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1. INTRODUCTION 

We are concerned about inference on a parameter 
of a stochastic model with an estimator using data from 
a complex sample. Classical sampling theory concerns 
inferences for finite population parameters. H~jek 
(1960), Krewski and Rao (1981), Binder (1983) and 
others, studied and obtained results on the asymptotic 
properties of the sample estimator under simple random 
sample and some complex designs. 

On the other hand, Hartley and Silken (1975), 
Fuller (1975), Francisco and Fuller (1991) and others, 
studied the properties of the sample estimator with 
respect to a model parameter, some times called 
superpopulation parameter. They obtained asymptotic 
results for regression sample estimators using data from 
certain complex sampling designs. 

Underlying their set ups, there was the notion of 
a "superpopulation" defined on a probability 
space (~,F,P) and the finite population was a 
considered a realization of it for an outcome to e [Z . 
The observed sample would be the second phase in a 2- 
phase design. 

In our study, we represent the 2-phase 'sampling 
scheme' by means of a "product probability space" which 
includes both the designed sampling space and the 
superpopulation. That is, we formalize the space where 
the two "samples" live together. This allows us to 
develop methods of inference on a superpopulation 
parameter, based on data obtained from a wide variety of 
complex designs. Furthermore, this methodology can be 
viewed as a means of integrating different approaches to 
design-based inference and model-based inference with 
data from a complex sample design. 

Indeed , suppose for example that we are 
interested in the parameter 00 defined as the solution of 

the stochastic model equation 
Em{u(Y, O0) } = O. 

Let O N be the maximum likelihood estimator of 00 

based on the finite population values, and let 0 n be a 

sample estimator of O N . Here N denotes the size of the 

finite population, if it is unclustered, or the number of 
clusters in the finite population, while n denotes the 
number of clusters in the first stage of the sample (which 
is the second phase sample in our set up). We can 
express the sample estimator around the model parameter 
as the sum of of two terms: 

?'/ l / 2 ( 0 n - 0 0 )  = n 1/2(0 n - O N )  + n I/2(0 N - 00) . 

If we condition on the finite population, that is, if 
we hold the finite population fixed, then, under certain 

conditions, the first term is asymptotically normal in the 
design probability space, while the second term is a 
constant. If, on the other hand, we let the finite 
population vary according to the law of the 
superpopulation, the second term is asymptotically 
normal, under the usual regularity conditions. The 
asymptotic properties of these two terms are given in 
different spaces. The asymptotic limit of the sum makes 
sense if we think of each term as an entity of the product 
space defined in this paper. 

The convergence of the sum does not follow in a 
trivial way. We prove asymptotic normality of the sample 
estimator under a set of minimum conditions and we 
present applications to inference on a distribution 
function and other superpopulation parameters. These 
results extend Fuller (1975) and (parts of) Francisco and 
Fuller (1991) to more complex estimators and more 
general designs. 

We would like to remark that our result enables us 
to provide inference for n / N  -. f > O. It is important to 
allow the asymptotic sampling rate f to be positive, 
because even when the first stage sampling rate is small, 
the variance of the second term may not be negligible 
and should be accounted for. Korn and Graubard (1998) 
gave examples where the model variation is non- 
negligible for different designs and superpopulations. 

A specific application is given to the estimation of 
0 o = F ( x )  under a two stage stratified sampling design. 

Examples of consistent variance estimators of the sample 
estimator and another application to survival data, can be 
found in Rubin Bleuer (1998). 

2. FINITE POPULATIONS AND SAMPLING 
DESIGNS 

Definition 2.1 A finite population U of size N 
consists of N units labeled i = 1, 2 . . . . .  N. To each 
unit i in the finite population we associate a vector 
x i - ( y i ,  z i )  where Yi represents the vector of 

characteristics of interest and z i contains the prior 

information available at the time the survey design is 
chosen. All components of Y i and z i are real-valued 

and we assume y ;~R k and z,. ~ R q. 

