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I n t r o d u c t i o n  

Field experiments embedded in ongoing sample sur- 
veys are highly appropriate to investigate possible 
improvements of a sample survey process. In many 
practical situations such experiments are aimed to 
test effects of alternative survey methodologies on 
the outcomes of a current survey. In Van den Brakel 
and Renssen (1998) a series of such field experiments 
are described. Fienberg and Tanur (1988) discussed 
how to take advantage of the parallels between the 
principals of design and analysis of experiments and 

ment is embedded in a complex sampling scheme, it 
is not always obvious how the analysis results con- 
cerning treatment effects obtained in a model-based 
analysis procedure are related to the finite popula- 
tion parameters as defined in the sample survey. This 
complicates the interpretation of the results obtained 
in a model-based procedure. A natural approach for 
the analysis of such embedded experiments is to for- 
mulate a hypothesis, which concerns the differences 
between the finite population parameters observed 
under the different survey implementations. Based 
on the K subsamples, a design unbiased estimator 
for these K population parameters and the covari- 
ance matrix of these K population parameter esti- 
mates can be derived under both the randomization 
mechanism of the sampling design and the experi- 
mental design. As a result, a design-based Wald sta- 

sampling theory, in order to improve the efficiency of tistic is obtained to test hypotheses. Van den Brakel 
experiments embedded in sample surveys. 

The typical situation considered here, is an exper- 
iment designed to compare the impact of K different 
survey implementations, or treatments, on the esti- 
mates of the finite population parameters of a cur- 
rent survey. To this end a sample, drawn from a fi- 
nite population, is randomly divided into K subsam- 
ples according to some experimental design. Each 
subsample is assigned to one of the K treatments. 
The analysis of such embedded experiments gener- 
ally serves two purposes. First is the estimation of 
finite population parameters obtained under the al- 
ternative survey implementations. This enables the 
measurement of the effect of alternative approaches 
on the main estimates of the survey. Secondly, we 
may wish to test hypotheses concerning the differ- 
ences between the estimated population parameters 
obtained under the different survey implementations. 
Statistical methods traditionally used in the analysis 
of experiments are model dependent and typically re- 
quire identically and independently distributed (IID) 
observations. Since in embedded experiments, exper- 
imental units are selected by some complex sampling 
design from a finite population the assumption of IID 
data  is generally violated. Moreover, if an experi- 

and Renssen (1998, 2000) developed such a design- 
based theory for the analysis of embedded completely 
randomized designs (CRD's) and randomized block 
designs (RBD's). 

Since the K subsamples are drawn without re- 
placement from a finite population, there is a nonzero 
design covariance between the different subsample es- 
timates. Design-unbiased estimators for these covari- 
ance terms require paired observations of the target 
parameter  under the different treatments obtained at 
each experimental unit. Since each individual is as- 
signed to either one of the K treatments, such paired 
observations are not available. In Van den, Brakel and 
Renssen (2000), an estimator is derived for the co- 
variance matrL, c of the K -  1 contrasts between the K 
parameter  estimates which is design-unbiased under 
specific measurement error models. In this paper an 
alternative approximately design-unbiased estimator 
for the covariance matrix of the K parameter esti- 
mates is derived for a CRD, using an imputation 
technique for the missing paired observations. For 
more technical details and derivations of the results 
presented in this paper, we refer to Van den Brakel 
and Binder (2000). 
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2 E m b e d d i n g  e x p e r i m e n t s  in 
o n g o i n g  s u r v e y s  

Assume we have a finite population U with N units. 
Consider an experiment, embedded in an ongoing 
survey aimed to compare the impact of K - 1  alterna- 
tive survey methodologies (treatments) with respect 
to the standard approach of the current survey on 
the parameter estimates of this survey. Let Yi(k) de- 
note the value of the i - t h  unit under treatment k, for 
i = 1 , . . . , N  and k = 1 , . . . , K .  ThenY(k) andY(k) 
can be defined as the population mean and total ob- 
served under treatment k. Let Y = (Y(1),..., Y(K)) t, 
the K vector containing the population treatment 
means. The objective of this experiment is to test 
the hypothesis 

/ 4 o  C Y = O ,  

Hi"  CY ¢ O. (1) 

Here 0 denotes the K - 1  vector with each element 
equal to zero and C a ( /4 -1 )×  K contrast matrLx, 
for example (j [ - I )  where j denotes a K - 1 vector 
with each element one and I a (K- l )x (K-1)  identity 

