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Introduction 

When sample values are measured with error, 
parameter estimates that are nonlinear functions of the 
data are biased due to measurement error (Fuller, 1987; 
Carroll, Ruppert and Stefanski, 1995). Typically, 
adjustments are made to the estimates to account for 
measurement error. Instead, we create an alternative 
data set that is adjusted for measurement error. We 
might think of this as a measurement error 
transformation of the data. Parameter estimates 
calculated from the transformed data are unbiased or 
have reduced bias and, therefore, the method provides a 
simple way to adjust statistics for measurement error 
when it otherwise may not be clear how to do so. 

One case of particular interest is estimating the 
coefficients in the regression model Y= [30 + [31X + ~2 X2 
+ ~, where the independent variable is measured with 
error. It is well known that the least squares estimates 
of the 13's will be biased due to the measurement error. 
Though it is straightforward to correct the least squares 
estimates in simple linear regression, it is not so for the 
quadratic model. We will show that adjusting the data 
prior to finding the least squares estimates leads to 
estimators with reduced bias and mean squared error. 

The Model 

The true data consist of n observations (X,, Y3, 
i = 1,..., n, where X, is subject to measurement error and 
Y, is a measurement error-free variable. Because X, is 
measured with error, we observe (Wi, Y,), i-1, . . . ,  n, 
where 

w, =x~ + u,, 

U1 ..... U,, are independent N(0, r~u 2) and are independent 
of 0(1 ..... X,,) and (Y1 ..... Yn). For the purpose of 
illustrating the method, we assume that ¢y2 is known. 
When or, 2 is not known, it would be estimated using 
either replicate measurements or validation data, see 
Carroll, Ruppert, and Stefanski (1995). 

The Measurement Error Transformation 

Under the regression model Y= 130 + 13IX + 13:0( 2 + 
~, where X is a random variable with mean gx and 

variance ryx 2, and e is independent of X, has mean zero 
and variance ~2, the naive least squares estimators 
follow from solving the least squares equations, 

~0 H + ~ I Z W / +  ~2~-'.W/2 -- 

[~oEW, + [31£W, 2 + 132£W, 3 = 

~oXW, 2 + 13~XW, 3 + 132ZW, 4 = 

y.r, 
£w,F, 
xw,2r~. 

Though (1/n)Y.W, is an unbiased estimator of E(X) 
and (1/n)Y.W,Y~ is an unbiased estimator of E(XY), the 
remaining estimators are all biased. Specifically, 

nlY'.W, 2 unbiasedly estimates E(X2)+t~u 2, 
n-lZwi 3 unbiasedly estimates E(X3)+3truzE(X), 
nl~Wi 4 tmbiasedly estimates E(X4)+6¢r,,2E(X2)+3t~,, 4, 
n -ly~W, 2 Y, unbiasedly estimates E ( X  2 Y)+~,,2E(Y). 

Thus, the estimated parameters will also be biased. 
To reduce this bias, the observed data Wj . . . . .  W,, 

are transformed to Xj*, .... X,,* such that 

E(n - l ~ * r )  = E ( X r ) ,  r = 1, . . . ,  4 ,  

where n-l~,x, *~ converges in probability to a constant 
for r = 1, ..., 4, and, therefore, 

n"~_Xj*" -9 E(X'), r =  l, . . . ,4.  

Also, the adjusted data Xt* . . . . .  X,* meet the constraint 
that 

E -1 (n ~.X,*~Y,) = E(X~Y), r = 1, 2, 

where n'l~_.x**rY, converges in probability to a constant 
for r = 1, 2, and, therefore, 

n-'~X,*rY, --) E(X~Y), r = 1, 2. 

Details of the method are given in Bay (1997), but a 
brief overview is given here. The first step is to find 
estimators, mrs, with the property that 

£(m~,) = E(n-~EX/V/), r=l ,  . . . ,4 ,  s=0, 1. 

The estimators, mrs, are found using Hermite 
Polynomials (Stefanski, 1990). These estimators define 
the constraints under which we maximize the likelihood 
for the unknown )(1, ... X,. 
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Given that U ~ N(0, (Yu 2) and only (W~, ..., W,) are 
observed, the likelihood for the unknown X1, ... X, is 

fwlx= H (2xo,2)l/2exp[-(W,- Xj)~/(2o',,~)], 

and the negative log likelihood is proportional to ~(W, 
-X~) 2. We minimize this sum of squares, subject to the 
moment and cross-product constraints, thus ensuring 
that the estimated X~, ..., An, have the desired moments 
and cross-products asymptotically. 