Definition 2.2 We define a sampling design as in 
Sarndal et al (1991). Let S be the collection of all 
samples s or "sets " of labels i from 

U -  {1 ..... N }that are possible to obtain with a 
specific sampling procedure. Note that the collection S 
of samples can include "ordered" samples with repeated 
units if the sampling scheme allows for replacement of 
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units. These "ordered" samples are not proper subsets of 
the set of N labels U - { 1 . . . . .  N }, but they will be 
considered as bonafide elements of the set S. A sampling 
design on (U, S ) is a function 

Pa" S x ]~qN _. [ 0 , 1 ]  

such that 
(1) Pd(S," ) is Borel-measurable in R qN, V s e S  

(2) Pd (", Zl .. . . .  ZN) is a probability measure on 

S ,  U ZiE][~q, 

Remark 2.1 For the sake of simplicity and without loss 
of generality, we label q N : N, and we shall often deal 
with scalars only. Similarly we set k : 1 for now. 

3. SUPERPOPULATION 

Definition 3.1 A superpopulation associated with a 
finite population U of size N associated with vectors 
x i = (Y i, z i ) ,  i - 1, 2 . . . . .  N ,  is a sequence of N 

random vectors { X  i} defined on a probability space 

( ~ , ~ ,  P ) ,  
X i  = ( y i , z i ) .  ~-~--. ~ k x q ,  

such that for some coo ef~ , Xi(co0) = Xi. We say that 

the { X i} generates the finite population U, or that U 

is a realization of the superpopulation given by co o . 

The { X i } are assumed stochastically independent, 

though not necessarily identically distributed. 

Example3.1 The superpopulation is composed of L 
disjoint strata of clusters. Stratum sizes are considered 
known fixed constants. The h-stratum is composed of N h 

clusters and N = N l + N 2 + ... +N c. The size of 

cluster i in stratum h is Mhi. A two-stage model can be 

represented by the finite sequence of random vectors 
{ X l l  ... X l u  ' ... XI, 1 ... XLN L} , w h e r e 

2 
X hi = ( Y hi ' M hi ' ~ hi ' G hi )" 
The second stage model m2 is given by setting 

Yhi = (Yhil  . . . . .  YhiMh i )/, which is composed of Mhi 

random values (Yhij) ~ independent, identically 
2 

distributed random variables (i.i.d.r.v.) Fhi (#hi,  Ghi )" 

The values M h i  depend on the particular outcome co of 

the superpopulation, but they are often known at the time 
of the design, and the vectors Yhi can be observed if we 

do a census of the finite population. BUt the mean and 
variance of the (Yhij) cannot usually be observed. The 

first stage model ml is defined by assuming that 
2 

(#h i '  (Jhi ) are i.i.d.r.v, with distribution 
2 # 

f u n c t i o n  Fh(ld, h, (I h, ~h  )" H e r e  /~h = Eml(P 'h i ) '  
2 2 

G h - Eml(Ghi ) and E~ - Vm(l~hi).  Notethatwhilethe 

cluster values ( Y h i j ) a r e  stochastically independent 

given the second stage model, they are correlated when 
the overall model is taken into account. 

Definition 3.2 G i v e n  t h e  s u p e r p o p u l a t i o n  
, , ) /denote (Yi  Z i ) ,  i=  1,2 . . . . .  N let Z - (Z 1 .... Z N 

the random vector from the superpopulation containing 
N x q elements. Let coef~ determine the finite 

population U = U (co) = { Yl(co) . . . . .  YN (co) }, as 

w e l l  as  t h e  p r i o r  i n f o r m a t i o n  
Z(co) = (Zl(co) . . . . .  Z N (co))/ - (z 1 . . . . .  ZN)/. We write, 

for a sampling design Pd on the finite population U ,  

Pd(S,CO) = Pd(S ,  Z (03)). 

Since Pd ( s , ' )  is Borel -measurable and Z is a random 

vector on f~,  for each s e S  the mapping 

pal(s , ' )"  ~ - .  [0,1] 

is a random variable on (~,  9-, P) .  

