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1. In troduc t ion  

One often needs to estimate distribution func- 
tions and quantiles of a study characteristic Y for 
the analysis of complex survey data. A custom- 
ary design-based estimator of a distribution func- 
tion F ( x )  is defined as a weighted proportion of 
sampled values y that  are not greater than a given 
value x C JR, and its variance est imator can be de- 
rived using the linearization method. Also, point 
estimators of a quantile and associated variance es- 
t imators  can be obtained through the inverse rela- 
tionship between the quantile and the distribution 
function and the Bahadur representation. See, e.g., 
Woodruff (1952), a a o  et al. (1990), Francisco and 
Fuller (1991) and references cited therein. 

Due to the sparseness of da ta  in the tail region 
of a distribution, design-based estimation may per- 
form relatively poorly for estimation of either dis- 
tr ibution functions or quantiles at extreme points. 
Accordingly, one may seek to obtain bet ter  quantile 
point estimation and inference methods by fitting 
an appropriate parametric model to da ta  from these 
tail regions. Park and Eltinge (1999), for example, 
discussed generalized least squares (GLS) estimators 
of the quantiles in the tail region. These GLS esti- 
mators required the use of estimators of the covari- 
ance matrices of the approximate distribution of the 
initial design-based distribution function estimator 
vector. Direct design-based estimators of these co- 
variance matrices may be unstable in some cases. 

The  au thors  t h a n k  Drs. D. Brody,  A. Looker  and V. L. 
Parsons  for providing the N H A N E S  I I I  d a t a  discussed here, 
and  for helpful comments  on re la ted  s ta t i s t ica l  and  subs tan-  
t ive issues. This  research was s u p p o r t e d  in par t  by the U.S. 
Nat iona l  Cen te r  for Heal th  Stat is t ics .  The  views expressed 
here are those  of the  au thors  and  do not  necessari ly reflect 
the policies of the  U.S. Nat ional  Cen te r  for Hea l th  Stat is t ics  
nor  the  U.S. Bureau  of Labor  Stat is t ics .  

Consequently, it is of interest to consider approxi- 
mation methods tha t  may lead to more stable co- 
variance matr ix  estimators. 

This paper develops one such approximation 
by examining the effect of cluster sampling on the 
covariance and correlation matr ix of sample distri- 
bution functions based on a superpopulation model. 
Under a simplied two stage sampling design, the 
classical two-way nested random effects model leads 
to a covariance matr ix  approximation that  depends 
on an intra-cluster correlation term. The derived 
result are then compared with the empirical result 
from medical examination data  from the U.S. Third 
National Health and Nutri t ion Examinat ion Survey 
(NHANES III). 

2. Framework  and A s s u m p t i o n s  

Suppose tha t  the sample consists of I0 clusters 
and that  each cluster has the same number of units 
J0. Thus there are no = IoJo units in the sample. 
Let yi j ,  i = 1 , . . .  , I0, j - 1 , . . .  , J0, be observed val- 
ues associated with the j t h  unit in the i th  cluster. 
Using a model-based approach, let Yij be realiza- 
tions of a customary two-way nested random effects 
model: 

Y~ = p + a~ + %, (1) 

where # is an unknown constant and ai  and eij 

are uncorrelated normal random variables with zero 
2 and V a r ( e i j )  - means and variances Var(ai)  - a s 

2 respectively. The total  variation of Y/j is given O" e , 

2 2 -- 0r2. Here, ai and eij are the as Var(Yij) - a~ + a~ 
two sets of model random variables associated with 
primary sampling units (i.e., clusters) and ul t imate 
sampling units of the chosen clusters, respectively. 
Thus their respective variance components cr 2 and 

2 represent the variation of Y between clusters and O" e 

within clusters. Under the model (1), routine calcu- 
lations (e.g., Graybill, 1976, Theorem 15.1.1) show 
that  

E(Y/j) =/. t  
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and 

2 2 i f / - - "  j - - j '  6rc~ if_ (T e ~t, , 

2 i f / - -  " j T ~ j ' ,  C o v ( ~ j ,  ~ , j , )  - ~ ¢,  
0 i f / # i ' .  