A 

matrix. Let Y denote a design unbiased estimator 

for Y, E the covariance matrix of Y, and E a design 
unbiased consistent estimator for E. Hypothesis (1) 
can be tested with the design-based Wald statistic 

~ . ~ t c t  ( C ~ C  t -1Cy .~- w - ) (2) 

If a limit theorem holds such that Y is asymptot-  
ically multivariate normally distributed with mean 
Y and covariance matrix E, then the Wald statis- 
tic is, under the null hypothesis, asymptotically chi- 
squared distributed with K -  1 degrees of freedom. 
If the sample s is drawn by means of simple random 
sampling without replacement and the randomiza- 
tion of the n elements of s to the K treatments is 
accomplished by means of simple random sampling 
without replacement, i.e. by means of a CRD, then 
Lehmann (1975, appendix 8) gives sufficient condi- 

A 

tions under which Y ~ Af(Y, E). Under more com- 

plex sampling schemes, the limit distribution of Y 
will generally be unknown. In such situations, it is 
usually assumed that a limit theorem holds such that  

A 

Y + A/'(Y, E). 

3 E s t i m a t i o n  of  t r e a t m e n t  
e f f ec t s  

To test hypothesis (1) a sample s of size n is drawn 
from a finite population U of size N under a possi- 

bly complex sampling d e s i ~  with first and second 
order inclusion probabilities ~i and ~ij. According 
to the experimental design, this sample is randomly 
divided into K subsamples sk of size nk. All the el- 
ements of the k - t h  subsample undergo treatment k, 
so that  we observe only the values of Yi(k) for units 
in the k - t h  group. Also the randomization mecha- 
nism of the experimental design can be described by 
means of first and second order inclusion probabili- 

ties. Let ~}~: denote the conditional probability that 
the i - t h  unit is in treatment group k, given that  the 

is selected and ~}kl) the conditional sample 8 joint 
inclusion probability that  the i - t h  unit is in treat- 
ment group k and the j - t h  unit in treatment group 
l. Consider for example a CRD. Since the random- 
ization mechanism of a CRD comes down to simple 
random sampling without replacement of K subsam- 
ples of size nk from the sample s of size n, we have the 
following conditional first and second order inclusion 
probabilities: rr~ k) _(kk) _ n k / n ,  _(m) =0 ..(kk) t~ i i  n i i  , n i j  ~" 

1)), (nk,(nk--1))/(n(n--1)), and ,,ij k - 
i ¢ j .  Since each subsample can be considered as a 
two-phase survey sample a design-unbiased estimator 
for Y(k) is given by the two-phase estimator 

1 ~ Yi(k) (3) 

For the special case of a CRD, rr}lk: - - nk /n .  

4 
A 

C o v a r i a n c e  m a t r i x  of  Y 

In this section the covariance matrix, E, of the es- 

t imated population treatment means Y is derived. 

The following expression for the variance of Y(k) can 
be derived by conditioning on the realization of the 
sample s: 

N N 
1 E E A i j ~ ) i ( k ) g j  

i=lj=l 

1 

"= "= i l s  j l s  

(4) 

where Yi(k)--yi(k)/Tri, Aij--Trij-TriTvj and, AI~(~ = 

7r(m)_Tr(k)Tr(t) ijls ils Jl~" The first component is the variance of 
the sampling scheme of the conditional expectation 
of the experimental design and can be interpreted as 
the design variance of a one phase sampling scheme. 
The second component is the expectation with re- 
spect to the sampling design of the conditional vari- 
ance of the experimental design. In an equivalent 
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way, it can be shown that  the design covariance be- 

tween ]~(k) and ~'(~) is given by: 

1 N N 

i : l j : l  

i N N  7rij Alk[~]i(k)~]j( t )  

i = l j = l  ils j ls  

(5) 

In the special case of a CRD, it follows from (4) tha t  

N N 
n 

Var(]~(k)) -- N 2 ( n  - 1)nk [ (nk-  1 ) ~ ~ A i j ~ ) i ( k ) $ j ( ~ )  
i = l j = l  

- 2  1 
+ ( n - n ~ )  77iy~(~) - n Y (  . (6) 

and from (5) that  

N N 

- A ~ y $ ~ ( ~ ) ~ 3 ( t )  Cov(]~(~),]~q)) N ~ ( n - 1 )  i--lj=l 

N 

i --1 

E s t i m a t i o n  o f  t h e  c o v a r i a n c e  
m a t r i x  

In this section an estimator for the covariance ma- 
trix, 5], is derived. Since there are only n~ observa- 
tions obtained under treatment k, a design unbiased 

estimator for Var(Y(~)), is provided by 

1 ,~k ,~k ~ij~]i(k)________Yj(k) 

ils j ls  

(8) 

where ~ i j  - Aij/~rij  and /~}~l~ ) - A}~I~)/7c}~1~). For 
the special case of a CRD we have 

r tk  m k  

lr -2 1 ~)i(k (9) 
+ N 2 n k  (nk - 1) iYi(k) - n--~. " 

