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1. Introduction. In longitudinal surveys subjects are 
observed on at least two different occasions, which 
makes such surveys suitable for studying change over 
time at the individual, or unit level. In addition to the 
production of crossectional estimates, data from 
longitudinal surveys may be used, for instance, to 
estimate gross flows (important in the study of labour 
market dynamics), or in event history modelling, which 
may be used to uncover determinants of survival for 
individuals afflicted with a serious health condition. 
More generally, longitudinal data may be used for 
modelling a response variable as a function of 
covariates and time, with applicability in many areas. 
Rao (1998) and the references therein give a more 
complete description of possible use of data from 
longitudinal surveys and the statistical techniques that 
are available to explore them. 

Large scale longitudinal surveys are often carried out by 
organizations like Statistics Canada. Their primary goal 
in conducting a survey is to obtain design - based 
estimates of totals, means or proportions for a target 
population, which is finite. The selection of the sample 
generally follows a complex plan with goals like 
reducing the design variability of the sample estimates. 
The conditions for model based inference are often not 
met by the data collected according to the survey design, 
even if the finite population is large. Design - based 
inference, introduced by Binder (1983), offers a 
solution, as it allows for the use of modelling techniques 
in the context of survey randomization. We follow this 
approach, which is also that of Rao (1998), and consider 
marginal models for longitudinal data as in Liang and 
Zeger (1986) in the context of design - based inference. 

In longitudinal data, observations on the same subject 
are dependent, and this dependence is different from the 
clustering effect due to the sampling selection. Liang 
and Zeger (1986) introduced Generalized Estimating 
Equations (GEE), which require only specification of 
the marginal model mean and variance for each 
individual. Correlation across time for the same 
individual is assumed to exists, but it is not specifically 
modelled. In the special situation when the observations 
across time are assumed independent for each individual 
(the working independence assumption), GEE becomes 

the Independence Estimating Equation (IEE). 
Consistency is an essential ingredient in the proof of 
asymptotic normality. In design we can only define weak 
consistency, i.e. in terms of convergence in probability. 
The sets on which the estimators are roots of 
estimating equations (REE) have asymptotic probability 
1 (see Theorem 1). We do not make any assumptions 
regarding the uniqueness of the REE. We first state a 
result on the existence and consistency of the main 
estimator (Theorem 1), then show how it applies in the 
GEE situation (Corollary 3). 

The technical problems that we had to overcome were 
due to the estimation of the variance structure across 
time and to obtaining asymptotic results in finite 
populations with survey randomization. The first 
problem was solved by Liang and Zeger (1986) in a 
model - based context. They do not supply proofs for 
their asymptotic results. In order to do design 
inference(as in Binder 1983), we tried to give simple 
analytical proof (not included here) which do not depend 
on model assumptions in a superpopulation. However, 
some of our conditions are more natural if a 
superpopulation is assumed to exist and some model 
assumptions were present (e.g. (i) and (ii) of 
Assumption 1 - see Example 3 and model assumption 
(1)). The results of Binder (1983) had to be extended 
from the IEE case to GEE. 

This article is organized as follows: Section 2 presents 
marginal models as in Liang and Zeger (1986). Example 
1 illustrates the classical use of estimating equations 
(EE) in calculating an estimator of a regression 
coefficient for the linear model. This estimator becomes 
the census parameter in the context of design - based 
inference, which is outlined in Section 3. The design that 
we consider is stratified, multistage and with 
replacement at the first stage. Example 2 shows the 
calculation of the design based estimator from the 
'weighted' EE in Example 1. Section 4 is devoted to 
design - consistency. Example 3 illustrates conditions 
for consistency on the EE in Example 2. Some 
conclusions are presented in Section 5. 

