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Abstract: Auditors are often faced with reviewing a 
sample of business invoices and estimating the 
number of error items and the total error amount for 
a rarely occurring event.  One special case is dividing 
the dollars in a large population of invoices into two 
categories according to whether they meet or do not 
meet the requirements, are or are not in error.  In 
other words, the error amount follows a nonstandard 
mixture distribution in which the error amount is 
either zero with a large probability or the original 
invoice amount with a very small probability.  It is 
likely that the sample or some strata of the sample 
will include only zero error items.  Under this 
scenario, the classical method will not produce 
satisfactory estimation, especially when a 
conservative estimate of the number of error items or 
error amount is needed.  We will show some flexible 
applications using the hypergeometric distribution.    
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1.  Introduction 
  
Suppose the population includes N  invoices and 
each has a known invoice amount. The invoices are 
divided into two classes – error class C  and non-

error class C
~

.  If an invoice is in error, then the error 
amount is equal to its invoice amount; otherwise the 
error amount is zero.  The percentage of items in 
error is very small, i.e., most observations have a 
zero error amount.  For example, if a sample, simple 
random sample or stratified random sample, contains 
no error, classical methods do not apply anymore.  In 
this paper, estimation using the hypergeometric 
distribution is proposed.  An application using the 
upper bound of the error rate for a simple random 
sample can be found in Cochran (1977) and Wilburn 
(1984).  We extend the application of the 
hypergeometric distribution to stratified designs and 
to the estimation of the error amount.  The proposed 
method is also illustrated using a simulation. 
 

Let x  be the known amount for each item and y  be 

the unknown error amount in the population. Then 
the error amount is 
 

y  =






C

Cx
~

Classerror -Noninisitemtheif,0

ClassError inisitemtheif,
 

 
 
2.  Application To Simple Random Sample 
 
Suppose that M  items in the population are in error 
class C  and the other N - M  items in the population 

are in the non-error class C
~

.  From the simple 
random sample of n  items, the number of error 
items a  in the sample given a total of M  error items 
in the population follows the hypergeometric 
distribution: 
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In practice, the value of M  is of interest but 
unknown.  Instead, the sample result of a  error 
items in the sample is known.  Therefore, the 
probability of M  error items in the population given 
that a  out of n  items in the simple random sample 
turn out to be in error is of interest.  It can be derived 
as  
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Further, assuming that error items are evenly 
spread in the population, which is the application 
condition for this method in estimating the error 
amount and also a reasonable assumption when fine 
stratification is used.  Then an approximate of the 
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total error amount Y  corresponding to the M  error 
items in the population is 
 
Y = MX 1                                                                 (3) 
 
where X  is the known mean invoice amount of the 
population. 
 
The probability of Y  given the sample results of a  
error items is  
 

( )aYPr = ( )aMPr                                                (4) 

 
 
3.  Application To Stratified Sample 
 
To apply the above method in stratified samples, we 
need to find the probability distribution of 
M = 1M + 2M .  Here the subscript denotes the 

stratum number, i.e., 1M  and 2M  are the population 

number of error items in strata 1 and 2.  Let 1a  and 

2a  be the number of error items from the sample of 

size 1n  in stratum 1 and the sample of size 2n  in 

stratum 2 separately.  Since the selections across 
strata are independent, the probability distribution of 
total error items M = 1M + 2M  in the population 

given the sample result of 1a  error items in stratum 1 

and 2a  error items in stratum 2 is 
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where ( )11Pr aM  and ( )22Pr aM  have the same 

functional form of equation (2) except with 
subscripts. 
 
Similarly, the approximate total error amount 
Y = 21 YY +  corresponding to 1M  and 2M  is 

 

                                                 
1  To take into account the error amount in the 
sample, we can use Y = nY + )()( aMX nN −−  to 

approximate the total error amount, where nY  is the 

known total error amount from the sample of n  
items and )( nNX −  is the known mean invoice amount 

from the nN −  non-sampled items.   

Y = 21 YY +  = 11MX  + 22 MX                             (6) 

 
where 1Y = 11MX  is the approximate total error 

amount corresponding to 1M  in stratum 1 and 1X  is 

the known population mean invoice amount of 
stratum 1.  Similarly, 2Y = 22 MX  is the approximate 

total error amount corresponding to 2M  in stratum 2 

and 2X  is the known population mean invoice 

amount of stratum 2.    The probability distribution 

of Y  given the sample results ( 1a , 2a ) is calculated 

by  
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where  
 

( )11Pr aY = ( )11Pr aM  

 
 and  
 

( )22Pr aY = ( )22Pr aM . 

