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I. INTRODUCTION 

Among many problems and challenges coming 
from the Graduated Work Incentive Experiment, 
one in particular has provided an opportunity 
for the authors, as econometricians, to round 
out their statistical education; and, perhaps, 
to make a contribution to the literature on 
experimental design. The problem we faced is 
a familiar economic one --how to get the most 
of some desirable output from limited inputs of 
financial and other resources, while observing 
various additional constraints. 

For the graduated Work Incentive Experiment, 
the desirable output was precision in estimating 
the effects of alternative income maintenance 
policies. The principal scarce input was money; 
but, because of earlier choices regarding the 
scale and structure of the experiment, the num- 
ber of families included in the experiment was 
also treated as a scarce input. Among the 
additional constraints on the problem were 
bounds on the guarantee levels, marginal tax 
rates, and pre- experiment income levels of the 
families in the experiment. It was also decided 
that an index of policy- makers' interest in 
alternative income maintenance policies should 
affect the design. These factors, together with 
specifications of an appropriate behavioral 
response function, have been fitted into a trac- 
table mathematical model from which optimal 
allocation of the scarce experimental funds and 
families can be derived. 

The model itself is not specific to the 
Graduated Work Incentive Experiment; rather it 
may be viewed as a general experimental design 
model for regression analysis. The model is both 
operational and quite flexible. It is opera- 
tional in the sense that it reduces to a problem 
of minimizing a convex non -linear objective func- 
tion subject to a set of linear constraints, a 
problem for which efficient computer solutions 
are available. The model is flexible in the 
sense that it can handle problems of arbitrary 
size, arbitrary regions of observation, alterna- 
tive response functional forms, multiple response 
functions, varying experimental objectives, 
unequal costs per observation, unequal error 
variances, multiple constraints on the design, 
and other variations. 

Section II sets out the mathematical bare 
bones of the model. Section III discusses the 
application of its various components to the 

Graduated Work Incentive Experiment. 

II. THE MATHEMATICAL MODEL 

Suppose an N- observation sample must be 
designed for estimting a response function 

(1) Yr + r 1,...,N 

where the context is as follows. The zij are 
design variables; they are subject to experimen- 
tal control either by stratification (as when 
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families of given income level are chosen in a 

tax experiment) or by direct control (as when 
payment levels are set in such an experiment). 
The are the observable responses; and the er 
are (at least partially) unobservable random 
errors. The cost of a given observation may vary 
with the levels of (zrl,...,zrk) for that obser- 
vation; and there is a maximum budget C that can 
be spent. Observations are restricted to a given 
region in the k- dimensional design space of the 
design variables. Finally, the function f is 
linear in parameters, and tractable assumptions 
for the er are allowed; so (1) is a standard 
regression equation. 

A. The Basic Model 

The building blocks of the basic model are 
1) the regression model, 2) the admissable 
regressor rows, 3) the objective function, and 4) 

the budget constraint. 

1. The regression model for equation (1) 

is 

y = Xß+e 
(2) E(e) = V(e) = 

b = (X'X)-1X'y V(b) a2(X,X)-1 

where y is the dependent variable vector, X the 
regressor variable matrix, e the error vector, 
the coefficient vector, b the least squares 
estimate of ß, and V(.) the variance matrix opera- 
tor. It is assumed that X is of full column rank. 

The regressor matrix X depends, row for row, on 
the design matrix Z [zij], but is not in gen- 

eral the same. For instance, with k 2, it 

might be that (xrl, xr2, xr3) 
= (1, zrl, log(zrl/zr2)) 

2. The admissable regressor rows may be 
introduced as follows. The design problem is to 

choose Z, and thus X, in some optimal way. Each 
row of Z represents an observation on the design 
variables. Complete freedom in choosing rows is 
not allowed. Instead, it will be assumed that 
there are a fixed number of admissable rows, each 
of which may be represented a number of times in 
Z. Corresponding to each admissable row for Z is 
an admissable row for X. Let m be the number of 
such admissable rows for X, xi be the ith of them, 
and ni be the number of times xi is represented 
in X. Then X is composed of nl rows like xl, n2 

rows like x2, and so on. The total sample size N 
and the regressor cross product matrix X'X are 
given by 

(3) N ni . 

