ADJUSTING DATA FOR MEASUREMENT ERROR TO REDUCE BIAS WHEN ESTIMATING COEFFICIENTS OF A QUADRATIC MODEL

Jeff Bay, Maryville College and L. A. Stefanski, North Carolina State University
Jeff Bay, Division of Mathematics and Computer Science, Maryville College, Maryville, Tennessee, 37804

Key Words: Measurement Error, Moments, Regression

Introduction

When sample values are measured with error, parameter estimates that are nonlinear functions of the data are biased due to measurement error (Fuller, 1987; Carroll, Ruppert and Stefanski, 1995). Typically, adjustments are made to the estimates to account for measurement error. Instead, we create an alternative data set that is adjusted for measurement error. We might think of this as a measurement error transformation of the data. Parameter estimates calculated from the transformed data are unbiased or have reduced bias and, therefore, the method provides a simple way to adjust statistics for measurement error when it otherwise may not be clear how to do so.

One case of particular interest is estimating the coefficients in the regression model $Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}$ $+\varepsilon$, where the independent variable is measured with error. It is well known that the least squares estimates of the β 's will be biased due to the measurement error. Though it is straightforward to correct the least squares estimates in simple linear regression, it is not so for the quadratic model. We will show that adjusting the data prior to finding the least squares estimates leads to estimators with reduced bias and mean squared error.

The Model

The true data consist of n observations (X_{i}, Y_{i}), $i=1, \ldots, n$, where X_{i} is subject to measurement error and Y_{i} is a measurement error-free variable. Because X_{i} is measured with error, we observe (W_{i}, Y_{i}), $i=1, \ldots, n$, where

$$
W_{i}=X_{i}+U_{i},
$$

U_{l}, \ldots, U_{n} are independent $N\left(0, \sigma_{u}{ }^{2}\right)$ and are independent of $\left(X_{l}, \ldots, X_{n}\right)$ and $\left(Y_{l}, \ldots, Y_{n}\right)$. For the purpose of illustrating the method, we assume that $\sigma_{u}{ }^{2}$ is known. When $\sigma_{u}{ }^{2}$ is not known, it would be estimated using either replicate measurements or validation data, see Carroll, Ruppert, and Stefanski (1995).

The Measurement Error Transformation

Under the regression model $Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+$ ε, where X is a random variable with mean μ_{x} and
variance σ_{x}^{2}, and ε is independent of X, has mean zero and variance $\sigma_{\varepsilon}{ }^{2}$, the naïve least squares estimators follow from solving the least squares equations,

$$
\begin{aligned}
& \beta_{0} n+\beta_{1} \sum W_{i}+\beta_{2} \Sigma W_{i}^{2}=\sum Y_{i} \\
& \beta_{0} \sum W_{i}+\beta_{1} \sum W_{i}^{2}+\beta_{2} \sum W_{i}^{3}=\sum W_{i} Y_{i} \\
& \beta_{0} \Sigma W_{i}^{2}+\beta_{1} \Sigma W_{i}^{3}+\beta_{2} \Sigma W_{i}^{4}=\sum W_{i}^{2} Y_{i} .
\end{aligned}
$$

Though $(1 / n) \sum W_{i}$ is an unbiased estimator of $E(X)$ and $(1 / n) \sum W_{i} Y_{i}$ is an unbiased estimator of $E(X Y)$, the remaining estimators are all biased. Specifically,
$n^{-1} \sum W_{i}^{2}$ unbiasedly estimates $E\left(X^{2}\right)+\sigma_{u}{ }^{2}$,
$n^{-1} \Sigma W_{i}^{3}$ unbiasedly estimates $E\left(X^{3}\right)+3 \sigma_{u}^{2} E(X)$,
$n^{-1} \sum W_{i}^{4}$ unbiasedly estimates $E\left(X^{4}\right)+6 \sigma_{u}{ }^{2} E\left(X^{2}\right)+3 \sigma_{u}{ }^{4}$,
$n^{-1} \sum W_{i}^{2} Y_{i}$ unbiasedly estimates $E\left(X^{2} Y\right)+\sigma_{u}{ }^{2} E(Y)$.
Thus, the estimated parameters will also be biased.
To reduce this bias, the observed data W_{l}, \ldots, W_{n} are transformed to $X_{1}^{*}, \ldots, X_{n}^{*}$ such that

$$
E\left(n^{-1} \Sigma X_{i}^{*}\right)=E\left(X^{\prime}\right), \quad r=1, \ldots, 4,
$$

where $n^{-1} \Sigma X_{i}^{*}$ converges in probability to a constant for $r=1, \ldots, 4$, and, therefore,

$$
n^{-1} \Sigma X_{i}^{* r} \rightarrow E\left(X^{r}\right), \quad r=1, \ldots, 4 .
$$