The distr ibution function of Y under model 
(1) is given as F ( y )  - ' ~ ( ~ ) , y  e lit ,  where ~(-) 
is the s tandard  normal dis tr ibut ion function. Since 
• (x) is a str ict ly increasing continuous function of 
x, the p th  quantile is uniquely expressed as 

qp - ~ + azp,  (2) 

where Zp = ~ - l ( p )  is the upper  p th  percentile of 
the s tandard  normal  distr ibution.  Suppose tha t  we 
consider a set of k distinct prespecified probabil i ty 
values 0 < 7rl < . . .  < 7rk < 1. From the above 
expression for a normal quantile, those k probabil- 
ity values determine k non-overlapping cells of the 
form I/ = (qrz-l,q-~],l  = 1 , . . . , k ,  where 7r0 = 0 or 
equivalently q~o = - c~ .  Note tha t  the open interval 
(q~k, oo) is excluded from consideration. In addition, 
the corresponding k x 1 vector of cell probabilities, 
T = ( T 1 , . . . ,  Tk)' leads to the k × 1 vector of distri- 
but ion functions evaluated at y = q~,  l = 1 , . . .  , k: 

~r -- F(q,~) -- AT ,  (3) 

where T/ -- 7r/ - 7 r / _ l ,  7 r 0  - -  0 and A is a k x k lower 
t r iangular  mat r ix  of ones. 

0 Est imat ion of Dis tr ibut ion Func- 
tions and Related Covariance and 
Correlation Matrices  from Clus- 
tered Observations 

Let 5(ij,/) denote indicator variables which 
equal 1 if Yij E h or 0 otherwise, where i = 
1 , . . . , I 0 , j -  1 , . . . , J 0  a n d l =  1 , . . . , k .  Through- 
out the remainder  of this paper,  we will use the t e rm 
"IID-based" to describe point es t imators  and vari- 
ance est imators  developed under the (incorrect) as- 
sumpt ion  tha t  our IoJo observations yij  are inde- 
pendent ly  and identically distr ibuted.  A cus tomary  
IID-based es t imator  of the k x 1 vector T computed  
from the observations Yij is given by 

^ ! 

TC --  ( T C 1 , ' ' "  , T C k )  , 

where 

Io Jo 

i--1 j = l  

are proport ions of sample units with y C It. Let- 
t ing TCt:i J o l  Jo -- ~ j = l  5(ij,/) denote within-cluster 
es t imators  of ~-/ for cell l, "rc/ can also be wri t ten  as 

I0 

"r'Cl - 101 E TCI:i" (4)  

i--1 

From expression (3), an IID-based est imator  of the 
k x 1 vector F(q,~) is then given as 

Fc(q,~)  - A~'c.  (5) 

Now we investigate the mean and covariance 
of both  es t imators  #c and F c ( q ~ ) .  For a fixed l, 
we see tha t  Tel is a simple sample mean of no iden- 
tically dis t r ibuted zero-one random variables 6(ij,t) 
with E[~(ij,t)] - Pr(Yij E It) - TI for any i and j .  
Thus it follows tha t  

E(5"ct)  - Tt 

and E(¢ 'c )  - T, which in turn  gives E [ P c ( q ~ ) ]  - 
F(q,~) from expression (5). 

A double expecta t ion argument  (e.g., Cochran, 
1977, Section 10.2) indicates 

E(+z)  - E,~[E(+t]a)]  

where E(-[a)  denotes the conditional expectat ion 
given a - (a  1 , . . .  , a io) '  and E~ (-) denotes the ex- 
pecta t ion evaluated with respect to the marginal  dis- 
t r ibut ion of a random vector a.  Under model (1), 
the random variables Y/j, j - 1 , . . . ,  J0 given ai  are 

2 IID N ( #  + a i ,o '~) .  Thus, for a given ai  and l, the 
random variables ~(ij,t) are IID with 

E[5(ij,t) [a] - Pr(Yij e It lai)  

= 

where Pr ( . la i )  denotes the probabil i ty conditional 
upon ai  under the model (1) and 

(a) 

Also, for a fixed i, ~'cz:i is a sample mean of J0 ran- 
dom variables 5(ij,t) by definition. Thus it follows 
tha t  

E ( ~ c t : , l a )  - r t ( a i ) .  