So the design problem of choosing Z, and thus X, 
is simplified to the problem of choosing the m 
non -negative integers n1,...,n.., given a set of 
admissable rows. The admissable rows for the 
design matrix Z represent points in the design 



space, called design points. The experimenter 
chooses these design points so as to give the 
relevant region of the design space adequate 
coverage. For X to be of full rank, the xi, 

when stacked into an m -row matrix, must be of 
full rank (and, as discussed below, an appropri- 
ate number of the must be positive). 

3. An objective function to optimize in 
choosing the ni is required. Suppose the exper- 
imenter's goal is accurate estimation of a vector 
Pa of linear combinations of the elements of ß. 

The best linear unbiased estimate of Pß is Pb. 
It is assumed that the experimenter wishes to 
minimize a weighted sum of the variances of the 
elements of Pb. This objective function may be 
written tr[WV(Pb)], where tr(.) is the trace 
operator and W is a diagonal weight matrix whose 
diagonal elements indicate the policy importances 
to the experimenter of the elements of P. Sub- 
stituting from 2) and (3) and multiplying by 
the constant gives the objective function as 
used, call it 0. Letting D P'WP, 

4(n1,...,nm) = 2tr[WV(Pb)] 

2tr[P'WPV(b)] 

6 2tr[P'WPv2(X'X) -1] 

tr[D(Enx'x) 

4. The bud et constraint of the basic 
design model is < C, where ci is the 
cost of one observation at the ith design point 
(that is, with regressor row xi) and C is the 
total available budget. 

Given these building blocks, the basic 
design model may be simply stated as follows. 
With D P'WP, 

minimize 

tr[D( 

(4) 
i=1 

subject to 

< C n1 > 0, ..., nm > 0. 

Strictly speaking, this is an integer programming 
problem, since the are integers. Practically 
speaking, however, little will be lost in prac- 
tice by treating the ni as continuous in solving 
(4) and then rounding off. Economists may see 
the design problem (4) as analogous to a utility - 
maximization problem from consumer choice theory, 
where tcorresponds to an inverse measure of 
utility, the ni to amounts of m goods, the ci to 
prices, and C to available income. 

Summarizing then, the basic design model for 
regression analysis requires the experimenter to 
specify 1) a regression model, 2) a set of design 

points and the corresponding regressor rows xi, 
3) two objective function matrices P and W, and 
4) the costs ci and budget C. Then he must solve 
the programming problem (4). 
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B. Further Discussion of the Model 

1. Consider the derivatives and convexity 
of 0 = 4(n1,...,nm). Let 

S = 
(EN lnixfxi) -1. 

Then 

Wani atr(DS)/ani tr(D8S/ani) 

= - tr(DSxixiS) - tr(xiSDSxi) 

= - xiSDSxi , 

(5) 

a2 /anianj - -x(3S 

= (xiSx')(xjSDSxi) + (xiSDSx')(xjSxi) 

= 2(xiSx')(xiSDSx') 

Since SDS = /2PS)'(Wl /2PS) is non - negative 
definite, then the first partials /an are non- 
positive, as expected; an increase in the sample 
can do no harm. (Note that a4 can be zero, 
since D may be of less than full rank.) The 
convexity of can be proved by showing the 
matrix of second partials to be non -negative 
definite. Letting Qtldenote Kronecker multipli- 
cation, /3nianj can be conveniently restated 

/a ni3 n 2 (xiSx')®(xiSDSx' 

= 2 (x +xi) Se(SDS) (x . 

Hence the entire matrix of second partials may be 
written 

Se1(SDS) S®(SDS) 

(6) x 

SeiSDS) 

o 
o 

This product is non -negative definite if the 

central matrix is. But the central matrix may be 

alternately written (uu'AM(SDS) where u is a 
column of ones; and (uu') (SDS) is non -negative 

definite because the Kronecker product of non - 

negative definite and positive definite matrices 

is non -negative definite. 