For matching four moments and the xy and x~y 
cross-product terms, the objective function is 

q : Zi=l  to n ( 1 / 2 ) (  W/ -- 2](/) 2 + Zr=l to4(rt/r)~,r(rt-l~.,i=l tonXi r-- 

m,0) + Y.,-:I to 2(n/r)~4+r(nlZi=l to n s i r y i  - mr1), 

where ~ ,  ..., K6 are Lagrange multipliers and the 
constants are included to simplify derivatives. 
Differentiating q with respect to X~ gives us 

Oq/OX i = X / -  W i + Zr=l  to 4 ~LrX/r'l + ~ - 1  to 2 ~4+rX/r'l Y/. 

Setting this partial derivative equal to zero 
implicitly defines X~* = h(W,, Y~, A*), where A = (kl, ..., 
~,6)I~ Because h(W, Y,, A*) is only implicitly defined, 
we must solve for XI*, ..., An* and Kl, ..., K6 
numerically. We have used the Newton-Raphson 
algorithm successfully. Although n may be very large, 
the Newton-Raphson algorithm can be solved while 
only needing to invert a diagonal matrix and a 6x6 
matrix. 

There are times when the Newton-Raphson 
algorithm does not converge (Bay, 1997). If the 
problem lies in matching four moments, the number of 
moments is reduced to two. In the very few cases when 
the problem is due to the xy cross-product, the 
estimated cross-product is multiplied by .98, and the 
algorithm retried. In general, these adjustments work 
well in allowing the algorithm to converge to create an 
adjusted data set that leads to reduced bias and mean 
squared error when estimating the coefficients in a 
quadratic model. 

In a certain percentage of cases, the estimated x2y 
cross-product is not able to be matched, and for this 
study a new data set is simulated when this is the case. 
Typically, we only run into problems when the 
measurement error variance, t~u 2, is as large or larger 
than the random error variance, t~, 2. 

Results 

Table 1 compares the observed and adjusted data in 
terms of the bias and mean squared error (MSE) for the 
least squares estimates o f  the coefficients of the 
regression model Y -  1 + I X - . 5 X  2 + ~, with r~ 2 either 

0.25 or 1.0. The true data X I , . . . ,  Xs0o, were generated 
from a normal distribution with mean zero and variance 
one. The true data were contaminated with one of two 
levels of measurement error, ~u2=0.25 and ~u2=l.0, to 
form W~, . . . ,  W300, the observed values. The table 
gives the mean bias and MSE for 1000 simulations, 
where the MSE is calculated as the Monte Carlo 
variance plus the square of the mean bias. 

When possible, the first four moments were 
matched along with the two cross-product terms that 
appear in the least squares equations. When four 
moments could not be matched, the first two moments 
were matched. When the xy cross-product could not be 
matched, it was multiplied by .98 (this occurred in less 
than one percent of the simulation runs). The results in 
the table only include cases when the x2y cross-product 
term could be matched. Approximately 25 percent of 
the time the x2y term could not be matched when 
~2= 1.0 and ¢r~2=0.25. In other combinations of O'u 2 and 
~2, this problem occurred less than ten percent of the 
time. When the x2y term could not be matched, it is 
possible to "match" it by reducing its value slightly, for 
example, multiplying (I/n)(ZW~2Yj - ~ 2~y~) by 0.98 
and then finding adjusted values to match the new 
value. 

