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1 I n t r o d u c t i o n  

In situations where weak or no auxiliary informa- 
tion is available at the population level, two-phase 
regression estimation constitutes a possible tool for 
cost-efficient estimation. In this respect, impbrtant 
references are Sgrndal and Swensson (1987), Dupont 
(1995), and Hidiroglou and Siirndal (1998). S~rndal 
and Swensson presented general results regarding 
generalized regression estimation under two-phase 
samling, while both Dupont and Hidiroglou and 
S~rndal discussed two-phase calibration estimation 
and its possible relation to generalized regression es- 
timation. Hidiroglou and S~rndal showed that under 
their suggested calibration approach, the generalized 
regression estimator (GREG) under two-phase sam- 
pling alternatively may derived using a two-step cal- 
ibration approach, a result in line with the findings 
regarding the relation between regression and cal- 
ibration estimation under single-phase sampling in 
Deville and S~rndal (1992). 

In this paper we focus on variance estimation for 
the G R E G  under two-phase sampling, and the ques- 
tion we seek to answer is whether or not the available 
auxiliary information may be used more extensively 
than is generally the case, in order to obtain more 
efficient variance estimators. This is by no means 
a new question (e.g. Rao and Sitter, 1995; Sitter, 
1997; Axelson, Breidt, and Carriquiry, 1996), but to 
our knowledge, the approach presented in this paper 
is a new development. The main goal of this paper 
is to extend the calibration technique to allow not 
only for point estimation purposes under two-phase 
sampling, but for variance estimation purposes as 
well. A general framework for calibration estima- 
tion of the variance of the two-phase regression es- 
timator will be presented in detail and the method 
will be evaluated empirically through a small-scale 
simulation study. Related work under single-phase 
sampling includes Singh, Horn, and Yu (1998) and 
Th~berge (1999) 

The paper is organized as follows. In Section 2 
some basic notation is introduced. In Section 3 the 
G R E G  is defined and a large-sample approximation 

to its variance is given. Section 4 deals with variance 
estimation. The standard approach is presented in 
Section 4.1, while a detailed account of the proposed 
calibration approach is given in Section 4.2. In Sec- 
tion 5, finally, the results of a small-scale Monte 
Carlo study are presented. 

2 P r e l im ina r i e s  

Let U = { 1 , . . . , k , . . . , N }  denote the finite popu- 
lation of interest. Associated with each population 
element k E U there are fixed values of of the auxil- 
iary column vector x l  and the variable of interest y, 
respectively. The value of xl,  Xlk, is known for all 
k E U, and the objective of the survey is to estimate 
tu - ~ u  Yk, the finite population total of y, which is 
unknown at the outset of the study. (If $1 is any set 
of elements such that $1 c_ U and ak is a quantity 
associated with element k, ~ s l  ak is our shorthand 
for ~ k e S l  ak.) To estimate ty, two-phase regression 
estimation will be used. 

Let sa be a sample drawn from U according to a 
sampling design pa('). For all na elements included 
in the first-phase sample Sa, information on the aux- 
iliary vector x is recorded. (For a discussion about 
the possible relationships between the auxiliary vari- 
ables xl  and x, see Hidiroglou and Siirndal, 1998.) 
While xl is often primarily of an administrative na- 
ture, x is typically chosen because it is assumed to 
be a powerful, yet relatively inexpensive, predictor 
for y. However, since both of the auxiliary vari- 
ables xl and x eventually will serve as predictors for 
the study variable y in the GREG,  we assume that 
each variable in itself has a predictive ab!lity strong 
enough to motivate the use of regression festimation. 
Next, a sample s is drawn from Sa according to a 
sampling design p(']Sa), and the value of the study 
variable, Yk, is recorded for the n elements included 
in the second-phase sample. Throughout the paper, 
it is assumed that Sa and s are organized in such a 
way that the elements are sorted after increasing size 
of k. When necessary, the uath element in s~ will be 
referred to as k~o (u~ - 1 , . . . ,n~) ,  while the uth 
element in s will be referred to as k~ (u = 1 , . . . ,  n). 