2. Model set-up. The is essentially the set-up in Liang 
and Zeger (1986). Consider M individuals observed on 
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d i occasions ( i = 1 . . . .  M). The univariate responses Y it 
and the p - covariates xit are recorded, t = 1 . . . .  d i, i = 
1,... M. We assume that d~ = d ,  i = 1 .. . .  M. Typically, d 
is small for marginal models. Otherwise, time series 
techniques may be more appropriate. Only E m [Yi t] and 
V a r m  (Yi t) are specified, where m stands for model- 
based, for all ('v') t, i _ 1. Liang and Zeger (1986) 
consider probability densities 9 (Yit) = exp r [{Y~t 0it-  a (0i 
t) + b (Yi t) } ¢ ] with 0it = h(rh t), ]'lit = Xit ~ ' where a, b 
and h are known (differentiable) functions, {0~t}, ff are 
parameters ,  xi t "r is an 1 x p matrix of covariates and 13 
is an p x I vector of main parameters, 'v' t, i> 1. Here T 
stands for transposition of matrices. Note that for 
random variables with such densities we have: 

(1) = a '  E,,, [Yit] = I-tit (0it), 'v' t, i> 1" 

Let ~t(rl) = a'(rl), V r I in a space of parameters O. The 
function g is a link function if go~t(0it ) - x i t  v [3, ~t t, i>_ 1. 
If g = ILl ~ , then g is called the canonical, or natural 
link, the function h above can be taken to be the identity 
and the parametric form of the model is the natural one. 
The logit link function g(~t) = log {~t/(1-~t)}is the natural 
link associated with the logistic regression model. EE's 
are formed that mimic log likelihood equations 
associated with exponential distributions (e.g. normal, 
binomial, logistic, Poisson). These are quasi - likelihood 
equations if the original distributions belong to the 
normal family upon further restrictions, i.e. knowledge 
on the dispersion parameter ~ (Shao 1999, p. 242). The 
idea is to produce estimators for 13 which are REE by 
making few assumptions on the distribution of the 
observed data, and then study the properties of these 
estimators. 

When GEE's  are used, it is assumed that correlation of 
observations Yit across time for the same individual is 
the same for all individuals. X. More precisely, let 
Ui ([3, a, ~ )  = ni T v (  1 s i ,  v i  = 1 /~  [Ai 1/2 R (ct)Ail/2], 

Di = Ai Ai Xi, Si = Yi -  a'(0 i), A i = diag a"(0 i~) in R a 
and A i = diag [d 0i t  / d r h t], which could be taken to be 
the identity matrix Ia, 'v' i >__ 1. Notice that the covariates 
are contained in D i and that A i as well as S i (through a') 
contain the main parameter 13, i >_ 1. The GEE, or 
equation (7) of Liang and Zeger (1986), is: 

M 

(2) Z U~ (13, & (13), ¢ (s, 13)) = 0 
i - - 1  

Equation (2) above is called a pseudo-likelihood 
equation in Shao (1999), p. 315. Note that it consists of 
p scalar equations in which ct fully characterizes R. In 
equation (2) & and ~(s ,  13) are estimates of nuisance 
parameters that are obtained from the sample and 
generally contain [3. When the solution to (2) exists and 

is un ique ,  i.e. when 13 is defined implicitly by (2), it is 
denoted by ~cin Liang and Zeger (1986). Note that this 
approach is different from the one presented in Section 
5 of Rao (1998). It is important to note that (2) contains 
only 13 as unknown parameter and that, due to the 
estimation of the nuisance parameters, the left hand side 
of (2) is, in general, a nonlinear function of the sample 
observations. 

When the observations across time are assumed 
independent for each individual (the working 
independence assumption), equation (2) becomes IEE. In 
this case R(a) = I a and there is no need to estimate 
nuisance parameters in (2). This is the situation 
discussed, in a design randomization context, by Binder 
(1983). In the context of IEE and survey randomization 

(see Section 3), ~c becomes the "census" parameter 

defined in Binder (1983). The example below illustrates 

the calculation of ~c from an IEE. Notice that the 

presence of the time dimension is accounted for by the 
increase in the number of data points (from M to 2xM 
in this case). 