The algorithm was less successful matching the xZy 
term for the model Y = 1 - 3X + X 2 + e; it was possible 
to match the x2y term in only approximately 60 to 65 
percent of the runs when ~u~=l.0 and ~ = 0 . 2 5  (data not 
shown). Of the four combinations of o'uZand o~ 2, it 
would seem that this combination is the least likely to 
reflect a situation that may arise in practice. 

c~u 2 r~ 2 Parameter Bias MSE 
w x, x.. w x, 

.25 .25 13o 

f~ 

-0.1026 -0.0974 0.0129 0.0134 0.0129 0.0067 
-0.2002 -0.1029 0.0073 0.0424 0.0140 0.0063 
0.1808 0.0945 -0.0179 0.0339 0.0115 0.0071 

.25 1.0 13o 
13, 

-0.0988 -0.0945 0.0148 
-0.1981 -0.1012 0.0083 
0.1800 0.0947 -0.0163 

0.0166 0.0164 0.0120 
0.0438 0.0164 0.0097 
0.0347 0.0131 0.0093 

1.0 .25 13o -0.2657 -0.2739 -0.0831 0.0757 0.0813 0.0350 
-0.5117 -0.3094 -0.0428 0.2640 0. I 014 0.0241 
0.3848 0.2766 0.0872 0.1487 0.0804 0.0318 

1.0 1.0 ~o -0.2608 -0.2588-0.0104 0.0772 0.0784 0.0665 
-0.5031 -0.2910 0.0084 0.2567 0.0937 0.0438 
0.3802 0.2555 0.0023 0.1457 0.0722 0.0660 

Table 1: The table compares bias and mean squared error (MSE) for 
estimating the coefficients of  Y = 1 + I X -  .5X 2 + e, with rr~ either 
0.25 or 1.0. W refers to the observed data, measured with error, X~ 
refers to the adjusted data when only the first-order cross-product is 
matched, )(2 refers to the adjusted data created by matching both the 
xy and x2y cross-products. 
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Using the transformed data leads to large 
reductions in the bias and MSE for the least squares 
estimates. For example, Table 1 shows that when 
%2=0.25 and ~y2= 1.0, 13~ is overestimated by 0.1800, on 
average, when using the observed data. It is still 
overestimated, though the bias is reduced by about half, 
when using transformed data that matches moments and 
the xy cross-product. However, when the x 2 y  c r o s s -  

product term is also matched, the bias is reduced to 
only -0.0163, on average. This is accompanied by a 
reduction in the mean squared error from 0.0347 to 
0.0093. Similar results are obtained for the other 
coefficients and for other combinations of cru 2 and t~ 2. 

Approximating Variance 

It is important to account for the variability 
introduced when transforming the sample values; we 
cannot simply estimate variance by treating the 
transformed values as though they were the observed 
values. Table 2 compares the results from the Monte 
Carlo standard errors of the 1000 simulated data sets 
with the means of the standard errors estimated using 
M-estimation. 

O'u 2 0"2 2 Parameter Monte Carlo M-estimation 

.25 .25 

.25 1.0 

1.0 .25 

1.0 1.0 

130 0.0809 0.0767 
13~ 0.0793 0.0757 
132 0.0822 0.0718 

13o 0.1085 0.1026 
131 0.0982 0.0945 
132 0.0952 0.0852 

13o 0.1676 0.2117 
[31 0.1491 0.1841 
132 0.1557 0.2091 

13o 0.2577 0.2990 
131 0.2091 0.2416 
132 0.2569 0.3022 

Table 2: The table compares the Monte Carlo standard errors with 
the mean approximate standard errors from M-estimation. The 
Monte Carlo standard errors are the square roots o f  the Monte Carlo 
variances for  1000 simulated data sets and the mean approximate 
standard errors are the means o f  the square roots o f  the approximate 
variances. 

While the M-estimation standard errors appear to 
slightly overestimate the standard error when 
measurement error is relatively large, this 
overestimation decreases as the sample size increases 
(data not shown). 

Summary 

When data are measured with error, the 
measurement error transformation leads to least squares 
estimators for a quadratic model that have reduced bias 
and mean squared error compared to those found using 
the observed data. The primary benefit of this method 
may be when conducting exploratory analyses. In 
exploratory analyses it would be tedious and time- 
consuming to constantly correct parameter estimates for 
measurement error. Yet ignoring measurement error 
may lead to qualitatively different conclusions about 
the relationships between variables. Our method allows 
for the correction to be made prior to carrying out the 
exploratory analyses and estimated parameters 
calculated from the transformed data will be corrected 
for measurement error. It is also possible, using M- 
estimation, to approximate standard errors for estimates 
calculated from the transformed data. 

Bay (1997) shows that this method also works well 
for estimating a cumulative distribution function, the 
coefficients in a linear regression, and the coefficients 
in a logistic regression. 
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