2. Solving the design problem (4) is 

not difficult since the Kuhn -Tuchker first order 

minimization conditions take the simple form 

(7) 

/ci = for all i with 
optimal ni > 0, 

(30 /ci > X for all i with 
optimal ni = O. 



Equations (7) say that all design points included 
positively in the optimal design have the same 
marginal effectiveness per dollar of cost, call 
it X, in reducing 0; while all design points 
excluded have lesser effectiveness. is the 

shadow price of the budget constraint; it is 
negative and equals evaluated at the 
optimum. The budget constraint will of course 
hold with equality. The first order conditions 
(7) indeed assure a global minimum since is 

convex; though the minimum may not be unique, 
since is not strictly convex. A simple 
iterative solution procedure may be based on the 
idea of letting the relative sizes of the 
(84 /ani) /ci determine how the ni shift up and 
down from iteration to iteration. 

3. Four useful scale properties of the 
model may be stated. Noting first that the 
objective func.tt, is homogeneous of degree 
minus one in the ni, consider the relations 

m 
(8) N = C/ 

1=1 

= (1/C)( aici)tr[D( aixixi)-1]. 

i=1 

The first of these defines the fractions a 
which give the proportional allocation of ithe 
total sample N over the design points. The 
second uses the first to rewrite the budget con- 
straint (with equality holding). The third uses 
the first two to rewrite the objective function. 
The scale properties are: First, for a given 
proportional allocation (al,...,am), a change in 
C will cause an equiproportionate change in 0. 
Second, for given ai, an equiproportionate change 
in all the ci will result in the same proportion- 
ate change in 0, and the same inversely propor- 
tionate changes in N and the ni. Third, for 
given ai, equiproportionate changes in C and all 
the ci will leave 0, N, and the ni unchanged. 
Fourth, the optimal ai are independent of the 
value of C. 

4. In constructing the P- matrix, there are 
many sensible choices the experimenter might make. 
Two rather neutral examples are 

The first choice would imply that the experi- 
menter was interested in estimating the elements 
of Pß = ß themselves. The second choice would 
imply that he was interested in estimating the 
heights of the response function over the m 
design points. In making the choice, no firm 
constraint need be put on the number of rows in 
P, though several things about this may be noted. 
If P is not of full row rank, then it may always 
be condensed row -wise until it is of full row 
rank; so P need never have more rows than columns. 
That is, a Po with full row rank and a corre- 
sponding Wo may always be found such that 

(9) P = I and P = 
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P'WP = = D in (4), regardless of the rank 
or the number of rows in P. If the condensed 
matrix Po has fewer rows than columns, there can 
be trouble. For example, suppose the one -row P- 
matrix P = Po = x1. Choice of this P would imply 
that the experimenter was solely interested in 
estimating the height Pß = of the response 
function over the first design point. In this 
case, the optimal design would be to put all 
observations at the first design point; so = N 
and n2 = = nm = O. This would mean, for an 
xi with more than one element, that the inverse 
in (4) would not exist; so the objective function 
would break down. This breakdown is not 
necessary whenever Po has fewer rows than columns; 
it may or may not happen, depending on the values 
of Po and the xi. When it does happen, it is 

essentially because the experimenter has speci- 
fied a regression form more complicated than he 
really wishes to estimate, as indicated by his 
choice of P. So the solution is to simplify the 
regression form and /or to increase the row rank 
of P. For either of P- specifications (9), of 
course, the compacted matrix Po is non -singular; 
so the breakdown will not occur. (The Po of 
this paragraph is only for discussion purposes; 
it need not be solved for in practice.) 

5. An explicit solution for a one -way 
analysis of variance model is available. Suppose 
the xi take the form 

xi = (1,0,...,0), x2 = (0,1,...,0), 

x 
m (0,0,...,1). 

Then the model is a one -way analysis of variance 
model where ßi and ni are the mean of and the 
number of observations allocated to the ith cell, 
respectively. Letting P I as in the first of 

examples (9), and letting wi be the ith diagonal 
element of W, the explicit solution to (4) for 
the optimal ni is 

(10) ni = (wi/ci)1/2C/E(wc)1/2 

i= 1,...,m. 