Example  1 Assume that the individual observations are 
independent, identically distributed (i.i.d.) and that they 
follow a normal distribution. Take ~ and d =2 
occasions. We have R(a) = 12 (case IEE). Assume that 
Xit , ~ are scalars, i,t >_ 1 and that h is the identity. 

P (Yi t) = exp - 
(Yi t-Oi t )2 

= exp {Yit 0 i t  - a (0 i t) 4" 

2 2 
Oit b(Yit) = - Yit 

b (Yi t )  } =* a (0 it) "- T '  T 

da dZa 
E [Yit] = 0 i t  -" ~ ; - 1 , 0it = x i t  1~, i,t _> 1. 

d Oil dO2it 
Note that each xit has as many components as 13 (p = 1 
components here) and, for i, t _ 1" 

d log p(yie) 
= Yit Xit - X i~  

Now a' (0it) = 0it = xit 13, i, t _> 1 and (2) is: 
M 2 M 2 

2 
(3) E ZxitYit- Z Z xie [ 3 = 0 s O  . 

i=1 t=l  i=1 t= 1 

~G = 

M 2 

Z Z xit Yit 
i=1 t=l 

M 2 
2 ZZxi, 

i=1 t=l 
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3. The design and the design-based inference. In the 
article, inference is done in the design - based 
randomization as proposed by Binder (1983). As 
mentioned in his paper, conclusions can be drawn only 
in designs in which conditions have been given for the 
Central Limit Theorem (CLT) to hold. The design that 
we consider here is stratified, multistage in which the 
p.s.u.'s (clusters) are selected with replacement from a 
population of M individuals (or 'ultimate' selection 
units). Conditions for the CLT to hold in such designs 
have been given by Krewski and Rao (1981) and by 
Yung (1996). Here the cluster totals (or normalized 
cluster totals) are i.i.d.'s in the design randomization 
within each stratum and independent random variables 
(r.v.'s) across strata. Thus, the r.v.'s involved in the 
limiting theorems are the clusters rather than the 
individuals. The populations change with the increase in 
the number of units involved in the inference. The 
sampling distributions of these variables change with the 
changing populations and so does the finite population 
parameter. To simplify notation, we index the 
populations by the total number of associated r.v.'s 
involved in the limiting process, i.e. the total number of 
clusters N from which n p.s.u.'s are selected. Thus, the 
census parameter defined by (3) for the lEE case will be 

^ 

denoted 13 N = [3 a, rather than 13 M, which would be more 
appropriate. The parameter to estimate in the design 
randomization context changes as n-- oo (which implies 
that N, M -- oo ). In this article, the parameter 130 plays 
the role of the fixed point in the asymptotic, e.g.: 

., PN PN 
13 N ~ 130, where ~ means convergence in 

the design probability, which is consistent with Binder 
(1983). In some instances, one might wish to link 130 to 
the superpopulation parameter, e.g. if one wishes to give 
an interpretation to the finite population parameter. We 
do not attempt to do this here. 

We consider that the selected sample s consists of 
respondents only. The generalization to the situation 
where nonresponse occurs completely at random is 
straightforward (see J.N.K. Rao, 1998). Consider a 
population that consists of M individuals and which is 
partitioned into L strata. Each stratum consists of Mh 
individuals from which Nh clusters are formed, h =1 .... L. 
From each stratum h, nh clusters are selected with 
replacement and a further selection of rn~ individuals 
takes place within each cluster i, i = 1,... n h , h = 1 .... L. 
We denote by n the total number of clusters selected. To 
each individual k we attach a basic weight appropriate 
to the sample selection mechanism. As in Yung (1996), 
we 'normalize' it by dividing the basic weight by M, the 
total number of individuals in the finite population. We 

denote the resulting weight by Whik and, when no 
confusion may arise, by w k , k = 1 .... M, i = 1 .... nh, h 
=1 .... L 