Consequently, it follows from expression (4) tha t  

I0 

Effczl~)- I o ~  T~(~). (7) 
i---1 
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Note that  for a given cell l, the random variables 
TZ(ai) are functions of IID random variables hi, i = 
1 , . . .  , I0. Thus, the ~'t(ai) are also IID random vari- 
ables. Using the fact that  E('f-clla) is a simple sam- 
ple mean of I0 IID random variables ~'l(ai) as de- 
scribed in expression (7), we may conclude from the 
unbiasedness of ?cz and the double expectation ar- 
gument that  

(8) 

for any l and i. 
To derive covariance matrices of ~c and/5c  (q~), 

we use a multivariate extension of a s tandard ex- 
pression (e.g., Tucker, 1998, Theorem 7, p. 76) for 
a covariance as the sum of the covariance of con- 
ditional expectations and the expected values of a 
conditional covariance. That  is, for any three ran- 
dom vectors X, Y and Z, 

Co (X,Y) - Covz[E(XlZ), E(YIZ)] 
+Ez[Cov(X,r[z)], (9) 

where Ez(.) and Covz(-) denote the mean and co- 
variance evaluated with respect to the marginal dis- 
tr ibution of Z. 

Define ~ - diag(~') - TT' and T(a~) = 
[7"1(C~1),... , Tk(Cgl)]'. An application of decompo- 
sition (9) under the model (1) yields 

Cov(÷c)  - ( l o )  

where 

C~- - Er + ( J 0 -  1)Cova[T(al)] 

and Cove(-) denotes covariance evaluated with re- 
spect to the distribution of a.  From expression (5), 
it follows that  

Cov[ /~c(q=)] -nolAC. , .A '. (11) 

To investigate the effect of cluster sampling on 
the covariance matrices of ?c and/~c(q~) ,  we con- 
sider estimators of T and F(q~) and their covariance 
matrices under a reference model which contains no 
clustering effect and has the same marginal distribu- 
tion of N(/z, cr2). Thus, the observation Yij can be 
modeled as a realization of 

Y0ij -- # + eoij, (12) 

where eoij is a N(0,  a 2) random variate. In paral- 
lel with the discussion for the model (1), the IID- 
based estimators under the reference model (12) are 

given by ?0 - (T01,--- , ÷0k)' and /~o (q~) -- A'~o, 
Io Jo 

where "r0t - no 1 Y]i=I ~-~'~j=l ~(0ij,t) and ~0ij,t - 1 
if Y0ij E It and 0 otherwise. Let E0(-) and Coy0(.) 
denote the mean and covariance evaluated with re- 
spect to the distribution induced by the reference 
model. Standard arguments (e.g., Agresti 1990, Sec- 
tion 12.1.5) show that  E0(~0) - -T  and 

Coy0 (7-0) - n o l ~ .  

Since /~0(q,r) -- A#o, it follows that  E0[/~0(q~)] - 
F(q=) and 

Cov0[/~0(q=)] - nol AZ~.A '. 

In this context, results (10) and (11) under the 
model (1) can be expressed in the following forms 
reflecting the effect of clustering on the covariance 
matrices of ~c and/~c  (q=): 

Cov(÷c)  - Cov0(+0) +  o'(J0 - 

and 

Cov[Fc (q.)] Coy0 [P0 (q.)] 

+nol (Jo - 1)ACovo,[7"(al )]A', 
(14) 

which are extensions of well known expressions for 
the variance of a sample mean under cluster sam- 
pling (e.g., Cochran, 1977, p. 242; and Skinner, 1989, 
pp. 36-38). The above results show that  clustering 
in the sample design under the model (1) leads to an 
augmentat ion of the associated IID-based covariance 
matrices by a multiple of the covariance matr ix  of a 
k × 1 random vector T(al), i.e., the conditional ex- 
pections of cell-membership indicator variables 6(ij,0 
within the i th cluster. 