6. Orthogonality of the regressor matrix 
X is not an optimality condition for the design 
model of this paper; though there is a well known 
theorem in the design literature giving conditions 
under which orthogonality is optimal. It is 

useful to review this theorem and see why the 
conditions may not be met. For this discussion, 
suppose the columns of X are not functionally 
related; so orthogonality of X is at least possi- 
ble. (For example, one column of X may not 
contain square terms of another column.) Further 
suppose the elements of X are expressed as devia- 
tions from a point in the center of the region of 
interest (except possibly for a column of ones). 
Now consider three assumptions. First, all obser- 
vations cost the same amount c; so the total 
sample is fixed at N = C /c. Second, the size of 
the region of interest is determined by putting 
upper bounds aj on the mean squares of the regres- 
sor variables. (That is, for all j, suppose the 
jth diagonal element of X'X /N may not exceed aj.) 



Third, minimization of the variances of the 
elements of b is the objective. Given these 
assumptions, the following derivation due to 
Tocher (1952) applies. Letting T be an upper 
triangular matrix such that X'X = T'T, and let- 
ting a double subscript on a matrix symbol denote 
the corresponding element, then 

var(b) = a2(X'X)- = 

= a2(T 1T' 
1)2 (11) 

a (T ) 

a2 /T2 a2 

= a2 /(T'T)jj a2 > a2 /Na. . 

It may be seen that the equalities in (11) will 
hold --and thus var(bii) will achieve its lower 
bound --if and only if X'X, T'T, and T are diago- 
nal, and the (X'X /N)jj are pushed to their bounds 
aj. So optimality in terms of minimum var(bj) 
requires orthogonality of X, given the three 
assumptions listed. 

By seeing how the assumptions may not be 
met in the context of this paper, we may see how 
orthogonality may be non -optimal. First, the 
result will not hold in general if the cost of 
an observation varies with the values of the 
regressor variables. For example, if there are 
just two regressor variables (in addition 
possibly to a column of ones in X) as shown on 
Figure 1, and if the costs per observation are 
higher in the second and fourth quadrants than 
in the first and third quadrants, then the model 
will tend to set up a positive collinearity 
between the variables at the optimum. (A similar 
effect may result when further constraints (such 
as those discussed below) are added to the model.) 
Second, the result will not hold in general if 
the region of interest is determined in another 
way. The assumption above, by limiting each 
regressor variable separately, sets up a rectan- 
gular region like Ro in Figure 1; whereas the 
experimenter may in fact be faced by a region of 
interest 

regressor 1 

Figure 1 
regressor 

2 

like Rl. In the latter case, the model will tend 
to set up a negative collinearity between the two 
regressor variables. Third, the result will not 
hold in general if the experimenter's objective 
is not minimization of the var(bj) separately. 
For example, the experimenter may be more 
interested in var(bl -b2.) than var(bl) and var(b2) 
separately; this interest can easily be expressed 
by appropriate choice of P. In such a case, the 
model would tend to set a negative correlation 
between regressor variables 1 and 2. 
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C. Extensions of the Model 

The following extensions are considered 

singly, but they can easily be used in combina- 
tion. 

1. The choice of a specific regression 
functional form for the response function (1) is 

crucial to the character of the optimal design. 
For instance, if (1) were first degree polyno- 
mial, the optimal design would tend to concen- 
trate only on design points around the boundary 
of the relevant design space region. If, 

however, (1) were third degree polynomial, the 
optimal design would tend to pick up some design 
points in the interior for identifying curvature. 
Unfortunately, the experimenter seldom knows 
ahead of time what the appropriate functional 
form is. Suppose the experimenter is consid- 
ering q candidate functional forms, and suppose 
4j(nl,...,n.) for j = 1 ..... q are the corre- 

sponding objective functions. It is helpful to 
think of 4j(nl,...,nm) as a loss function where 
j indexes states of nature (functional forms) 
and (n1,...,nm) represents actions (sample 
designs). One way to investigate the sensitiv- 
ity of the model to alternate functional forms 
is then to construct a qXq loss table, where the 
q states of nature are the q functional forms, 
and the q actions are the optimal designs for 
the q functional forms taken one at a time. In 

generating a design for ultimate use, the experi- 
menter might use the Bayes strategy of minimizing 
the expected loss 

(12) G(nl,...,nm) 

where the are prior probabilities for the 
states of nature, or functional forms. Replacing 
c(nl,...,nm) by G(nl nm) in the design 
problem (4) above does not greatly complicate 
things. The sum of convex functions is convex; 
so G is convex. The derivatives (5) must be 
replaced by a 9j- weighted sums of expressions 
like (5). With appropriate minor modifications, 
all the other comments of the last section carry 
over. 

