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Introduction 
A simulation study was conducted using a frame with 
200,000 records, 1,000 PSUs, one categorical variable 
designed to represent an adjustment variable and twenty 
variables with different distributions, intra-class 
correlations and relationships to the adjustment variable. 
Inaccuracies in the original PSU size estimates and 
differential nonresponse were built into the simulations. 
The study used two different simulated samples that 
varied considerably the distributions of the variables in 
each from which variances were estimated. The choice 
of two samples and many estimands and methods rather 
than a more intensive selection of multiple samples 
examining one or two methods and estimands was made 
for its heuristic value. Each of the two samples of 100 
PSUs and 25 units per PSU were drawn from the frame, 
and point estimates were obtained by adjusting to a 
simulated race/ethnicity variable. Variance estimates 
were then obtained by drawing multiple samples and 
obtaining the standard deviation of the estimates across 
samples. These estimates were compared with those 
obtained from each of the two samples using several 
jackknife, bootstrap, and Taylor Series linearization 
techniques. The results are discussed in terms of the 
distribution of the variables and the techniques used. 

Most variance estimation studies compare variance 
estimates from a sample by examiningh each method to 
a preferred method. In a few studieses a real sample has 
been used to create a population and then the different 
variance estimates have been compared. This paper 
compares different estimates obtained from a sample with 
the variances obtained by drawing multiple samples from 
the flame. Since flame data is seldom available and must 
be simulated, it is often not possible to determine the 
degree to which estimates obtained from a sample are 
biased, and whether the bias is a function of the sample or 
the estimation method. 

General Considerations 

Consider an extreme situation. A ten percent sample with 
one extreme outlier is drawn from a population. In this 
extreme case the population has 100 units and a sample 
of 10 is drawn. One unit has a value of 1,100 and the 

other 99 units have a value of 100. The result is that ten 
percent of the samples will yield an estimate of 200 and 
the remaining ninety percent will yield an estimate of 
100. Variance estimates will be 10,000 for ten percent of 
the samples and 0 for the remaining 90 percent. The true 
variance of the mean is 1,000. 

The above example would be true with any variance 
estimate derived from the samples. No estimation 
approach could solve the problem that an estimate from 
the sample will remain only an estimate and would be 
sensitive to the peculiarities of the particular sample 
selected. However, different variance estimators from a 
sample may be more or less sensitive to the peculiarities 
of the sample, the particular characteristics of the 
sampling design or the weighting adjustments. 

This motivation of this paper proceeds from frequent 
disagreements over the preferred method of choice under 
different circumstances. Most often one can compare 
different variance estimates obtained from a sample, but 
does not know what the true variance is. Frequently there 
is no good procedure through which variances can be 
estimated, and in order to obtain estimates one has to 
assume that one aspect of the design is unimportant. 

Such assumptions are common in situations where a 
cluster sample is selected without replacement with 
Probabilities Proportional to Size (PPS), and where 
adjustments are made to the weights in order to match 
some external population count and to adjust for possible 
underrepresentation of certain groups. Most of the time 
when the sampling fraction is small, the sample is treated 
as if it were selected without replacement. If one uses 
SUDAAN or some other software which relies on Taylor 
Series, one often ends up ignoring some aspects of weight 
adjustments. The fact that the variance estimates 
themselves have an error of estimate -- and that such an 
error depends on the methodology -- is often not taken 
into account by some practitioners. But ultimately one 
does not usually have frame data to establish 
comparisons. 

The purpose of this study is to examine several variance 
estimation methods using a simulated frame and sample. 
The simulated flame and design were kept very simple, 
with the sole intent of comparing estimation methods for 
means and ratios. This is a preliminary report on some 
simulations based on one sample and one frame, with 
estimates calculated for twenty means and twenty ratios. 
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The Frame and Sampling Design 

The simulated frame consisted of 200,000 units divided 
into 1,000 PSUs. The units were randomly assigned to 
the 1,000 PSUs by first randomly assigning each a value 
from 1 to 1,200 and then subtracting 1,000 from those 
numbers greater than 1,000. Thus the average size of 
twenty percent of the PSUs was twice as large as the 
average size of the remaining 800, but the actual 
population of the PSUs varied. 

In cluster sampling one seldom has an exact measure of 
size for the PSUs, though once a PSU is selected one can 
make a more precise determination of the number of 
units. We simulated this process by assigning each unit 
a random number with a mean of 1.0 and a standard 
deviation of 1.0. Then the sum of these size measures 
within each PSU became the reported size of the PSU. 
We also defined five "races" with proportions .35, .25, 
.25, .10 and .05 respectively. These were spread 
randomly across PSUs. Variables were later assigned a 
certain variation due to race and it was assumed that the 
population count by race was known. This variable was 
designed to simulate the weight adjustments for race or 
ethnicity that are common in many surveys. 