4. THE PRODUCT SPACE 

We wish to define a probability measure on a 
product space which will contain both the design and the 
superpopulation that generated the finite population. 
Let X N -- ( X  1 . . .  XN)  define a superpopulation 

associated with a finite population U N and let Pd be a 

sampling design defined on (U  u, Su).  Recall that N is 

the number of stochastically independent elements in the 
superpopulation. Let 

f~U = SN X ~ = {(S, C0) / seS,  c o e a }  

Definition 4.1 We define the probability measure 
PN, d by the expression 

PN, a ( s , F )  = I pd(s,co) d e ( o )  (4.1) 
F 

for every s e S  N and F e ~ - .  Since S N is a finite set, the 

c-algebra generated by S N is the collection of finite 

unions of elements in S N. By abuse of notation we shall 

write S N to denote the the G-algebra generated by S N 

when there is no ambiguity. The integral is G-additive 
and hence PN, a is a probability measure in the product 

space. Thus the triple 
(f~u, Su x ~-, Pu, a) 

is a well defined probability space. 

The next large sample result on the product space is the 
key to our development. We show that if a sequence of 
random variables converge weakly (in law) in the design 
probability space then it converges weakly in the product 

o o  

space. Let { U N }u -1 be a sequence of finite populations 

of size N ,  generated by superpopulations X N defined 
on (~2, ~-, P)  , not necessarily nested. We assume that 
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for every finite population U N there is a sampling 

design P d  defined on (UN, S N) with expected (or 

fixed) sample size n such that fN = n / N  converges to 

a fixed constant f ~  0 as N-,oo. When f - 0  we 
assume that n -,~o as N-- oo. Let ~N be the associated 

product space. 

Theorem 4.1 Let TN, d be a random variable 

defined on a design probability space (U N, aN, Pd ) such 

that for every real number x, we have 
lim Pd { SeSN /TN, d ~ X } = g (x ) .  (4.2) 
N-~ 

We assume that (4.2) holds a.s. 03 in ~ and that the 
function g does not depend on to. Then 

lim PN,a { (S, 03) 8f~ x / TN, d (S, 03) ~ X } = g (X). 

Coro!la~y 4.1 Let O N be a finite population parameter 

defined on a finite population of size N, generated by a 
superpopulation X N and let Pd define a sampling 

design on (U N , S N ) as above. We have 

1) If 0, is a design-consistent estimator of O N based 

on a sample of size n, then 0, is consistent in the 

product space, and 
2) If for almost all 03e~, as N, n -. ~, the design-based 
distribution of 

n 1/2(0 n - O N ) : n 1/2(0n (S, 03) - O N (03))  

is asymptotically normal with mean zero and fixed 
variance independent of 03, then the distribution of 

nll2(On - O N )  

is asymptotically normal, in the product space 
(~"~N' SN X ~ - ,  P N , d )  . 

Remark 4.1 Krewski and Rao (1 98 1) conditions for 
asymptotic normality of the sample estimator ~ of the 

finite population mean f ' ,  in the design probability 
space require that, for a realization of the finite 
popu l a t i on  UN - {Yl(°3) . . . . .  YN(03)} and prior  

information Z(03), these values satisfy certain design- 
moment properties. These properties translate into the 
convergence of sequences of numbers and have to be 
satisfied for almost every 038f~ in order to yield 
convergence in the design space for every possible value 
of the finite population. For example, under SRSWOR 
from a finite population generated by n independent 
and identically distributed random variables (i.i.d.r.v.), 
Y1 . . . . .  YN, one of the Krewski- Rao conditions 

on Us(cO ), is that the design variance converge to a 

positive number gt(03) almost surely in 03: 
lql N (03) = V d (n  1/2 ~ (S,  03) ) -' t4/(03) a.s. 03 

where ~(03) is positive definite a.s.03. Now, simple 
conditions on the moments of the superpopulation will 
ensure this. Indeed, if the model expectation and 

v a r i a n c e  e x i s t  a n d  a r e  f i n i t e  
(Em(Yi )  < oo and Vm(Yi) < ~o ), then by the strong 

law of large numbers for i.i.d.r.v, we have: 
141N(03 ) = ( 1 - n / N )  N / ( N - 1 )  [ Z  Y Z / N -  ~21 

i 

-- ( l - f )  V m ( Y  i)  a.s.03. 
Remark 4.2 When the prior information is 
correlated with the characteristic of interest under the 
superpopulation assumption, moment conditions for 
asymptotic convergence become more demanding. 