2. Non -linearity in the parameters of the 
response function (1) may be simply handled by 
replacing the function with its Taylor series 
linearization about some guessed parameter 
values. This approach has been used by Box and 
Lucas (1959). Similarly, one might view the 
vector Pß as a linear approximation to some non- 
linear vector -valued function of ß. 

3. Multiple objectives in an experiment 
may be handled by a simple extension of the model 
Suppose the experimenter wishes to estimate a set 
of response functions. (For instance, a medical 
experimenter might wish to estimate various 
physiological responses to controlled dieting.) 
Let the corresponding regression models be stated 
compactly as Y = XE + E; where Y, r, and E are 
matrices whose columns correspond to different 
regressions; and where the rows of E are inde- 
pendent with zero means and identical variance 
matrices a2U. It is known (see Goldberger (1964) 



pp. 201 -12, 246 -8) that B (X'X) -1X'Y is the 

best linear unbiased estimate of p; and that 
V(bB) = a2U®(X'X)-1, where bB is the vector 
gotten by stacking the columns of B in order from 
the first down to the last. By analogy to the 
objective function construction above, suppose 
the experimenter's estimate of interest is the 
vector PbB of linear combinations of the elements 
of bB; and suppose he wishes to minimize the 
weighted sum tr[WV(PbB)] of the variances of 
elements of PbB, where W is a diagonal weight 
matrix. The objective function, call if J, may 
then be written (with D P'WP) 

(13) J(nl,...'nm) = tr[D(U®( nixixi) -1)] . 

=1 
Replacing by J(n1,...,nm) in the 
design problem (4) does not substantively change 
the programming problem to be solved. The exper- 
imenter, in setting up the problem now has the 
one additional task of specifying a value for U. 
If u is diagonal (which seems unlikely in prac- 
tice), then the various response functions to be 
estimated are independent; and (13) can be put 
in the form of (12) with the representing 
objective functions for the separate response 
functions, and the equalling the diagonal 
elements of U. 

4. Alternative forms for the objective 
function are available, typically based on some 
function of the variance matrix V(b)= a2(X'X) 
(that is, typically based on some function of 
the "information matrix" X'X). Two convenient 
possibilities are the determinant, or "gener- 
alized variance," function IV(b)I and the trace 
function tr(V(b)) used here (neglect the weight 
matrix D momentarily). These functions are 
convenient because they are continuous, differen- 
tiable, convex, and so on. (See Kiefer (1959) 
for a discussion of these and other possibil- 
ities.) Minimizing IV(b)I may be conveniently 
rationalized by noting that, if b is normal, the 
volume of a confidence ellipsoid around b, for 
given probability of containing ß, is propor- 
tional to IV(b)I. Minimizing tr(V(b)) may be 
conveniently rationalized by noting that tr(V(b)) 
= E(b- ß)'(b -ß) (the expected value of a quadratic 
loss function) or by noting, as above, that 
tr(V(b)) is the sum of the variances of the 
regression coefficient estimates. In a sense, 
IV(b)I and tr(V(b)) are not very different 
objectives. Let 11,...,X0 be the eigenvalues of 
V(b); they must all be positive. Then it is 
known that IV(b)I and tr(V(b)) 
= +... So minimizing IV(b)I is equivalent 
to minimizing the geometric mean of a set of 
positive numbers, and minimizing tr(V(b)) is 
equivalent to minimizing the arithmetic mean of 
the same numbers. 