The first-phase first- and second-order inclusion 
probabilities induced by Pa(') are denoted Trek 
and 7rakt, respectively, while the conditional first- 
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and second-order inclusion probabilities induced by 
p(.[s,~) are denoted ~rkl~ and 7rktls~, respectively. In 
this paper, we only consider two-phase designs such 
that (i) ~rakt > 0 for all k&l e U and (ii) 7rktls,, > 0 
for all k&l ~ so, and every sa. 

For any quantity associated with element k, we 
let " symbolize division by 7ra~ and let " sym- 
bolize division by 7rakTrk[s, ~. Thus, for example, 
f/k = yk/~r,~k, which is defined for all k e U, and 
~]k --  f lk /Trkls , ,  = Yk/(Trak~Tk[s~, ), which is defined for 
all k 6 s~. 

3 Gene ra l i zed  regress ion  e s t i m a t i o n  u n d e r  
two-phase  s ampl ing  

Let t~8 = ~ ~k and let t,~ be analogous to t~ .  

Moreover, let t,z~s~ = ~so ~lk, let t.=sa be analogous 

to [,ZlS,,, and let t=~ = ]~-~v x~k. In line with S/~rn- 
dal and Swensson (1987) and SKrndal et al. (1992, 
section 9.7), we define the G R E G  under two-phase 
sampling as 

(~) 
"at" ( tz l  - -  txls,,)'fils, 

where 

f i  ( E .  =' - '  , = x,~x~/c,~) E .  x , , ~ k / ~  (~) 

and 

with 

• u* = ~ ,  + (~ ,  - ~ t ~ ) ' f i ,  

i f k ~ s ~ - s .  

i f k ~ s .  

(3)  

In (2), c is a weight which is assigned after the first 
phase of sampling but prior to the second phase 
of sampling. The weight serves to reflect the rel- 
ative importance the statistician is willing to assign 
to element k on the basis of the auxiliary informa- 
tion available for k E Sa. Similarly, in (3), Cl is 
a weight which serves to reflect the relative impor- 
tance the statistician is willing to assign to element 
k on the basis of the auxiliary information available 
for k ~ U. 

Define 

g ~ , .  = ~ + ( t= ,  - ~,=,,.)' 

~' / c ~ , ) - ~ x i , / c ~ ,  

for k ~ sa, and 

g2ks = 1 + ( E , .  g~k,.~k -- E s gxks.Xk)' 

X ( E ,  X~'~/C~)-~X~/C~ 

for k E s, and let gks = glkso + g2ks -- 1, which thus 
is defined k E s. It is matter of algebra to show that 
an alternative expression for (1) is given by 

This expression is due to Hidiroglou and S~rndal 
(1998), who derived tu~ using a two-phase calibra- 
tion approach. 

The variance of tyr may be written as V(tyr) = 
V1 + V2, where V1 = Vp,,[E(tyrlsa)] and II2 = 
Ep,,[ V (tu,. I sa)] sometimes are referred to as the first- 
and second-phase variance component, respectively. 
Let 

' / c ~ ) - ~  B~u - ()-'~u x t~x~  ~ u  x~kyk/C~,  

let 

" -, x xkflk/ck B.o = (Eso XkXk/Ck)-  E . ~  

'kB1u and define the prediction errors Elku = Yk--X 1 
A 

and Ekso = Yk - -x~Bsa,  which are defined for k E U 
and k E s~, respectively. Moreover, let 

and 

~ , o  = ( G , , o , . . . ,  G ~ ° , ° ,  • . . ,  G . . . . ) ' ,  

and define the matrices Zklu = [Aakt] and z~s, = 
[AkZl~o], where A~kt = 7r~,kt- 7r~,k~r,~t (k&l e U) and 
Aklls~ "-7rktls~--Trkls~Trtls~ (k&t E sa). Large sample 
approximations for V1 and V2 are given by 

and 

1"1 " A Vx " u E l u = E1uA,1 

v2 " AVe = G o [ A V ( f y , . I s , , ) ] ,  

where AV(f~,,.Isa) = ~,o A.o]~.o, respectively. 