5. ESTIMATION OF MODEL PARAMETERS 

In analytical uses of sample surveys, the object is 
to estimate either a superpopulation model parameter or 
a finite population parameter whose form is motivated by 
suchamodel .  Let X i - ( Y i , Z i ) ,  i = 1 , 2  ..... N be a 

superpopulation defined on a probability space 
(f~,9-, P).  Most superpopulation or finite population 
parameters can be described by the distribution function 
Fy( Y, 0 0, tp) of the random vector Y defined on 

( ~ ,  ~--, P) ,  where both 0 0 and cp describe completely 

the distribution function Fy,  cp is considered a nuisance 

parameter, and 00e ®is the parameter of interest. Here 

t9 is the parameter space. In the following we will 
assume that we know the nuisance parameter, and omit 
writing it. We assume that 0 0 can be estimated by an 

unbiased estimating function, that is, a function of the 
finite population vector and the parameter u(y, 0), 
such that 

W(O) = E m (u (y, 0)) = 0 (5.1) 

if 0 - 0  0. Here E m denotes expectation under the 

model m. 

Definition 5.1 For a realization coef~ of the 
superpopulation, the finite population estimating 
equation W N is a finite population total defined by 

W N = WN(03 ,0)  : F, u ( Y i ( 0 3 ) , O )  
ie U N 

for every 0e®. The finite population parameter 
O N - O N (03) is defined as the solution of the finite 

population estimating equation: 
w u (o~, O N ( o ) )  - o .  

Definition 5.2 For every 03e~ and sample s e S  u , 

let W n be a design-consistent estimator of the finite 

population estimating equation W u . Thus: 

W n = Wn(S,03,0  ) = ~_. w i ( Z ( 0 3 ) )  u(Y i (03 ) ,O) (5 .2 )  
iss 

Here the w i - w i (Z (03)) are design weights which may 

depend on the prior information Z (03). The sample 
estimator of O N is O n = O n(S,CO ),  defined as the 

solution of the sample estimating equation: 
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W n(s,co,O) : O. 

To make inferences about 00 by means of the sample 

parameter, we propose to find the asymptotic distribution 
of O n in the product space. We use Binder's (1983) result 

on the asymptotic distribution of 0 n in the design 

probability space and extend it to the product space. 

We assume from now on that the function u is 
differentiable and we set the following notation: for 
038f) and s s S  N we define the finite population 

"information matrix" Ju and the sample "information 

matrix" Jn by 

JN(03,0) - ( 1 / N ) ( O W  N / c30)(0) 

and respectively 
J,,(s,03,0) - ( 1 / N )  (OW n / c30)(0), 

where W N and W n are the finite population total and 

respective sample estimator as defined above. 

The next theorem require the structure of the product 
space so we spell out the set of conditions required for 
the development. We assume that there is a 
superpopulation defined on a probability space 
(~ ,  ~-, P) such that the finite population U N is a 

realization of the superpopulation. Let (U N , S N , Pa ) be 

a sampling space defined o n U  N, and let 

(~)u ,Su x ~-u, Pu,a ) be the product space generated by 

the above defined model and design. Here 
f)u - Su x xq. Let u ( Y, 0) be a real valued function of 

the data y with 0 8 0  and let W N, W,,, O N and 0 n be 

defined as above (Definitions (5.1) and (5.2)). We set 
W ( O ) -  Em(u(Y, 0)) and we assume the following 

conditions on the superpopulation and the design (pa)  

(i) Model There exists 00e ® such that 

W(00) - Em(U (Y, 00)) - 0, 

and W(0) is a real valued differentiable function 
with continuous partial derivatives and 
(0 W / 00) (00 ) of full rank. 