We now turn our attention to the derivation of an 
est imator for the covariance between Y(k) and Y(t)- 

Since ~!kt) = 0 for k ¢ l, we cannot observe the val- ~lS 
ues Yi(k) and Yi(l) on the same unit i, which compli- 

cates the estimation of Cov(~'(k), Y(t)) considerably. 
To cope with this problem, we derive an est imator 
where we impute for the unobserved or missing val- 
ues of the paired observations. We restrict ourselves 
to the covariance of a CRD, given by (7). First note 
that  (7) can be expressed as 

Cov(Y(k), Y(;)) - 

N N N 

i--1 j • i  i=l  
(10) 

where flij - [ ( n T r i j ) / ( N 2 ( n -  1)TriTrj)- 1 / N  2] and 
f l i i - - 1 / N  2. The first term of (10) doesn't  contain 
unobserved values and therefore it can be est imated 
directly by 

rt k n t  

n k Ttl7rij 
~ , 2 i j Y i ( k ) Y j ( t )  --  

^ nk ,~; n (n -1 )y i (k )y j ( t )  (11) 

i - - l j - - 1  

To find an estimator for the second term in (10), we 
impute for the unobserved values. Wi thout  loss of 
generality, it is assumed that  the i - t h  unit has been 
assigned to the k - t h  treatment group. For k ~: l, 
the potential donor deck for imputing Yi(O is the set 

of units allocated to treatment 1. Let 5~) denote the 
indicator variable taking the value 1 when the j - t h  

- , j  

unit is selected to be in the imputation group for 
imputing Yi(t). The imputed value for Yi(t) can be 
defined as: 

n l  

~)~(t) - ~ c(l) (kz) oij w i j  Yj( l) ,  (12) 
j - -1  

. ( k t ) ,  s where the w~j are weights to be determined. Con- 
sider the quantity 

r tk 

flii nyi(k)~)i(t) , (13) 
Tt k 7T i 

i--1 

as an estimator for the second term in (10). %Ve 
consider the simplest case, where all units allocated 
to t reatment group l are included in the imputat ion 
group. If (12) is substi tuted into (13), then we can 

(m) such that  (13) is an estimate for the sec- derive wij 
ond term in (10). If we take 

w}~Z)= ( n -  1)~i (14) 
( N -  1)nzrcij' 
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then it follows that the imputed values for the unob- 
served yi(z)'s are 

n, (n-1)~ri 

~li(z) - j~l= '( N -  l')nlTrij Yj(t). (15) 

An estimate of ~N=I 3iiYi(k)Yi(l) is given by 

,~ n, n ( n -  1) , , Yi(k)Yj(1). (16) 

i = l j = l  

The design expectation of (16) is given by 

1 1 (E  ~ N )) 
-- Yi(k)Yj(z) -- ~-~yi(k)Yi(l . (17) 

N 2 ( N -  1) \ i = l j - - 1  i--1 

Using imputed values for Yi(z) will generally lead to a 
biased estimate for the covariance term. To examine 
this bias, consider tt~e basic model Yi(k) =uk + ei(k), 
with model assumptions 

- 0 ,  - 

Cov(e i (k ) , e i ( l ) )  = O'kl, Cov(e i (k ) , e j ( l ) )  = O. (18) 

The expected value of ~-~---" 1 ~iiYi(k)Yi(1) under this 
model equals -(ukuz + o'm)/N. The model expec- 
tation of (17) equals --(ukul)/N. Since we cannot 
estimate akl directly, the approximation of (16) for 
the second term in (10) is only unbiased under the 
strong assumption that the treatment effects are not 
correlated, i.e. ~kz = 0. Now, using (11) and (16) 

an approximation for Cov(~'(k), ]~(1)) under a CRD, 
given by (7), is 

9 ( , ) ) -  

1) 
Y ( k ) ~ ' ( , ) - ~ ~  N(m-1)nknz~i j  Yi(k)Yj(l). (19) 

The bias of this covariance estimate is 

N 1 
N ( N _  1) - Xy,(,) - (20)  

If s is drawn by means of simple random sam- 
pling without replacement, then it follows from (15) 
that the imputed values equals the subsample mean 
~)i(t) -- (lint) "' ~ j=l  Yj(z) for all i. Since we impute a 
fixed value for each individual i, the covariance ap- 
proximation (19) equals zero and consequently the 
bias in (20) equals the covariance between two sub- 
samples drawn by means of simple random sampling 
without replacement, (i.e. -S2/N) .  