Note that  both expressions (13) and (14) 
contain the term Cov~[T(al)], which is not readily 
evaluated in closed form. From expression (8), the 
( / , / ' ) th  element of Cov~[T(al)] can be writ ten as 

Cov~[rl(al) ,  TZ,(al)] -- Eo,[TZ(al )Tt,(al )] - Tt't't,. 

Note also from expression (6) tha t  7-/(Cgl) is the dif- 
ference of two functions of a random variable a l in 
the form ~ ( ~ - ~ : a '  ), x E JR. Thus the explicit eval- 
uation of the expectation of products Tl(al)TZ,(al) 
may be approximated by a linear function in powers 
of the ratio (cr~/cre) under the following assumption. 

(C) The ratio (cr~/cre) converges to zero. 

742 



Under condition (C), it can be shown that,  for any 
l and l', 

O'c~ 
- o , 

where 

_ o-~ 
C~z, - (~o~ - n)(~o~, - n , )  + ~Z~lZ, ~o , 

U'e O'e ' 

( ) ~ 1 l - ¢  q~'-" - ¢  -- , O'e O'e 

~ a  ~( . )  ~ a  ¢( . )  ~re the ai~tributio~ ~ a  density 
functions of the s tandard normal distribution, re- 
spectively. Furthermore,  the approximate expres- 
sions C,~tt, -- Co, it,('7) are functions of the unknown 

2 2 , parameter vector '7 -- (#, cry, a~) of the model (1). 
Use of a consistent estimator -~ - (/2, ^ 2 ^ 2), based O'c~, O" e 

on the observed sample data  leads to the correspond- 
ing quantile estimates q~ - / 2  + &z~, from expres- 

^ 

sion (2), giving estimates C,~tt, - Co, tt,('~), where 
&2 _ hê 2 + cra.̂ 2 Thus, we may obtain estimators 

Co-~(~c) and Co"~[/~c(O~)], say. 

0 A p p l i c a t i o n  t o  N H A N E S  I I I  D a t a  

o n  l n ( L E A D )  f o r  C h i l d r e n  

4.1 S a m p l i n g  S c h e m e  a n d  P a r a m e t e r  Est i -  
m a t i o n  

We applied the proposed methods to blood 
lead data in the natural  logarithm scale, In(LEAD), 
measured for children of all races aged 1-5 cov- 
ered by Phase 2 (1991-1994) of the U.S. Third Na- 
tional Health and Nutri t ion and Examination Sur- 
vey (NHANES III). For some general background 
on NHANES III, see National Center for Health 
Statistics (1996). For analysis purposes, the data 
may be treated as involving L = 23 s t rata  with 
nh -- 2 primary sampling units (usually counties) 
selected with replacement from each s t ra tum of size 
Nh > 2, where h = 1 , . . . , L .  Selection of PSUs is 
assumed to be independent across L strata. Ad- 
ditional levels of sampling select Secondary units, 
households and individual persons. Each sampled 
individual is then interviewed and asked to partici- 
pate in a medical examination including blood lead 
measurement. Let Yhij be the observed values of 
Y for person j among sampled nhi individuals from 
the sampled first-stage cluster (h, i) of size Nhi  in 
s t ra tum h, where i = 1 , . . . ,  nh  and j = 1 , . . . ,  nh i .  

Figure 1: The 25 × 25 Display of the Ratios of the Ap- 
proximate Covariances under the Two-way Nested 
Random Effect Model to the Exact Covariances un- 
der the IID Model Based on the Phase 2 of NHANES 
III Data  on log(LEAD) for Children of All Races 
Aged 1-5. The covariance ratios are plotted at 
the corresponding pairs of the probability values 
p = 0.75(0.01)0.99. 
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For this group, there are n = 2,392 participants se- 
lected from N -  y]L=I y]iN~ Nhi  individuals, where 

L nh 
n E h - - 1  E i - - 1  n h i  

Given the sampling weights W h i j  associated 
with Yhij, a customary design-based sample distri- 
bution function at y C ]R is then given by 

L nh ~'Ahi 

h = l  i--1 j = l  

where N -  Y~'~h=l Y]~in--~l v'nh, A..~j--1 W h i j  is the estimated 
total  number of ult imate units (persons) in the finite 
population and Juh,~ (Y).= 1 if Yhid <-- Y or 0 other- 
wise. The corresponding pth design-based sample 
quantile of Y is defined by 

qp:D -- inf{y" /~(y) _ p}. 