 
 
4.  Estimation 
 
Using the probability distribution of M  given a  by 
equation (2), there are two point estimators, the 
mode and the mean )( aME .  The classical method 

is to treat the mode as a function of some average, 

where 
n

a
 is the average number of error items in the 

sample.  This method is well established in Cochran 
(1977) and appropriate if a  is not close to zero.  For 

a simple random sample, the mode N
n

a
 is an 

unbiased estimator of M  in the sense of repeated 
sampling.  But for a  very small, the mode may not 
be a good estimate.  The corresponding confidence 
interval from Cochran (1977) works well only if a  is 
reasonably large.  Further, when there are no error 
items in the sample, this method does not apply 
anymore. 
 
Instead, )( aME  is a good choice especially when a 

conservative estimate is desired.  Since the 



  

conditional probability distribution of M  given a  is 
positively skewed in the rare error situation, the 
mean estimator is more conservative than the mode 
estimator.  When there are no error items in the 
simple random sample and the mode is zero, we 
would use )( aME  as the point estimator.  

 
The exact confidence interval of the population 
number of error items can be obtained using the 
conditional probability distribution of M  given a  
by equation (2).   The confidence intervals can be 
determined from the probability distribution by the 
criterion of Minimum Expected Length (Bain & 
Engelhardt, 1991).   
 
Similarly, the estimate about the total error amount is 
obtained from the probability distribution of Y  given 
a  by equation (3).   
 
The proposed estimator and confidence interval can 
also be used in a stratified sample using the 
probability distributions defined by (5) and (7). 
 
The estimation process is illustrated in the following 
simulation section.  
 
 
5.  Simulation and Estimation Example 
 
We typically have stratified designs in practice.  The 
population of 600 records is first sorted by the value 
of x and then divided into two equal-sized strata.  
Figure 1 is the histogram of the design variable x .  
The population summary is given in Table 1.    
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As shown in Table 1, there are 15 (5%) error items in 
stratum 1 and 30 (10%) error items in stratum 2.   
The error items are evenly spread out over the 
population. Two thousand stratified random samples 

of size 70 are selected, with 30 items from stratum 1 
and 40 items from stratum 2.  Table 1 and Table 2 
give the distribution of the 2000 repeated samples for 
stratum 1 and stratum 2.  Theoretically, the number 
of errors in the samples from stratum 1 could be 0 – 
15.  But the probabilities on the high end are 
extremely small.  As shown in Table 1, none of the 
2000 samples have more than 7 errors.  The number 
of errors per sample from stratum 2 is no more than 
10. 
 
As shown in Table 2, when the error occurrence is 
5%, 386 out of 2000 samples include no non-zero 
error items and we cannot use classical methods.  
The chance of getting only 1 or 2 non-zero items in 
the sample is very high--again a situation where 
classical methods do not provide a good estimate and 
confidence interval. 
 
Tables 2 and 3 show that the conditional mean is 
larger than the mode for each given a . 
 
Table 1.  Population Summary 
 

Stratum 
 

Populatio
n Size 

N  

Number 
of Error 

Items 
M  

Total 
Invoice 
Amount 

X  

Total 
Error 

Amount 
Y  

1 300 15 279,024 14,080 
2 300 30 510,506 51,024 

Total 600 45 789,530 65,104 
 
 
Table 2.  Distribution of 2000 Simple Random  
                Samples of Size 30 from stratum 
 
Number of 
Errors in 
the Sample 
         a  
 

Number 
of 

Samples 
 
 

Mode of the 
Probability 
Distribution 

of Y  Given a  

Estimated 
Number of 

Errors  
M̂ = )( aME  

0 386 0 8.44 
1 689 10 17.86 
2 562 20 27.31 
3 251 30 36.75 
4 96 40 46.19 
5 12 50 55.63 
6 3 60 65.06 
7 1 70 74.50 

Total 2000 
 

15.2 
 

22.8 
 



  

 
Table 3.  Distribution of 2000 Simple Random  
                Samples of Size 30 from stratum 2 
 
Number of 
Errors in 
the Sample 
         a  
 

Number 
of 

Samples 
 
 

Mode of the 
Probability 
Distribution 

of Y  Given a  

Estimated 
Number of 

Errors  
M̂ = )( aME  

0 81 0 8.44 
1 253 10 17.87 
2 440 20 27.31 
3 492 30 36.75 
4 395 40 46.19 
5 215 50 55.62 
6 79 60 65.06 
7 36 70 74.50 
8 8 80 83.94 
9 0 90 93.37 

10 1 100 102.81 

Total 2000 
 

30.3 
 

37.1 
 
 
To illustrate the estimation process, we will look at 
one of the 2000 samples.  Suppose this sample 
includes zero error items from stratum 1 and 4 error 
items from stratum 2.   
 