(4) 

(5) 

4 Var iance  e s t ima t i on  

4.1 T h e  s t a n d a r d  app roach  
s ~  

' and eks -- Y k -  For k E s, let elks = y k -  XlkBls 
x~Bs, and define the vectors 

. . .  ) 1  

and 

e~ = ( d k r , , . . . ,  d k : , , . . . ,  dk:,) ' .  

Moreover, define the matrices ~ l s  = [~akt] and 

2~. = [nk~i,o], where 2X~kz = a~kz/(~kz~kzi,°) 
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( k & l  e s ) a n d  A~tls ° = A~tl,~/zr~zl~ ° ( k & l  6 s ) .  

From (4) and (5) it follows that a possible estimator 
for V(t~r) is given by 

where 

Y ~  = ~~,~  + ~ ~ , , ,  (~) 

and 

VREF,2 : e8 

When the sample size is large in each of the two 
phases, (6) is approximately unbiased for V({~) 
(e.g., S/irndal and Swensson, 1987). 

R e m a r k  1. Let 

G l s  - -  d i a g ( g l k ; 8 . , .  . . , g l k ; s . ,  . . . , g l k ; , ~ o )  

and 

G~ - diag(gk; ~ , . . . ,  g k ;  ~ , . . . , gk;, ~ . 

As an alternative to VR~v, Axelson (2000a) proposed 

~.R,,~;~ ..g~ + ~  
E F  - - -  VREF,I R E F , 2  ~ 

where 

and 

VREF,1 -- e l s  i s  i s  s 

VREF,2 -- e s  s 

Other alternatives to VR~ based on the so-called g- 
weighted residual technique have been proposed by 
S/irndal et al. (1992, section 9.7) and Hidiroglou and 
S/irndal (1998). 

4.2 T h e  ca l ib ra t ion  a p p r o a c h  

In this section we show how the results in Th~berge 
(1999) regarding calibration estimation of bilinear 
estimators may be extended to allow for potentially 
efficient estimation of V({yr). To this end, we need 
to introduce some new notation. Let z l (J1 x 1) and 
z (J  × 1) denote vectors such that z lk is known for 
(i) k 6 U or (ii) k 6 s~, and Zk is known for k 6 s~, 
and define the matrices 

( )' ZIU = Z I I , . . . ~ Z I k , . . . , Z I N  , 

Zlsa  = (Zlk l~  'Zlk~'a~ ' a ' . . . . . .  Zlk,  ~ )t 

Z l s  - -  (Zlk~ ' ,  , Z lk~ ,  , Z lk  ~ )t 

Z~o = ( - ,k , , . . . ,  zk~o, . . . ,  Zkoo)', 

and 

z~ = ( z ~ , . . . ,  z k ; , . . . ,  zk~)'. 

In deriving a calibration estimator for V(tyr), it is 
assumed that  zl and z may be regarded as auxiliary 
vectors for the residuals ~lU and Ssa, respectively. 

Let F1 (A x B), let vec(F1) denote the vec- 
tor obtained by stacking the successive columns 
of F1 with the first column on top, and let F2 
( A B  x A B )  be a positive diagonal matrix. Fol- 
lowing Thdberge, we define the distance measure 
I[F1][ 2F~ -[]vec(F1)[[~2 - vec(Fl) 'F2vec(F1). Now, 
a calibration estimator for 171 based on Zlu is given 
by 

" s W l s e  (7 )  /rCAL,I --- e l  Is,  

where Wls is the matrix which minimizes 

IiW~ 2~!12 (8) Q I '  

subject to the condition that it minimizes 

IIZ~W~Z~ - Z~uA~uZ~uII ~ (9) T I "  

The matrices Q1 and T1 in (8) and (9), respec- 
tively, are positive diagonal matrices, assigned by 
the statistician, which serve to reflect the relative 
importance of the units in the distance measures. 
When Zlk is known only for k E sa, we simply mini- 
mize (8) with respect to W ~ ,  subject to the condi- 
tion that 