Definition 1. In the case of the GEE (2), the census 
parameter 13 N is defined as the solution (when it exists 
and is unambiguously defined) of equation (4) below: 

M 

(4) ~ Uk (~, aN(13), ~,v(S, [3) ) = 0 • 
k = l  

^ 

We will define next a sample - based estimator 13 N, 
which will serve to make design based inference on the 
census parameter 13 N. In conjunction with the GEE (2), 
we define, for [3 ~ 19 : 

(5) %(13)-vN(s,13): U (13,aN(13),¢N(S,13)) 
k~s 

In (5) ~tN(13) and ~N($, [3) are sample based estimators 
of the census parameters a N, respectively ~N" Notice 
that in case of with - replacement sampling, s is an 
ordered sample, i.e. the same unit may appear several 
times in the sample s (S~'ndal et al 1992, p.72) 

Definition 2. The REE estimator ~N of the census 
parameter 13 N is defined as a solution to: 

~gN (S, 13) = 0, with ~gN (S, 13) as in (5) above. • 

Example  2. Consider the simpler situation of an IEE 
presented in Example 1. The census parameter in 

Example 1 is 13 N = ~a in (3). A design based estimator ~s 

is a solution to q/N([3) = ~gs(S, 13) = 0, where: 

2 

~gN (S , f3) = ~_, Wk ~ Xkt (Ykt - Xkt ~3 ) 
k~s t = l  

This estimator can be found explicitly as the EE above 
has the unique solution: 

2 

~ E  WkXktYkt 
(6) ~N = k~, t-1 

2 
2 

~ ~ W k X k t  
kEs t = l  

Note that in (6) the normalized weights can be replaced 
by the original design weights. • 

4. Consistency of ~N" We first give conditions for the 
existence of an RLE estimator 13 N as well as on its 
convergence to a constant, which is a major step in 
proving its design consistency. 
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Assumot ion  l ( a l s o  included in Binder (1983)): 

PN 
(i) VN (S, 13) -" V (13), V 13 C ®, where V (13) is a 

non random function defined on the space of parameters 
® which may be unbounded. Recall PN is the design 
probability. 

(ii) ~ (130) = 0, and all partial derivatives of ~g (13) 
exist and are continuous around 13o. 

(iii) D~ [~g (13)] I n = - J0 is invertible (it suffices to 

have detl Dp[v (13)i °1. ~ 0), where D~[ v (13)] is the vq 
pxp matrix of partial denvatives of ~t (13). 1 

R e m a r k  1 Assume that 130 is the true superpopulation 
parameter used in Si, i = 1 .... N. Then Em [Yi - a' (0i)] = 0, 
i >- 1, by the first model assumption in equation (1) . •  

Assumpt ion  2 For K 0 = K(130) a compact containing 
130, K 0 = 19 and any ri > 0, 3 a constant ho and an integer 
no such that, for the partial derivatives of ~tu (s,13) = 

( IlljN(s,~))j= 1 .... p' ~ : (~k )k= l  .... P 

0V~(s,13) 
sup PN {S" sup 

(iv) n > n o 13 e K 0 c313k 

for all j, k = 1 .... P i 

We note that (iv) is equation (4.69) of Shao (1999). 

Examale  3 • We consider again Example 2 above. 