(ii) Em(U(Y, 0)) < + ~ for every 08 ®. Under 

(iidrv), this implies the weak law of large 
numbers: W N (0) / N -. W(O) in P .  

(iii) There exists a compact neighbourhood K(00) of 

00 on which the sample "information matrix" 

J,(s,  03, 0) is bounded in design probability, as 

N -- ~,  uniformly in 0. Similarly we require 
that the finite population "information matrix" 
JN (03, 0) be bounded (Op (1) as N -. ~o, 

uniformly in 0, Op(1) refers to the probability 

measure P ). 
Conditions (i), (ii) and (iii) and (vii) below, are required 
for the consistency of 0 n and O N . 

(iv) Condition J JN - JN (03' 0) -' J(00) in 

probability P as N - .  o~ and 0 - .  00,where 

J(00) is a positive definite matrix which is non- 

stochastic in (~, ~-, P). 
(v) Asympto t i c  Var iance :  Let  

N 
E N (00) - ( f / N )  ~ Vm(Ui(Y), 00) ). Thefinite 

i=1 
population variance ~u  (00) converges to 

~(00) in probability P as N - .  oo, where 

E(00) is a positive definite matrix. 

(vi) .Liapunov Condition: There exists some y > 2 
such that as N -. o~ we have 

N 
E E m I ui (00) ]7 = o [ N  E N ]7/2. 
i,-1 

Conditions (i) to (vi), ensure the asymptotic normality of 
O N , the solution of the finite population estimating 

equation W u (0) - 0. 

(vii) We assume the necessary conditions for the 
Cen t ra l  L imi t  Theorem to hold for 
X N (00) = n 1/2{ Wn(00) _ WN ( 0 0 ) } / N  in the 

design probability space. Recall that moment 
conditions in the superpopulation will imply some 
of the necessary conditions for specific designs 
(see, for example, Remark 4.1). For some designs, 
equicontinuity or equiboundedness of the function 
u is required (see Rubin-Bleuer (2000)). 

Theorem 5.1 Asymptotic normality of On_ If 

f - lim inf  n / N  ~ 0 and conditions (i) to (vii) hold 
then 

n 1/2(0 n - 00) (5.4) 

converges to a normal random variable with mean zero 
and variance F in the product space 

(~'~N 'aN X "~N' PN,d )" The variance 1-" is the 

sum of two terms, the variance due to the design and the 
variance due to the model: 

J(00)-I { q)(00) + f E (00) } J(00 )-l (5.5) 

Here q) (00) represents the limiting variance of W n (O N ), 

~N (00) is the asymptotic variance defined in (v) and 

J - J(00) is the asymptotic limit of the "information 

matrix", defined in (iv). We use the following lemma for 
the proof of Theorem 5.1. 

Lemma 5.1 Asymptotic Independence. Let T u be a 

sequence of random variables defined on a probability 
space (~ ,  3-, P) such that they converge in law to a 
random variable T with distribution function F T (t), 

for -o~ < t < + ~. Let (U N ,  S N , p a ) b e a s a m p l i n g  

space defined on a realization U N of a superpopulation, 

and let (~N 'SN X ~-N'  Pu,a ) be the product space 

generated by the superpopulation and sampling design. 
Let R u be a sequence of random variables (vectors) 
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defined in the product space such that for almost every 
03, the conditional distribution of R N given 03 

converges to a distribution function GR(r) ,  for 

- o o  < t" < + o+, with parameters independent of 03. 
That is, we assume that for -oo < r < + oo, as N 
increases to infinity, we have 

GRN(r'03) = Pa { sF~SN ]RN (S,03) < r} -. G R ( r )  

a.s.03 in fl. Then, the joint distribution function of 
( R N , T N )  converges to the product of the two 

distribution functions G R (r)  • F r ( t ) ,  and the random 

variables R N and T N are said to be "asymptotically 

independent". 
For the proof of theorem 5.1, we set 

R N (S, 03) = n½(On -ON)  a n d 

T N ( 0 3 )  = N ½ ( 0  N - 0 0 ) . W e  note that simple 

moment conditions in the superpopulation needed for the 
convergence of T N will ensure that the parameters of 

GR(r) do not depend on 03. Conditions (i) to (vi) yield 

the asymptotic normality of T N in ( D ,  ,~'-, P ) .  R N 

is asymptotically normal in the product space by 
condition (vii) and Corollary 4.1. Theorem 5.1 follows 
from Lemma 5.1. 