IIz' * - z '  2 ~ o Z ~ o l l  ~ (10) l s W 1 8  z18 lsa T1 

where zklso - [Aakt ]  with ~'akl -- Aakl/Trakl  ( k & l  6 

sa), is minimized. A calibration estimator for V2 
based on Zso is given by 

- ~" Wses ( 1 1 )  )CA,~,2 es , 

where W8 is the matrix which minimizes 

I I W ;  - A~  I1~, (12) 

subject to the condition that it minimizes 

[IZ'~W;Z~ - Z' ~ Z~oll~ (13) 8a a 

The matrices Q and T in (12) and (13) are positive 
diagonal matrices, analogous to QI and Ti, respec- 
tively. Combining (7) and (II), we thus have 

~?CAL - -  VCAL,I + VEAL,2, (14) 
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which may be viewed as a calibration estimator for 
v(iz,~). 

To find closed-form expressions for Wls  and Ws,  
respectively, let V iu  = Z1u ® Zlu, Vlso = Zls~ ® 
Z18~, Vls = Zl8 ® Zls, Vs, = Zso ® Zs,, and Vs = 
Z, ® Zs, where ® denotes the Kronecker product 
(e.g., Rao, 1973, p. 29). Moreover, for a matrix F1, 
let F~ denote the Moore-Penrose generalized inverse 
(e.g., Rao, 1973, p. 26) of F1. Using the results in 
Th~berge (1999, section 5), it may be shown that the 
minimization of (8) with respect to W~s, subject to 
(9), yields 

vec(Wls) = vec(2Xls) + Q~-IVlsT~/2 

X [ Ti/2v'i  --isQiiVls qpi/2*i ]t 

xWl 1/2 [V~ uvec(A i U) 

- 

When (10) is used as the calibration condition, we 
get 

i/~ vec(Wi~) = vec(2kls) + q~-lVlsT1 

1/2 , Tll/2], × [T1 VI~Q~-IVI~ 
t/2 

x T i [Vi~ovec(Ai~o) 

- 

Furthermore, the minimization of (12) with respect 
to W ; ,  subject to (13), yields 

vec(W8 ) = vec(/k s ) + Q - i  V s T 1/2 

x [T1/2V's Q- iV~ T1/9] t 

Ti/2 X~l [v'~ovec(ZX~o) 
- V'svec(A 8)]. 

R e m a r k  2. An alternative to (14), based on g- 
weighted residuals, is given by 

AL --- V E A L , 1  "JU CAL,2  

where 

and 

^ ~  "' G W l s G 1 8 ~ l ~  V E A L , 1  "-- els l s  

^ " G s W s G ~ e s .  V ~ A L , 2  ~ e s  

R e m a r k  3. Under stratified sampling designs, al- 
ternative calibration estimators are obtained if the 
minimization is carried out separately within each 
stratum. 

5 A S imula t ion  S t u d y  

To study the design-based properties of 1/CAL rela- 
tive to VREF, a small-scale Monte Carlo study was 
performed. For the study, the population generated 
by Axelson (2000b) was used. The population U was 
generated according to a slightly modified version of 
the method suggested by Vale and Maurelli (1983), 
which allows for the generation a multivariate non- 
normal distribution with specified correlation struc- 
ture and given marginal means, variances, and coef- 
ficients of skewness and kurtosis. In generating U, 
Axelson used the correlation structure and the uni- 
variate moments for the variables in the real-world 
population MU281 ( Sgrndal et al., 1992, Appendix 
B, pp. 652-659) as input. Hence, although artificial, 
U is similar to MU281 in terms of the univariate 
moments as well as the correlation structure. 

As an initial choice, the study variable and the 
auxiliary information was chosen in accordance to 
the choices made by Sgrndal et al. (1992, p. 278). 
That is, y corresponded to RMT85, xl corresponded 
to CS82, and x2 corresponded to SS82. The popu- 
lation correlation matrix of (y, xl,x2)' is given by 

1.00 0.65 0.66 1 
r -  ( r i j ) -  0.65 1.00 0.14 

0.66 0.14 1.00 

and R 2 = 0.75, where R 2 is the multiple coefficient 
of determination associated with regression of y on 
(1,x~,x2). To get an indication of the extent to 
which the behavior of I)C~L relative to ITRE ~. depends 
on the predictive ability of the vector (1, xt,x2), the 
choice of x2 corresponding to REV84 was also con- 
sidered. For this choice, the population correlation 
matrix is given by 

1.00 0.65 0 .91]  
r = (rij) = 0.65 1.00 0.59 

0.91 0.59 1.00 

and R 2 = 0.85. These two choices of auxiliary in- 
formation will henceforth be referred to'as X1 and 
X2. 