A determinant objective function is quite 
capable of carrying the design problems discussed 
here. However, the trace function is actually 
used because it is easier to weight. The trace 
function is a linear function of elements of V(b) 
and thus takes simple linear weights; whereas the 
determinant function is multiplicative and thus 
does not take linear weights. More specifically, 
it makes sense to replace tr(V(b)) by tr(DV(b)) 
= E(b- ß)'D(b -ß); whereas it does not make sense 
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to replace IV(b)Iby IDV(b)I. D must be square or 
IDV(b)I is not defined; and D must be non- 
singular or IDV(b)I = O. But, with D non- 
singular, IDV(b)I IDIIV(b)I; so minimizing 
IDV(b)I is the same as simply minimizing IV(b)I. 
On the other hand, if the experimenter does not 
wish to use weights, and if2computational ease is 
important, then IV(b)I = -1I 1 /Iß 2X'XI 
may be more appropriate because it does not 
involve matrix inversion. 

5. Unequal error variances in the regres- 
sion model can easily be handled. Suppose the 
error variance differs from design point to 
design point such that the error variance corre- 
sponding to the ith regressor row xi is a2vi. It 

may be shown that the objective function then 
becomes 4(n1,...,n..) = tr[D(Ei xixi) ] 
which introduces a very minor change indeed in 
the design problem (4). Of course, the experi- 
menter must specify the vi. 

6. Attrition of observations from the 

sample can arise when, for example, some families 

which initially agree to be part of a cross - 
family sample later drop out; or when, for 

example, some observations in a laboratory experi- 
ment are unusable due to experimenter error. 
Suppose the attrition fraction varies by design 
point such that the attrition fraction corre- 

sponding to the ith regressor row xi is pi. This 

can be easily handled in the design model (4) by 

replacing the ni by pins in the objective func- 

tion. If attrition also affects the costs ci, 

then they must be adjusted. For example, a 

family which drops out of a cross -family experi- 
ment may cost less than a family which stays the 
duration. If and are the costs of obser- 
vations which do and do not stay in the sample, 
respectively, then the appropriate cost to enter 
in the design model (4) is ci = (1 + uic 

7. Budget minimization subject to a 
maximum error constraint may sometimes be the 
experimenter's problem rather than error 
minimization subject to a maximum budget con- 
straint. In such a case, the problem corre- 

sponding to (4) would be 

minimize C = + + 

(14) subject to 

nm) = tr[D( nixixi)-1] 

0 0 

where is a pre -selected maximum admissable 
error. Given a solution procedure for the 

original problem (4), solution of the new problem 
(14) is easy. Note that the optimization condi- 

tions (7) apply to (14) as well as (4), and that 

these m -1 conditions determine the m -1 indepen- 
dent ai ni /N. Also, recall that the optimal 
ai = ni /N are independent of C. Then a solution 
to (4) for any value of C will yield the optimal 
ai for (14). And, given the optimal fractional 

allocation (a1,...,am) for (14), it is easy to 
find the optimal absolute allocation (nl,...,nm) 
and budget C which make 0o. 



8. Additional constraints on the design 
problem (4) may often be required. The simplest 
sort of addition would be to replace some or all 
of the zero bounds'ni > 0 by positive bounds 
ni > n? > O. For example, the experimenter may 
start with observations numbering from 

some previous round of experimentation. This 
kind of additional constraint on (4) can be 
handled with only trivial modifications to the 
simple optimization conditions (7); so the design 
problem is still computationally straight- forwazä. 
More substantive additional constraints may also 
arise. For example, a fixed experimental capac- 
ity may add a total sample constraint 
(Of course, the budget constraint may all along 
have been interpreted as a total sample con- 
straint, where cl = = = 1 and C is the 
maximum total sample. The current discussion 
refers to joint imposition of a budget and a 
total sample constraint.) Or a bureaucratic 
ruling may place a sub -budget constraint 

< Cp on the first p < m design points. 
And so on. Such substantive additional con- 
straints make the programming problem to be 
solved much more difficult. Nonetheless, if all 
the constraints are linear, efficient computer 
routines are available. Some types of non -linear 
constraints are, of course, also tractable. 