For stratum 1, we calculate ( )0Pr 11 =aM using 

equation (2) and ( )11Pr aY  using equations (3) and 

(4).  The probability distribution is presented in 
Figure 2 and Table 4.   For stratum 2, the probability 
distribution is presented in Figure 3 and Table 5.    
 
From Table 4, it is easy to calculate the estimated 
number of errors in the population: 
 

1M̂  = ( )011 =aME  = 8.44 

 
The confidence interval at a 90% confidence level 
corresponding to 1a =0 is (0, 20) based on the 

criterion of minimum expected length. 
 
Correspondingly, the estimated error amount is  
 

1̂Y  = 11
ˆ XM  = 8.44 × (279,024 ÷ 300) = $7,847 

 
The confidence interval for the error amount at  a 
90% confidence level is ($0, $18,602). 

 

Figure 2.  Probability Distribution 
 of M Given a=0 (Stratum 1)
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Table 4.  Probability Distribution of Number  
   Of Errors/Error Amount in the Population  
   Given None Error in the Sample (STRATUM 1) 
 

Number of 
Errors In 

the 
Population 

 

1M  

Appropriate 
Error Amount 
Corresponding 

to 1M  
 

1Y  

Probability 

( )0Pr 11 =aM

or 

( )0Pr 11 =aY  

Cumulative 
Probability 

 

∑
1

Pr
M

or ∑
11

Pr
y

 

0 0 0.1030 0.1030 

1 930 0.0927 0.1957 

2 1,860 0.0834 0.2791 

3 2,790 0.0750 0.3541 

4 3,720 0.0674 0.4215 

5 4,650 0.0606 0.4821 

6 5,580 0.0544 0.5365 

7 6,511 0.0489 0.5854 

8 7,441 0.0439 0.6292 

9 8,371 0.0394 0.6686 

10 9,301 0.0353 0.7039 

11 10,231 0.0317 0.7356 

12 11,161 0.0284 0.7639 

13 12,091 0.0254 0.7893 

14 13,021 0.0228 0.8121 

15 13,951 0.0204 0.8325 

16 14,881 0.0182 0.8507 

17 15,811 0.0163 0.8670 

18 16,741 0.0146 0.8816 

19 17,672 0.0130 0.8946 

20 18,602 0.0116 0.9062 

 M  M    M   M  

270 251,122 0.0000 1.0000 

 



  

 
Similarly, for stratum 2, as summarized in Figure 3 
and Table 5, we have 
 

2M̂  = ( )422 =aME  = 46.19 

2̂Y  = 22
ˆ XM  = 46.19 × (510,506 ÷ 300) = $78,597 

 
The 90% confidence interval is (4, 70) for 2M  and 

($6,806, $119,118) for 2Y . 

 
To obtain the overall estimate of M = 1M + 2M  and 

Y = 21 YY +  across all strata, we calculate the 

distributions M  and Y  given 01 =a  and 42 =a  

using equations (5) and (7).   Then it is 
straightforward to find the mean and the confidence 
interval using the probability distribution. 
 
 
6.  Conclusion 
 
In rare error situations, it is likely that no or only a 
few non-error items appear in the sample.  In this 
situation, classical methods either do not apply or can 
not provide an appropriate estimate and confidence 
interval.  The hypergeometric method described 
above is a good solution, especially when a 
conservative estimate and confidence interval is 
desired.    
 
 

Figure 3.  Probability Distribution 
 of M Given a=4 (Stratum 2)
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Table 5.  Probability Distribution of Number  
   Of Errors/Error Amount in the Population  
   Given Four Error in the Sample (STRATUM 2) 
 
 

Number of 
Errors In 

the 
Population 

 

2M  

Appropriate 
Error Amount 
Corresponding 

to 2M  
 

2Y  

Probability 

( )4Pr 22 =aM

or 

( )4Pr 22 =aY  

Cumulative 
Probability 

 

∑
2

Pr
M

or ∑
2

Pr
y

 

4 6,807 0.0000 0.0000 

5 8,508 0.0000 0.0000 

6 10,210 0.0001 0.0002 

7 11,912 0.0002 0.0004 

8 13,613 0.0004 0.0008 

9 15,315 0.0007 0.0015 

10 17,017 0.0010 0.0025 

 M  M    M   M  
66 112,311 0.0100 0.8651 

67 114,013 0.0094 0.8745 

68 115,715 0.0089 0.8835 

69 117,416 0.0084 0.8919 

70 119,118 0.0079 0.8998 

 M  M    M   M  
274 466,262 0.0000 1.0000 
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