While the choice of the first-phase design often 
is governed by administrative arguments, the choice 
of the second-phase design is typically more directly 
related to efficiency arguments. It is not uncom- 
mon that the auxiliary information collected for the 
elements included in the first-phase sample is used 
in order to obtain an efficient stratified design for 
the second phase. To study the extent to which 
the behavior of VCaL relative to 1?R~ F depends on 
the choice of the second-phase design, the following 
two-phase sampling designs were considered: 
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D1 Pa(')" simple random sampling (na/N = 0.1) 
P('ls~)" simple random sampling (n/n~ = 0.1) 

D2 p:(.):  simple random sampling (n:/N = 0.1) 
p('[sa): sa divided into H = 2 equally sized 
s t ra ta  by increasing size of x2, stratified simple 
random sampling (nh/n~h = 0.1) 

D3 p,(.) :  simple random sampling, na/N = 0.1 
p(.[s,): sa divided into H = 4 equally sized 
s t ra ta  by increasing size of x2, stratified simple 
random sampling (nh/n,h = 0.1) 

Now, let 6hk = 1 if k belongs to second-phase 
strata h and define 6k = ( 5 1 k , . . . , 6 h k , . . . , S H k )  t. 
Throughout the simulation study, x l was assumed 
available for all k E U while x2 was known only for 
all k E sa, and the GREG was defined according to 
(1) w i t h  Xlk = ( l , X l k )  t, Xk = 6k ® ( 1 , X l k , X 2 k ) '  a n d  

Clk -- C k -- 1. 
It is likely that the performance of VCA~ to a large 

extent is governed by the choice of the auxiliary vec- 
tors Z l and z. In the Monte Carlo study, the follow- 
ing two choices of zl and z was considered: 

Z1 zlk fdkfi "' fil~ - dk8 (k E s~) andzk  --- s - -  i l k  

(k e 

"' " (k e U) and z ~' fis (k e sa) Z 2  Z l k  - -  XlkSls k -- Xk 

The motivation for Z1 is that o~ks = ~1k8 -- ~ks and 

--dks = ~ks - ~ l k s  may be regarded as proxies for 

/~lk~o and/~k~o, respectively. Z2 may be motivated 
through an extension of the framework presented by 
Singh et al. (1998), to allow for generalized regres- 
sion estimation under two-phase sampling based on 
multivariate auxiliary information. 

Let 

and 

I I ~  - diag(Tr~kr,..., Trek;,..., 7rak;, ) 

1-Isls. = diag(Trk{18o,. •., 7rk;18~,..., Zrk;, Iso). 

The following two choices of Q1 and Q were consid- 
ered" 

QI Q1 = (IIsl~oII2 d) ® (IlalHstso) and q = 
® (II  II, 

Q2 q l  - diag(Vls)diag[vec(z~18)] -1 and Q = 
diag(V8 )diag[vec( A s )]--1 

Throughout  the study, the matrices T1 = T - 1 
were used. Hence, in addition to VREF, the following 
four choices of 1TEAL were included in the study: 

Vc1 VCAL according to (14) using Z1 and Q1 

Vc2 VeAL according to  (14) using Z1 and Q2 

1)c3 ]~'CaL according to (14)using Z2 and Q1 

17c4 Veal according to (14)using Z2 and Q2 

For each of combination of sampling design and 
auxiliary information, M = 10000 two-phase sam- 
ples were realized, and for each simulation run, the 
variance estimates corresponding to VI:t~F, VCl, l/c=, 
]~'C3, and T/c 4 were computed. Let l),n and tur,m de- 
note the estimates of V(tur ) and tu, respectively, cor- 
responding to the ruth simulation run. The Monte 
Carlo mean squared error of l~' was calculated as 