Also, the adjusted data $X_{1}{ }^{*}, \ldots, X_{n}{ }^{*}$ meet the constraint that

$$
E\left(n^{-1} \Sigma X_{i}^{*} r Y_{i}\right)=E\left(X^{r} Y\right), \quad r=1,2,
$$

where $n^{-1} \Sigma X_{i}{ }^{*} Y_{i}$ converges in probability to a constant for $r=1,2$, and, therefore,

$$
n^{-1} \Sigma X_{i}^{* r} Y_{i} \rightarrow E\left(X^{r} Y\right), \quad \mathrm{r}=1,2 .
$$

Details of the method are given in Bay (1997), but a brief overview is given here. The first step is to find estimators, $m_{r s}$, with the property that

$$
E\left(m_{r s}\right)=E\left(n^{-1} \Sigma X_{i}^{r} Y_{i}^{s}\right), \quad r=1, \ldots, 4, \quad s=0,1 .
$$

The estimators, $m_{r s}$, are found using Hermite Polynomials (Stefanski, 1990). These estimators define the constraints under which we maximize the likelihood for the unknown $X_{1}, \ldots X_{n}$.

Given that $U \sim N\left(0, \sigma_{u}{ }^{2}\right)$ and only $\left(W_{1}, \ldots, W_{n}\right)$ are observed, the likelihood for the unknown $X_{1}, \ldots X_{n}$ is

$$
f_{\mathrm{WIX}}=\Pi\left(2 \pi \sigma_{u}^{2}\right)^{-1 / 2} \exp \left[-\left(W_{i}-X_{i}\right)^{2} /\left(2 \sigma_{u}^{2}\right)\right],
$$

and the negative \log likelihood is proportional to $\Sigma\left(W_{i}\right.$ $\left.-X_{i}\right)^{2}$. We minimize this sum of squares, subject to the moment and cross-product constraints, thus ensuring that the estimated X_{1}, \ldots, X_{n}, have the desired moments and cross-products asymptotically.

For matching four moments and the $x y$ and $x^{2} y$ cross-product terms, the objective function is

$$
\begin{aligned}
q= & \sum_{i=1 \text { to } n}(1 / 2)\left(W_{i}-X_{i}\right)^{2}+\sum_{r=1 \text { to } 4}(n / r) \lambda_{r}\left(n^{-1} \sum_{i=1 \text { to } n} X_{i}^{r}-\right. \\
& \left.m_{r 0}\right)+\sum_{r-1 \text { to } 2}(n / r) \lambda_{4+r}\left(n^{-1} \sum_{i=1 \text { to } n} X_{i}^{r} Y_{i}-m_{r i}\right),
\end{aligned}
$$

where $\lambda_{1}, \ldots, \lambda_{6}$ are Lagrange multipliers and the constants are included to simplify derivatives. Differentiating q with respect to X_{i} gives us

$$
\partial q / \partial X_{i}=X_{i}-W_{i}+\sum_{r=1 \text { to } 4} \lambda_{r} X_{i}^{r-1}+\sum_{r-1 \text { to } 2} \lambda_{4+r} X_{i}^{r-1} Y_{i} .
$$

Setting this partial derivative equal to zero implicitly defines $X_{i}^{*}=h\left(W_{i}, Y_{i}, \Lambda^{*}\right)$, where $\Lambda=\left(\lambda_{1}, \ldots\right.$, $\left.\lambda_{6}\right)^{T}$. Because $h\left(W_{i}, Y_{i}, \Lambda^{*}\right)$ is only implicitly defined, we must solve for $X_{1}{ }^{*}, \ldots, X_{n}{ }^{*}$ and $\lambda_{1}{ }^{*}, \ldots, \lambda_{6}{ }^{*}$ numerically. We have used the Newton-Raphson algorithm successfully. Although n may be very large, the Newton-Raphson algorithm can be solved while only needing to invert a diagonal matrix and a 6×6 matrix.