6. EMPIRICAL DISTRIBUTION FUNCTION 

Let the superpopulation be composed of an infinite 
number of disjoint strata h - 1, 2 .... and let the finite 
population consist of L of these strata with N h 

independent clusters in each stratum. The N h a r e  non- 
/. 

stochastic. There are N -  ]E N h clusters (primary 
h"l 

sampling units) in the finite population. Let M be the 
number of ultimate units in the finite population U N and 

let Mhi be the number of ultimate units in cluster i of 

stratum h. We will consider the Mhi and M known 

at the time of the design. Thus, for our purpose Mhi and 

M are fixed quantities. The characteristic of interest is 
g i v e n  by t h e  r a n d o m  v e c t o r  Yhij ' 

i -  1 . . . . .  Mhi, i -  1 . . . . .  N h and h -  1 . . . . .  L .  

Hence from now on we consider the conditional 
distributions of Yhij given the cluster sizes 

Mhi, and E m and V m will denote the expectation and 

variance with respect to ( f  l ,  9- ,  P) given the cluster 
sizes Mhi. We assume that a common overall 

superpopulation distribution function exists for the 
characteristic of interest Yhq " 

F(x)  = P(Yhi j  <- x )  (6.1) 

forh - 1  ..... L, i - 1  . . . . .  N h and j -  1 . . . . .  Mhi. Let 

us assume, for the sake of simplicity, that x is a scalar. 
The superpopulation distribution function F(x)  will 
refer to the distribution conditional to the cluster sizes 

Mhi . Since the Yhij are independently and identically 

distributed given Mhi, and the Mhi are considered 

fixed, there is no need to conceive a clustered 
superpopulation. But often operational constraints dictate 
a stratified 2-stage design, and hence it is convenient for 
us to group the superpopulation in the sampling design 
clusters. We define the finite population distribution 
function by 

L Nh Mhi 

F N (x) : ( l /M)  E E E l { Y h i  j < x }  
h,,1 i..1 j..1 

where the indicator function I is defined as 
1 { Y  hi j ___ X} - 1 if Yhij <- X, and 0 otherwise. 

Under the model, the finite population distribution 
function is unbiased for F .  

Now let us consider a stratified two-stage design 
in which the clusters (p.s.u) are selected with 
replacement and in which independent subsamples are 
taken within those psu ' s  selected more than once. 
Suppose n h 2 2 psu's are selected from the N h psu's 

in the h-th stratum with probabili t ies 
Phi > O, i = 1, 2 . . . . .  N h and h -  1 ..... L, where 

L 

Phi = 1. Let  n = ~ n h. 
i h'-I 

L e t a N  (x) = (l/M) ~ ahi(X ) , W h e r e 
hies 

Mhi A A 

Ghi = ~., I ( Yhij < X)  . Let  Ghi (x) and Mhi be a 
jffil 

design-unbiased estimators of the respective cluster totals 
Ghi(X ) and Mhi, based on sampling at the second stage. 

The second stage sampling rate is fhi = mhi [ Mhi. 

We consider the sample estimator of the finite population 
distribution given by the ratio of two sample means: 

where 

A A 

F n (x)  = a N (X) / /~rN 

A A 

a N ( X )  = ( l / M )  ~ G h i / ( l l h P h i )  
hies 

And similarly, 

A A A 

i~4 N = M I M  = ( l / M )  ~ Mhi/(r thPhi  ).  
hies 

Let V a denote the design variance. The 

asymptotic properties of F,, (x) will be examined under 

the following conditions. We require fewer conditions for 
the asymptotic normality of the finite population 
distribution than for the finite population parameter of 
theorem 5.1, because the former is a sample mean (from 
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