M 
MSEMc(~" ) -  E (~"m - S ?  )2/( M -  1) 

m = l  tu" ' 

where 
M 

S? = Y] (tv~,m - tv~)2/( M - 1), 
tu" m=l  

with {vr M - ~-,m=l tu~,m/M. Also computed for each 
variance estimator were 95% confidence intervals of 
the form 

C I  (rut,m, 9r~) = {u.,m + z0.975 ~ ,  

where zo.o75 is the 97.5 percentile of the standard 
normal distribution, and the empirical coverage rate 
was calculated as 

M 
ECMc({y~, 9 ) =  I 0 0  E l [cz({ , ,  . . . .  %.)9t~]/M, 

m = l  

where I[.1 is the indicator function. 
In Table 1, some of the results from the Monte 

Carlo study are presented.  

Design & M S E M c ( I / ) / M S E M c ( V R E F )  

auxiliary ( ECM C ( tyr , V)  ) 

information ~ZRE F ~zC l ~ZC2 ~/C, 3 4 

~.00 0.95 t.04 ~.00 0.79 
D1, XI  (93.7) (93.7) ( 9 4 . 0 ) ( 9 3 . 7 )  (94.0) 

1.00 0.90 1.32 1.00 1.00 D2, X1 (93.8) (93.8) ( 9 4 . 1 ) ( 9 3 . 8 ) ( 9 4 . 1 )  

1.00 0.91 1.45 1.00 1.13 D3, X1 (93.1) (93.2) ( 9 3 . 8 ) ( 9 3 . 2 ) ( 9 3 . 6 )  

1.00 0.88 1.02 1.00 0.83 D1, X2  (94.0) (94.1) (94.2) (94.0) (94.4) 

1.00 0.87 1.17 1.00 1.20 D2, X2 (93.6) (93.7) (93.8) (93.6) (94.2) 

1.00 0.90 1.16 1.00 1.56 D3, X2  (93.3) (93.4) (94.0) (93.3) (94.0) 

Table 1. Relative Monte Carlo MSEs and empirical cov- 
erage rates of 95% confidence intervals 
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Clearly, all of the studied variance estimators dis- 
play acceptable properties in terms of the empirical 
coverage rates. Comparing the estimators on the ba- 
sis of the difference between the the empirical and 
the nominal^coverage rate, the data implies that ei- 
ther 17c2 or Vc4 is to be preferred. However, since the 
differences between the studied estimators are quite 
small, we refrain from drawing any far-reaching con- 
clusions solely on the basis Of the empirical coverage 
rates. 

If the relative MSEs are included in the compari- 
son a slightly different picture emerges, in which Vcl 
appears as the best choice. The major reasons for 
this are: 

i Apart for the combinations D1, X1 and D1, X2, 
Vcl is the most efficient estimator. 

ii Even under D1, X1 and D1, X2, (/c1 is more 
efficient than IYRE F. 

iii Throughout the simulation study, 1/c2 is less 
efficient than lYRE F. 

iv I?c, displays the same efficiency as IYRE F 
throughout the simulation study. This may 
seem surprising, but it is a matter of algebra 
to show that Vc3 is almost identical to VR~ r 
under the used definition of the GREG. 

v Although 17c4, which is most efficient under D1, 
X1 and D1, X2, performs reasonably well under 
DP, X1 and D3, X1, it is the most inefficient 
choice under D2, X2 and D3, X2. 

vi The degree to which the performance depends 
on the choice of the auxiliary vector x seems 
to be smaller for 1?c1 than for any of the other 
three calibration-type variance estimators. 

In conclusion, the results from the Monte Carlo 
study imply that more efficient variance estimators 
may be obtained through the use of the suggested 
calibration approach, but they also indicate that the 
performance depends on the choice of auxiliary in- 
formation to be used. However, before any general 
recommendations can be made, both the theoretical 
and practical properties of the suggested approach to 
variance estimation need to be further investigated. 
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