III. THE APPLICATION 

In the Graduated Work Incentive Experiment 
we are concerned with the response of family 
earnings to the changed alternatives produced by 
introduction of a negative income tax. Accord- 
ingly, we have specified as the dependent or 
response variable for a given family (the yr in 
equation (1)) the ratio of the family's actual 
earnings during the experiment to a pre - 
experiment estimate of "normal" earnings. Call- 
ing the response variable R and dropping the 
subscript: 

R 
actual earnings 

pre -experiment normal earnings 

The three independent or design variables 
specified were: 

maximum benefit 

g 
(paid when earnings are zero) 

poverty level income 

t = marginal tax rate 

= reduction in benefit per dollar earned. 

pre -experiment normal earnings 
w = 

poverty level income 

So the response function was of the form R 
= f(g,t,w) (neglecting the error term). The 
first two design variables g and t are subject to 
direct experimental control for each family in 
the sample; they are parameters of the linear 
negative tax the family is faced with. The third 
design variable w must be controlled by stratifi- 
cation; families must be screened until ones of 
desired w -level are found. 

There are assuredly more variables than g, 
t, and w which may affect the response variable 
R; although many variables which come to mind may 
operate principally through g, t, and w. For 
example, family size operates through g and w by 
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affecting poverty level income in the denominators 
of g and w. Also, family size, as well as educa- 
tion, race, age, and so on, operate through the 
normal earnings variable w. Insofar as variables 
excluded from f(g,t,w) can be randomized by care- 
ful sampling procedures, they can be lumped into 
the error term (the er of equation (1)). So the 
regression model used for sample design is a very 
abbreviated version of the model one might even- 
tually apply to the data produced by the experi- 
ment. The practical limit on the number of 
variables that can be handled in the design is 
far more stringent than the practical limit on 
the number of variables that can be measured for 
eventual analysis. Even screening enough fam- 

ilies to get the desired stratification by w -level 
turned out to be quite difficult. In summary, it 

seemed to us that w was clearly the most important 
stratification variable to control, and that once 
it was controlled there did not seem to be any 
second variable of comparable importance. 

The problem, then, was one of specifying a 
sample in the three dimensional design space of 
(g,t,w)- triplets. Sampling was restricted to a 
region within the design space which provided sub- 
stantial variation in (g,t,w), but which kept to 
(g,t,w)- combinations of actual policy interest. 
Within this region of interest, twenty seven 
design points were selected (so m 27). There 
were nine (g,t)- combinations or treatments (one 
"control" combination with g t 0 and eight 
non -zero combinations) at each of three w- levels. 
So the design problem reduced to finding optimal 
numbers ni,...,n27 of families to allocate to 
each design point. 

A crucial part of defining optimality of a 
design is specification of a regression functional 
form. In the Graduated Work Incentive Experiment, 
numerous alternative transforms and combinations 
of g, t, and w were used to provide f(g,t,w) func- 

tions which had both linearity -in- parameters and 
varying degrees of non -linear flexibility in g, t, 

and w. The functional forms used had from 6 to 
13 parameters; so a substantial degree of non - 
linearity in g, t, and w was allowed for. 

For a given regression functional form, the 
variance matrix V(b) = a2(Einixjxi)-1 of the 
parameter estimates is easily obtained for any 
specific allocation of families to design points 
(that is, any choice of ni,...,n27). The remain- 
ing problem in defining optimality of design lies 
in specifying a scalar- valued function of V(b) to 
optimize. In terms of the optimand (ni,...,nm) 
= 2tr[P'WPV(b)] introduced above, this requires 

specification of the matrices P and W. Recall 
that Pß is the assumed vector of magnitudes-to-be - 
predicted and thus Pb is the estimate of interest. 