The sampling design involved selection of 100 PSUs 
with PPS using the Goodman-Kish approach with no 
stratification. The PSUs were sorted randomly and a 
sampling interval equal to one tenth of the sum of the size 
measures was chosen using a random starting point. It 
was assumed that the real size of a PSU could be 
ascertained once the PSU was selected, and 25 units were 
selected from each PSU. 

Using Poisson sampling we designated 5% of the sample 
as non-respondents. Adjustment for non-response was 
implemented at the PSU level. Finally an adjustment for 
race was implemented in order to make the weights in the 
race category add up to the population. Hence, the 
preliminary weights were as follows: 

1) A PSU weight equal to .01 times the sum of 
the sizes of the PSUs divided by the PSU size. 

2) A unit weight equal to the number of units in 
the PSU divided by 25. 

3) An adjustment for non-response equal to 25 
divided by the number of respondents in the 
PSU. 

4) An adjustment for "race" equal to the 
population total for the unit's "race" category 
divided by the sum of the products of the first 
three weights across all units in the sample. 

Two different samples with two sets of variables were 
drawn. 

The Variables 

For Study 1 twenty variables were simulated in the 
following ways. 

1) Each variable started as a normal variate with 
mean of 0 and standard deviation of 1. 

2) The variables were transformed in groups of 
four as follows: 

a) Variables 1 through 4 and 17 
through 20 were left intact. 

b) Variables 5 through 8 were 
transformed by preserving the sign and 
taking the square root of the absolute 
value. 

c) Variables 9 through 12 were 
transformed by taking the exponential 
minus 1. 

d) Variables 13 through 16 were 
transformed by taking the square, but 
preserving the sign. 

3) The variables thus transformed were normed 
to a mean of 1,000 and a standard deviation of 
100. 

4) Twenty additional variables were defined at 
the PSU level with a mean of zero and a 
standard deviation of ten. These were added 
respectively to each of the twenty original 
variables. 

5) Twenty variables were defined for each race 
so so as to have a standard deviation between 
races equal to k where k is the index of the 
variable in question. The value of each of these 
for a unit;s race was added to the corresponding 
variable. Thus each variable has a 
progressively higher variance between races. 

6) The variables were once again normed to a 
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mean of 1000 and a standard deviation 
of 100. 

7) Means were estimated for each of the twenty 
variables. In addition, estimates were calculated 
for the ratios of V/Vj+5 for j-1 to 15, and V/Vj.lS 
for j=l  6 to 20. These ratios were multiplied by 
1,000 to make examination of results easier. 

For Study 2 the variables were defined as before with the 
following exceptions. 

1) The between-PSUs standard deviation was 
50 instead of 10. 

2) The race differences were four times as large 
as in Study 1. 

3) One percent of the cases for each variable 
had the original value (normalized with a mean 
of zero) multiplied by five. 

Everything else was the same for Study 2, except that the 
a new sample was drawn. 

The Var iance  Est imators .  

The standard against which all estimators were measured 
was obtained by drawing 1,000 samples and obtaining 
estimates for each mean and each ratio. Since this 
estimator is not an exact estimate of the variance, we 
included a second set of 1,000 samples from the frame as 
one of the estimators used. Thus one could measure the 
agreement of every other method to the criterion with the 
agreement of the same method using different random 
numbers. 

The methods of variance estimation drawn from the 
sample included: 

1) Delete-a-group jackkni fe .  The 100 sampled PSUs 
were ordered in the initial order (which means that the 
PSUs in the top 20% with respect to size appeared first) 
and a group variable was created with twenty values, 
where the first, twenty-first, forty-first, sixty-first and 
eighty-first PSUs were assigned a value of one and so 
forth. Units in PSUs with a value of 1 were dropped and 
the fourth adjustment factor was recalculated. The 
standard jackknife formula with twenty groups was then 
applied (Kott, 1998). 

2) Ordinary jackknife.  Thesame procedure as above, 
but each PSU constituted a group unto itself. 

3) Bootstrap-- 200 replicates. Two hundred replicate 
samples of 100 PSUs were selected with replacement 
from the main sample. Each unit retained the first three 
components of the weight, but the fourth component (the 
adjustment to population totals by the "race" category) 
was recalculated. The standard deviation of the estimates 
was used. 

4) Bootstrap -- I, 000 replicates. Same as above, but with 
1,000 replicates. 

5) Half  Sample Replication. Here 1,000 half samples of 
50 PSUs were drawn randomly from the main sample. As 
before, the first three components of the weight were 
preserved, and these weights were adjusted by categorical 
totals. 

6) Taylor Series -- With Replacement. SUDAAN was 
used to set a design for sampling equiprobably with 
replacement at the first stage. The final weights were 
used for the individual units. 

7) Taylor Series - Without Replacement. Unequal 
probabilities without replacement were used with 
SUDAAN. However, the joint probabilities were 
approximated with .99 times the product of the 
probabilities. The final weights were used as weights and 
no post-stratification was defined. 