To apply the approximate expression in Section 
3 to data  from stratified multistage sampling, we 
may need to approximate an unbalanced complex 
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Figure 2- Comparisons of Correlation Matrices of the Es t imated  Distr ibut ion Functions for the Phase 2 of 
NHANES III Da ta  on log(LEAD) for Children of All Races Aged 1-5. 
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C l u s t e r e d  m o d e l  a p p r o x i m a t i o n  S i m u l a t i o n  resu l t  

survey sample design with a simpler balanced cluster 
sampling framework. 

In the light of this reasoning, the parameter  
2 2), may be es t imated  by ~ - vector 7 -- (#, ire, cr~ 

(~ ,  ^~ ^~ , ae, an) , where 

z...,~=l whijYhij 
Z..J j = 1 Whij 

L )2 (?.2 _ 2~=~(~hl"--~h2" 
a w 2 L  ' 

nh ^ 2 _ E ~ = ,  E ; ' 2 1 E ¢ = I  ~ , J ( u ~ , J - 0 ~ ,  ) ' 
O'e ~ L - ' I  E i = I  l--~j--1 Whij 

a n d  Yhi -- (~-'~nhi --1 v'~nhl Z . ~ j = I  Whij) WhijYhij A l l  t h r e e  • A . ~ j = I  • 

parameter  est imators may be interpreted as combi- 
nations of L estimators,  each of which is based on 
cluster sampling da ta  within each of L s t rata .  

4.2 A p p l i c a t i o n  of  P r o p o s e d  M e t h o d s  

Public heal th  interest in serum lead gener- 
ally focuses on higher levels of concentration, so 
we will consider the k = 25 probabil i ty values 
p = 0.75(0.01)0.99. In addition, some authors 
have found tha t  ln(LEAD) da ta  are fitted quite 
well by a normal  distribution. See, e.g, Hassel- 
blad et al. (1980), Pirkle et al. (1994) and Park  
and Elt inge (1999). Also, ad hoc est imat ion gives 

^2 _ 0.0429. Thus, /2 - 1.0082, a ê 2 _ 0.4338 and a n 
we have a relatively small between-cluster variance 
ratio (&~/&e)2 = 0.0990, which indicates tha t  the 
approximat ion discussed in Section 3 may be ade- 
quate. Moreover, the es t imated intracluster correla- 
t ion/5 ^2 ^2 ^2 =a~ / (c r~  + a~) (e.g., Skinner (1989)) is given 
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as 0.0901 which shows that the within-cluster varia- 
tion is approximately 9% of the overall variation ~2 
among data. Figure 1 shows that the variance ratio 
on the diagonal decreases as the probability value 
becomes larger. In addition, the covariance ratio on 
the off-diagonal increases as two probability values 
in a pair are farther apart. Note that all the ratios 
are greater than 1, which implies that clustering in- 
flates covariances. This observation illustrates the 
augmented part derived in expression (14). 

To examine further the effect of clustering on 
the covariances independently of the scaling, Fig- 
ure 2 presents the four associated correlation ma- 
trices. Comparison of the top two plots of Figure 
2 displays the effect on the correlation matrix of a 
vector of 25 estimated distribution function values 
with reference to the Model/I!D assumption. On the 
other hand, the bottom two plots of Figure 2 com- 
pare the approximated correlations and simulated 
correlations with 10,000 replications under the afore- 
mentioned two-way nested random effect model. See 
Park (1999) for a detailed discussion of the simula- 
tion design and related analyses. 
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