~t u (s ,  ~3) = ~ w k ~_, Xkt(Ykt - Xkt ~3) 
kes t=l,2 

1 M 
=- - -  ~ ,  ~ Xk, ( Yk, - Xkt [3) 

M U'i= t=1,2 

(if design consistency). If the Strong Law of Large 
Numbers holds in the superpopulation, we have 

1 M 

=-- - -  k~l ~12 Xkt[Em[Ykt]-Xkt~]-" ~l (~) SL LN' s  M _- t=, 

E 2 if lim 1 M 
_ _  x~, = X 2  < oo 

M --1 t=l ,2 

by the model assumption (1), where : 

v (13) = x2 ( 130 - 13) 

Therefore (i) of Assumption 1 holds. Now clearly 
(13 o ) -  0 and so (ii) also holds. For (iii) to hold, we 

notice that the derivative of ~ (13) is - X2,  which is 
different from zero if at least one of the covariates is. To 
verify Assumption 2, we first take the derivative of 
~N(13) with respect to 13, N >- 1. We note that the survey 
weights do not depend on 13 and neither does D~ ~N(13) 
in this example. Furthermore, if we have design 
consistency of totals, we conclude that: 

(7) -1 
DI3 [ ~/N ( 1~ )] "" DI3[ ~/N (~) ] = M ~ Xkt 2" 

Note that the fight hand side of the equation above is 
bounded if the covariates are equibounded, or if the fight 
hand side converges, i.e. X 2 < oo•  

The proof of the following result was given in the scalar 
case only ( p = 1 ). 

Theorem 1. ( Existence and convergence of 

~u, N _ 1 ). Assume that qt u , N >- 1 are continuous and 

that the convergence in (i) is uniform in 13. Assume 
further that (ii) and (iii) of Assumption 1 hold. 

There exist then estimators ~u such 

that, V rl, 5 > 0 ,  3 n o (r I, 6) = no: 

sup pN{S" I~N -[30[ g~i' VN(S,~N)=0}> 1 - r  I 
, >_n o 

The same conclusion holds if Assumptions 1 &2 hold. • 

Corol la ry  1 Assume that: 

PN 
(8) %(~0)  ~ 0 

PN 
(9) D~ ~tul ~ ~ D(I3), uniformly 

in 13 ~ ® f'l K, where D([3) is a nonrandom function 
continuous on K, a compact set containing 130. 

(10) J0 = - D(130) is positive definite and invertible. 

We conclude then that there exists a function 
(13) , 13 ~ K, where K is a compact set in 19, such that 

uniform convergence in probability holds for 9N(13) and 
([3), as well as for D~ 9NI~ and DI3 V I~ = D([3). 

Furthermore, the conclusion of Theorem 1 also holds. • 

R e m a r k  2: Note that uniform convergence in (9) is 
implied by pointwise convergence and: 

(11) Condition (iv) of Assumption 2 holds for 
D~(gN) rather than 9N" • 

787 



In Example 3 the verification of the assumptions was 
done in two stages, the first based on assumptions of 
design consistency and the second on Assumptions 1 &2 
holding for ~¢N(S,~), N>_ 1. Under this new set of 
conditions, we also obtain 13 N -- 130 and consequently 
design consistency: 

Corollary 2. If Assumptions 1 &2 hold and 

~N(S, ~3), D ~ N ( S ,  13) N ~ 1 are design consistent, 

Pu PN 
then 13 N -130, ~N ~ 130SO ~N-f3N"~ 
as n - - .  Furthermore, the convergence in (i) of 

Assumption 1 is uniform in ~. I 

Theorem 1 is also valid in the GEE situation. Conditions 
for Assumptions l&2 to hold are more complex because, 
as mentioned above, the EE are no longer sums of 
independent r. v.'s in the design, due to the presence of 
the estimated correlation structure across time. 

In order to do statistical inference for GEE, we must 
find a sample based estimator of Vk = Vk (Qt, [3 ) (see 
Rao (1998)), and replace it in Uk (~t, 13, (P) = Dk T Vk ~ Sk 
, k = 1 .... M. This corresponds to the case when R(et) is 
completely unspecified in Example 5 of Liang and 
Zeger (1986). In this instance there is no need to 
estimate the overdispersion parameter (1). To estimate 

- - A  1/2¢,-, 112 Vk(~) --'lk "N ( f t '~ )A  k , k _> 1 for fixed values of the 

parameters, we estimate the common correlation 
structure across time, denoted here CN(Ct,[3 ), by 