8) Taylor Series -- With Replacement and Post- 
Stratification. SUDAAN was used to set a design for 
sampling equiprobably with replacement at the first stage. 
Weights prior to final adjustment were used and the 

"race" variable totals were provided. 

9) Taylor Series - Without Replacement and with Post- 
Stratification. Unequal probabilities without replacement 
were used with SUDAAN. However, the joint 
probabilities were approximated with .99 times the 
product of the probabilities. Weights prior to final 
adjustment were used and the "race" variable totals were 
provided. 

Results  

The above designs are presented as 1 to 9 in the table and 
graphs. The second set of estimates from the frame is 
presented as 10. The estimates from the frame can be 
trusted to be closest to the true variance in that they are 
not dependent of the specific sample selected. Thus the 
first one was set up as the standard and three measures 
were obtained to measure the similarity of the nine 
methods and the second frame estimate to the first frame 
estimate. These were the mean difference, the root mean 
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square difference and the mean absolute difference of 
each estimate with the first estimate. A summary of these 
results are presented in Table 1. The root mean square 
difference are presented in the four charts that follow. 

For Study 1 the Jackknife with 20 groups had both the 
mean variance (across all the variables) closest to the 
mean of the twenty variables and the worst variable by 
variable correspondence of any of the methods. In other 
words, if one applied this method to many variables and 
took the average standard error, one is likely to obtain a 
result that comes close to what one would derive from the 
frame, but the variable by variable estimates would be 
off. Indeed it also has the largest variation in the 
estimates of any method. The close mean held up only 
for the Study 2 ratios, but for all four sets the root mean 
squares and absolute deviations were the worst. 

All of the methods tend to overestimate the variance, and 
the Taylor Series Without Replacement and using the 
adjusted weights instead of specifying the post- 
stratification consistently overestimated the most. It 
should be noted that the joint probabilities were not 
correctly specified, since the calculation in this case 
would be complex, but instead a number slightly lower 
than the product of the probabilities was used. 

Several tentative conclusions can be derived from the 
simulations. The use of two samples was not intended to 
yield definitive conclusions, but rather to provide 
heuristic insights into the potential hazards involved in 
the selection of method. The first insight is that the 
delete-a-group jackknife has a relatively poor differential 
performance. In other words, while it neither over- 
estimates nor underestimates systematically, its estimates 
can be off the mark in either direction. This is to be 
expected due to the limited number of degrees of 
freedom. On the other hand, this procedure may be quite 
useful when trying to obtain a design effect across 
variables. The second is that Taylor Series requires that 
post-stratification be specified when it is in fact used in 
the weighting. One surprise was that that the Monte 
Carlo half-sample seems to do quite well and is easy to 
program. While we did not use Fay's method (Judkins, 
1990) it seems clear that it could be easily applied to the 
Monte-Carlo half-sample if one were interested in small 
subdomain estimates, and this could be a procedure of 
choice because of its ease in programming. 
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Table 1 Summary Statistics for Various Methods 

Study 1 Means 

1 2 3 4 5 6 

Diff. 0.024 0.080 0.065 0.061 0.057 0.i01 

RMSQ 0.454 0.177 0.198 0.174 0.185 0.189 

A.D. 0.378 0.151 0.149 0.149 0.159 0.163 

Study 1 Ratios 

1 2 3 4 5 

Diff. 0.191 0.142 0.105 0.122 0.095 

RMSQ 0.608 0.304 0.351 0.284 0.244 

A.D. 0.479 0.248 0.282 0.238 0.205 

Study 2 Means 

1 2 3 4 5 

Diff. 0.315 0.295 0.272 0.272 0.251 

RMSQ 0.729 0.470 0.485 0.485 0.452 

A.D 0.539 0.345 0.377 0.359 0.338 

Study 2 Ratios 

1 2 3 4 5 

Diff. 0.261 0.407 0.373 0.367 0.337 

RMSQ 1.117 0.637 0.904 0.888 0.805 

A.D. 0.886 0.540 0.720 0.703 0.666 

7 8 9 i0 

0.192 0.077 0.167 -0.001 

0.248 0.175 0.228 0.060 

0.219 0.150 0.194 0.051 

6 7 8 9 i0 

0.169 0.295 0.137 0.263 -0.027 

0.331 0.406 0.301 0.372 0.122 

0.261 0.358 0.244 0.331 0.104 

6 7 8 9 i0 

0 . 330 0 . 369 0 . 288 0 . 297 -0 . 045 

0 . 498 0 . 524 0 . 466 0 . 452 0 . 120 

0.379 0.405 0.341 0.336 0.092 

6 7 8 9 I0 

0.421 0.477 0.398 0.447 -0.073 

0.642 0.677 0.630 0.659 0.222 

0.557 0.586 0.534 0.558 0.156 
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