In an attempt to reduce this bias the imputation 
method can be improved by forming more or less ho- 
mogeneous imputation groups. Potential groups are 
for example pre- and post strata, primary sampling 
units and clusters. To this end, the finite population 
is divided into H groups Uh of size Nh. Since only 
elements from the same group Uh are used as impu- 

it follows that 5~L)- _ 1 i f i  E Uh and tation donor, 

j C Uh, ~ij(l) __ 0 if i E Uh and j E Uh,. Quantity (13) 
is still our estimator for the second term in (10). If 
we take 

w(m)_ ( n -  1)rri (21) 
ij ( N h -  1)nzTrij' 

then it follows that the imputed value for Yi(z) equals 

'~"~ (n -  1)~i Yj(z) , 
. ' _ _  

(22) 

and that an estimate of ~-]~N=I ~iiYi(k)Yi(l) is given by 

H ,~,<k m, ,  n ( n  - -  1) 

h = l  i=1 j = l  

Yi(k)Yj(t), (23) 

where nhk and nhI denotes the number of individuals 
in imputation group h assigned to respectively treat- 
ment group k and l. The design expectation of (23) 
is given by 

1 H 1 ~NhNh Nh t 
~V2h~--1 (Nh--1)ti~=l j~=l yi(k)yj(1) -~yi(k)yi( l  " 

The model expectation of (24) under the basic 
model equals -(ukuz)/N.  An approximation for 

Cov(Y(k), ~'(l)) under a CRD,(7), is obtained by the 
sum of (11) and (23). The bias of this covariance 
estimate equals 

h = l  

1 Nh 

.~-~(Yi(k) - Y(hk) ~Yi(1) - ~.r( hl) ) , Nh (N,, 1) 7-5 

where Y(hk) and Y(m) denotes the population means 
in under both treatments. It follows that the bias 
in the covariance approximation is reduced with the 
covariance between the imputation groups. Consider 
the most extreme case where there is no covariance 
within the imputation groups. Then the bias of our 
approximation would be zero. Under this extreme 
situation, we actually have paired observations. 
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6 V a r i a n c e  e s t i m a t i o n  o f  
c o n t r a s t s  

In the preceding section we saw that  the derivation 
of a design unbiased estimator for the covariance be- 

tween Y(~) and Y(t) is not possible, since for k :fi t, 

we have ~!~t ) -0 .  However for the Wald statistic it 
~1 s 

is sufficient to have a design unbiased estimator for 
the covariance matrix of the K -  1 contrasts C E C  t. 
For a CRD the problem of the missing observations 
can be avoided by concentrating on the variance of 

the contrasts between Y(~) and Y(t). Letyz(~)  de- 
note the Horvitz-Thompson estimator for Y(~) based 
on the n elements of sample s. Then 

1 N N 

Var(Y,(k)) - ~-~ EEAijgi(k)Yd(k), 
i - - l j = 1  

denotes the design variance of YI(k) according to the 
first phase, i.e. the sampling design used to draw s. 
Furthermore 

V-a r (~ '~ (k ) ) - l (~nY~(k~) -Y(~) )  ' n  =1 N27ri (26) 

variance of Y x(k) as if s, in the first denotes the 
phase, has been drawn with replacement with selec- 
tion probabilities 7ri/n. It follows that (6) can be 
expressed as 

n n (V-ar(]~z(k)) - lvar(~. / (k)))  
Var(Y(k)) -- ( n -  1)nk n 

?3, ^ 
( n - l )  (V-ar (Y'  (k)) - Vat (}>' (~))} ' (27) 

In an equivalent way 

N N 1 

i--1 j - -1  

(28) 

denotes the design covariance between Ys(k) and 

YI(t) according to the of the first phase and 

1 (Ni~ nYi(k)Yi(z) 

=1 

--Y(k)Yk(t , (29) 

the covariance according to the first phase, as if s has 
been drawn with replacement with selection proba- 
bilities ~i/n. Now we can express (7) as 

A . ,  

Cov(Y(k},Y(t)) = f ,  ( n - l )  , (t)) 

(30) 

