = 1, 2, …, p and j = 1, 2, …, q. In

addition, since 1−′s ss sX V U = 0 then Xs is orthogonal to

Us, denoted by Xs ⊥ Us (Harville, 1997, p. 257).

Since Xs ⊥ Us, this implies the column vectors of Xs

are independent of the column vectors of Us. Let sX�

= 1 sK X and notice ′s sU X� � = 0. Thus, (6.9) becomes



( )1 1′ ′ ′ −
ss s u sX K I P K X

�

β β - 2 ( )1 1′ ′ −
ss s u sy K I P K X

�

β

= ′ ′s sX X� �β β - 2 1′ ′s sy K X� β . (6.10)

Define the projection matrix

sXP
�

= ( ) 1−′ ′s s s sX X X X� � � � .

Then we can rewrite (6.11) as

′ ′s sX X� �β β - 2 1′ ′s sy K X� β

= ( ) ( )′
s sX X� �β β - 2 ( )1

′
s sXs

P K y X
�

� β .

Since 2C ≡ 1sXP K
�

ys is a constant with respect to b,

we have

( ) ( )′
s sX X� �β β - 2 ( )2′ sC X� β + 2 2′C C - 2 2′C C .

Thus, the quadratic in the exponential of the
distribution of p(b|ys) is

Rs ≡ ( ) ( )′
s sX X� �β β - 2 ( )2′ sC X� β + 2 2′C C

= ( ) 11 1−− − ′ ′ ′− 
 

s ss s s ss sX V X X V yβ 1−′s ss sX V X

( ) 11 1−− − ′ ′− 
 

s ss s s ss sX V X X V yβ .

This suggests that the marginal distribution p(b|ys) is

p(b|ys)

= ( ) ( )1 11 1 1,N
− −− − − ′ ′ ′ 

 
s ss s s ss s s ss sX V X X V y X V Xβ

≡ ,N  
 Vµβ ββ . (6.11)

7. The Bayes Estimator

In this section we combine the results of Sections 4
and 5 and derive our Bayesian estimator of the
population total.

While obtaining the marginal distribution p(b|ys)

in the last section we assumed C(Xs) ⊥ 1−
ssV
C(Us).

Consequently, (6.6) becomes

p(g|b,ys) =

( ) ( ) 11 1 1 1( ) ,N
−− − − − ′ ′ ′− 

 
s ss s s ss s s s ss sU V U U V y X U V Uγ β

= ( ) 11 1 1 1( ) ,N
−− − − − ′ ′ ′ 

 
s ss s s ss s s ss sU V U U V y U V Uγ

( | )= π sγ y (7.1)
Substituting equations (5.1), (7.1) and (6.11) into
formula (4.2) we obtain

p(yr|ys) =

( | , ) ( | ) ( | )
p q

f d dπ π∫ ∫ r s s sy y y y
� �

γ,β γ β γ β

= ( )(
p q

N +∫ ∫ r r ry X U
� �

β γ

( )( ) )1 1,− −+ − + −rs ss s s s rr rs ss srV V y X U V V V Vβ γ

( ) ( )1 11 1 1,sN
− −− − − ′ ′ ′×  

 
s ss s ss s s ss ssU V U U V y U V Uγ

( ) ( )1 11 1 1,N
− −− − − ′ ′ ′×  

 
s ss s s ss s s ss sX V X X V y X V Xβ

d dγ β . (7.2)

To obtain the posterior predictive mean we manipulate
(7.2) to obtain the nested conditional means

E(yr|ys) = ( ){ },E E E 
 ry r s s sy y y yβ γ γ,β

= ( ) ( )( )1µ µ µ µ−+ + − +r r rs ss s s sX U V V y X Uβ γ β γ .

Thus, our estimate of the population total under
squared error loss is

BT̂ = ′ ′+s s r1 y 1 E( |r sy y )

= ′ ′+s s r1 y 1 ( ){ µ µ+r rX Uβ γ

( )( )}1 µ µ−+ − +rs ss s s sV V y X Uβ γ . (7.3)

If we assume V = π(I − π)
−1π, U = π1 then (7.3) can

be shown to have the form of the general regression
estimator (2.1) with an adjusted error term:

B̂T = ( )1µ µ−′ ′+ −s s s s s1 X 1 π y π Xβ β .
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