In the Graduated Work Incentive Experiment, 
the assumed objective was taken to be estimation 
of the incremental treasury cost of a linear 
negative tax due to induced reduction of work 
effort and earnings --that is, the difference 
between the cost assuming zero work reduction and 
the cost given the actual work reduction. (The 

possibility of negative work reduction --work 
increase --is fully allowed for.) The cost 
referred to is the cost for the entire country of 

a national negative tax. Given an estimate of the 
response function parameters, the work response 
and thus the desired incremental cost can be 



estimated for any individual family. By summing 
over all families, the national cost can be esti- 
mated. Such a cost estimate depends on the 
specific negative tax parameters g and t assumed 
as well as on the parameter estimate b; so the 

cost might be denoted H(g,t,b). (The variable w 
has "integrated out" in the summation.) With a 
few approximative tricks, this estimate can be 
expressed as a linear function of b, call it 
h(g,t)b where h(g,t) is a row vector depending 
on g and t. The rows of P were set equal to the 
values of h(g,t) for various policy -relevant 
combinations of g and t. So the elements of the 
vector Pb are estimated incremental treasury 
costs due to induced earnings response for 
various (g,t)- combinations. A policy- importance 
weight was specified for each (g,t)- combination, 
and thus each element of Pb; these weights were 
arrayed in the diagonal matrix W. This completed 
the specification of the objective function 

a- 2tr[P'WPV(b)]. 
This objective function is to be minimized 

by appropriate allocation of families to the 27 
design points --that is, by appropriate choice of 
nl,...,n27. But this allocation was constrained 
by several further considerations. The principal 
constraint was the budget constraint Eicini < C. 
The costs ci were composed of administrative 
costs, which are relatively constant over design 
points (costs of screening families, adminis- 
tering questionnaires, mailing checks, and so on), 
and of negative tax payment costs, which vary 
widely over design points. A curious feature of 
this experiment is that the cost of payments to 
families is both an ingredient of the design 
problem and in essence what the experiment is 
designed to estimate. Nevertheless, we have some 
well- founded notions about the relative sizes of 
these costs, which do not vary widely even when 
assumed earnings response patterns do vary widely. 

In addition to the budget constraint, there 
were sample size constraints, both on the total 
sample and on sub -samples for various w- levels. 
There was also a constraint on the fraction of 
the budget that could be allocated to a particu- 
lar high- benefit (g,t)- combination. Finally, 
most of the design points had positive rather 
than zero lower bounds (ni > ni > 0) since a sub- 
group of families had been allocated to the 
design points prior to the use of the optimiza- 
tion model. 

Allowance was also made for attrition from 
the sample of families at low payment design 
points, and for higher error variances of fami- 
lies at high payment design points. 

These specifications combine to make up a 
programming problem involving 27 variables, a non- 
linear objective function, and typically five 
substantive linear constraints in addition to the 
27 lower bound constraints. A computer routine 
due to Kreuser (1968) solved this problem in 
about 10 to 15 minutes on a Burroughs 5500. Of 
course, the problem was solved many times over as 
specifications were polished and sensitivities to 
changed specifications were tested. In addition 
to solutions for this problem, a small number of 
solutions were generated for a larger problem. A 
distinction was made between two locations at 
which families were being sampled; so there were 
27 design points for each of two locations, or 
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54 design points and corresponding ni altogether. 
The number of constraints and the number of terms 
in the regression function were also increased 
for this enlarged problem. This raised the 
solution time on the Burroughs 5500 to the neigh- 
borhood of 45 minutes. 

The final solution of the Graduated Work 
Incentive design had the following noteworthy 
characteristics. (i) The optimal allocation of 
experimental families produces a decidedly non - 
orthogonal design. (ii) Several of the design 
points were allocated no observations or the 
minimum possible observations (given the positive 
lower bounds). (iii) The majority of the budget 
was allocated to a few high -payment design points; 
and the majority of the total sample was allocated 
to low- payment design points. (iv) The optimal 
designs generated by the model were substantially 
more efficient than various intuitive designs 
discussed before the optimization model was used. 
(Since the objective function is a variance 
magnitude, the relative efficiency of two designs 
can be measured in the usual sense by taking the 
ratio of their 0- values.) 

Summing up our experience with the model 
in this, its first, application, we have found it 
very useful for incorporating explicitly a great 
many considerations which affect an experimental 
sample allocation. Indeed, it is difficult to 

see how these matters could be properly reflected 
by any less formal (or rule of thumb) procedure. 
The basic model will be used in the design of 
several upcoming social experiments, and its 
generality is such that it can be adapted to many 
experimental situations which are characterized 
by several dimensions of experimental control, 
and where continuity of response suggests some 
form of estimated regression surface. 
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