Now the covariance matrL-( of Y can be expressed as 
E = D + A, where D denotes a diagonal matrix with 
elements 

dk = (n-1)nkn n (V-ar(]~x(k))_ 1Var(]~z(k)))n (31) 

and A a matrix with diagonal elements 

n 
Akk -- (n--l)(V-ar(]~x(k))-Var(]~I(k))) (32) 

and the off-diagonal elements Akl the covariance 
terms defined by (30). A design unbiased estimator 
for dk is given by 

1 '~ nyi(k) 1 nyi(k) 
ilk = nk(nk -- 1) ~ NTci nk NTri (33) 

" _ _  

The covariance matrix of C Y  equals C E C  t = 
C D C t + C A C  t. Van den Brakel and Renssen (1996) 
showed that under the null hypothesis, C A C  t is zero 
and under the alternative hypothesis at least negli- 
gible with respect to the leading term C D C  t. As 

t 
a result an estimator for C E C  t is given by C]~C 
where D is a diagonal matrix with elements dk. This 
estimator is design unbiased under the null hypoth- 
esis but slightly over estimate the variance under 
the alternative hypothesis. Consider the measure- 
ment e r r o r  m o d e l  Yi(k) = u i  if- b]¢ + ci(l¢), w h e r e  u i  

is the unobservable, intrinsic x~lue of individual i, 
bk an additive treatment effect and ei(k) the mea- 
surement errors with model assumptions (18). Let 
f7 -- -- }Si(k)/~--~l 7 ~  (k) denotes the extended 

Horvitz-Thompson estimator of Y(k)- Van den Brakel 
and Renssen (2000) showed that if the extended 
Horvitz-Thompson estimator is used, an estimator 
for the covariance matrix of the contrasts which is ap- 
proximately design unbiased under the null- as well 
as the alternative hypothesis, is obtained by (33), 

where Yi(k) is replaced by (Yi(k)-Y(k)). 

Due to the diagonal structure of D, the Wald sta- 
tistic can be further simplified to 

K 1 2 
W -  E a~-7 (IS(k)- Y'~) ' (34) 

k--1 

where 

Y w -  1 

k = l  dk 
(3s) 

These results are related to the literature con- 
cerning testing interviewer differences and other 
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non-sampling or measurement errors. Mahalanobis 
(1946) used interpenetrating subsamples to test to 
test interviewer differences. The assumption of equal 
workload and a linear random component model 
leads under simple random sampling to an F-test of 
no interviewer effects as well as an estimate of the 
total variance (Cochran, 1977, section 13.15). Hart- 
ley and Rao (1978) provided a general theory, using 
linear mixed models, to estimate the overall variance 
for stratified multistage sampling designs in which 
the last stage units are drawn with simple random 
sampling. If in the experimental designs considered 
in this paper the subsamples are assigned to the dif- 
ferent interviewers, then the Wald statistic (34) can 
be interpreted as a weighted sum of squares of inter- 
viewer means. 

7 D i s c u s s i o n  

Two variance estimation procedures for the analysis 
of CRD's embedded in complex sampling schemes 
are proposed. The first procedure directly estimates 
the covariance matrix of the population treatment 
means. An imputation procedure is applied for the 
unobservable paired observations. The second proce- 
dure makes strong assumptions about the purpose of 
the analysis of the experiments, by deriving a vari- 
ance estimator of the contrasts between the finite 
population treatment means. 

The estimator for the covariance matrix of the K 
population treatment means, is less restrictive since 
we do not assume a particular hypothesis of no treat- 
ment effects in the variance estimation procedure in 
advance. Generally, the approximation of the co- 
variance term is biased. In an a t tempt  to reduce 
this bias, the imputation method is refined by us- 
ing auxiliary information to construct homogeneous 
imputation groups. It follows that the bias in the 
covariance approximation can be reduced with the 
covariance between these imputation groups. As a 
result, the quality of this covariance approximation 
is determined by the extend in which we can con- 
struct homogeneous imputation groups. 

The estimator for the covariance matrix of the 
K -  1 contrasts has the structure as if the K sub- 
samples are drawn independently from each other by 
means of simple random sampling with replacement 
and with selection probabilities 7ri/n. This result 
is obtained due to the randomization mechanism of 
a CRD, which comes down to simple random sam- 
pling without replacement. Under this randomiza- 
tion mechanism it follows that  if the variance of a 
contrast between two subsample means is derived, 

then the finite population corrections in the variances 
of the two subsample means cancels out against the 
covariance between these two subsample means. See 
Van den Brakel and Renssen (2000) for more details. 
As a result, no second order inclusion probabilities 
are required, which simplifies the variance estimation 
considerably. 
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