A -112"" 'S  T - 1 / 2 ( ~ )  ~_, Wk k (p) k(f3)Sk (f3)a k . The entries of this 
kEs 

matrix are: 

^U 
cu(f3) =~_, Wk[a //(rb, i (f3))a //(rlkj([3)) ] l l 2 s k i ( ~ ) S k j ( ~ ) ,  

kEs 

where Ski(~3 ) : yki-/~ki(~) k = l .... M, i , j =1 .... d, 
^ ij 

13~ ® . L e t  gN(~3), i , j ,  =1  .... d, 13~ ® , b e t h e  

of @~l (13), which is assumed to exist. Then entries 

^ - ^ ij II - 112 V k 1(13) h a s e n t r i e s  gN(~)[a//(qki(~))a (qkj(~))]  , 

i, j = 1 .... d. We substitute in GEE (5): 

Uk(~,%(~)):Dk Sk: Yk -a/(Ok), V k _> 1 

and obtain: 

: g N ( ~ )  VN(S,[3), 
i,j -- 1,..d 

with: 

kEs 

a//(rlki(~3)) ] l l 2 x k i S k j ( ~ ) ,  i,j = 1 .... d. 

a//(rlk j ( 13 )) 

Therefore, the GEE in (5) can be written as a finite sum 
of terms with each of these terms equal to a product of 
two estimators. Furthermore, each V~(s, 13), i, j = 1 .... d, 
is a sum of random variables for which the conditions 
for consistency in Theorem 1 can easily be applied. We 
assume that a syrmnetric, invertible matrix C(13) exists 
and is continuous at 130 and that" 

(v) P N  

This implies: 

• P N  
gO([J) , V [3 ~ 19, i , j = 1, . . . d 

However, we often need uniform convergence on a 
compact space containing 13 o and so we would have to 

impose conditions stronger than (v). Consider now the 

information matrices i s  (13) = - 
d%(~) 

d13 
~ ,  N_>I.  

^o Corol lary 3. Assume that (9) holds for ~N (13), 
^/j 

go (13) , i, j = 1... d. Then, by the proof of 

P N  
Corollary 1, ~g~ (s, 13) V 0 (13) and 

P N  

gN (~)  "--~ g 0 (13)for some V 0 (13), g 0 (13) 

i , j = l  .... d. Letv([3)= ~ g0(13 ) viJ(13).We 
i , j=l , . .d  

dv(~o)  
assume that ~ (130) = 0 and that -J0 = , 0 .  

d13 

Then the conclusions of Theorem 1 hold for 9N(13) and 

V (13). Furthermore, JN(13) are equicontinuous at 130 and 

PN 
JN([3) ~ J0" Under the additional conditions 

~'J (130) = 0, i, j = 1 .... d, we have 
. .  

Jo ~_, g iJ(~3o ) d V v ( ~3 o) - -  ~ 0 .  m 
0 d13 

5. Conclusions. Design inference is a useful, interesting 
and challenging subject. Inference is generally more 
difficult in finite populations than in infinite populations. 
In the finite population situation, we have to deal with 2 
levels for each of the main and 'nuisance' parameters. 
Many of the techniques that are used in classical 

788 



inference can be adapted to the context of survey 
randomization. However, 'regularity conditions' that 
involve the interchange of derivatives and expectations 
taken with respect to the superpopulation model must be 
replaced by functional conditions. We tried to reduce the 
model assumptions to a minimum. As in Rao (1998), we 
retained the first moment model assumption in (1). Even 
though convergence of census parameters (including 
population averages in Example 3) can be treated as 
limits of functions, it is more natural to view them as 
realizations of sums of r.v.'s, as indicated in Example 3. 
We suggest therefore to view design- based inference 
within the more general set-up presented in Rubin- 
Bleuer (1998), which allows for join model and design- 
based inference. 
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