There are times when the Newton-Raphson algorithm does not converge (Bay, 1997). If the problem lies in matching four moments, the number of moments is reduced to two. In the very few cases when the problem is due to the $x y$ cross-product, the estimated cross-product is multiplied by .98 , and the algorithm retried. In general, these adjustments work well in allowing the algorithm to converge to create an adjusted data set that leads to reduced bias and mean squared error when estimating the coefficients in a quadratic model.

In a certain percentage of cases, the estimated $x^{2} y$ cross-product is not able to be matched, and for this study a new data set is simulated when this is the case. Typically, we only run into problems when the measurement error variance, $\sigma_{u}{ }^{2}$, is as large or larger than the random error variance, σ_{ε}^{2}.

Results

Table 1 compares the observed and adjusted data in terms of the bias and mean squared error (MSE) for the least squares estimates of the coefficients of the regression model $Y=1+1 X-.5 X^{2}+\varepsilon$, with σ_{ε}^{2} either
0.25 or 1.0. The true data X_{1}, \ldots, X_{300}, were generated from a normal distribution with mean zero and variance one. The true data were contaminated with one of two levels of measurement error, $\sigma_{u}{ }^{2}=0.25$ and $\sigma_{u}{ }^{2}=1.0$, to form W_{1}, \ldots, W_{300}, the observed values. The table gives the mean bias and MSE for 1000 simulations, where the MSE is calculated as the Monte Carlo variance plus the square of the mean bias.

When possible, the first four moments were matched along with the two cross-product terms that appear in the least squares equations. When four moments could not be matched, the first two moments were matched. When the $x y$ cross-product could not be matched, it was multiplied by .98 (this occurred in less than one percent of the simulation runs). The results in the table only include cases when the $x^{2} y$ cross-product term could be matched. Approximately 25 percent of the time the $x^{2} y$ term could not be matched when $\sigma_{u}{ }^{2}=1.0$ and $\sigma_{\varepsilon}{ }^{2}=0.25$. In other combinations of $\sigma_{u}{ }^{2}$ and $\sigma_{\varepsilon}{ }^{2}$, this problem occurred less than ten percent of the time. When the $x^{2} y$ term could not be matched, it is possible to "match" it by reducing its value slightly, for example, multiplying $(1 / n)\left(\sum W_{i}^{2} Y_{i}-\sigma_{u}{ }^{2} \sum Y_{i}\right)$ by 0.98 and then finding adjusted values to match the new value.

The algorithm was less successful matching the $x^{2} y$ term for the model $Y=1-3 X+X^{2}+\varepsilon$; it was possible to match the $x^{2} y$ term in only approximately 60 to 65 percent of the runs when $\sigma_{u}{ }^{2}=1.0$ and $\sigma_{\varepsilon}{ }^{2}=0.25$ (data not shown). Of the four combinations of $\sigma_{u}{ }^{2}$ and $\sigma_{\varepsilon}{ }^{2}$, it would seem that this combination is the least likely to reflect a situation that may arise in practice.

$\sigma_{u}{ }^{2}$	$\sigma_{\varepsilon}{ }^{2}$	Parameter	Bias		MSE			
			W	X_{3}	X_{2}	W	X_{1}	X_{2}
.25	.25	β_{0}	-0.1026	-0.0974	0.0129	0.0134	0.0129	0.0067
		β_{1}	-0.2002	-0.1029	0.0073	0.0424	0.0140	0.0063
		β_{2}	0.1808	0.0945	-0.0179	0.0339	0.0115	0.0071
.25	1.0	β_{0}	-0.0988	-0.0945	0.0148	0.0166	0.0164	0.0120
		β_{1}	-0.1981	-0.1012	0.0083	0.0438	0.0164	0.0097
		β_{2}	0.1800	0.0947	-0.0163	0.0347	0.0131	0.0093
1.0	.25	β_{0}	-0.2657	-0.2739	-0.0831	0.0757	0.0813	0.0350
		β_{1}	-0.5117	-0.3094	-0.0428	0.2640	0.1014	0.0241
		β_{2}	0.3848	0.2766	0.0872	0.1487	0.0804	0.0318
1.0	1.0	β_{0}	-0.2608	-0.2588	-0.0104	0.0772	0.0784	0.0665
		β_{1}	-0.5031	-0.2910	0.0084	0.2567	0.0937	0.0438
		β_{2}	0.3802	0.2555	0.0023	0.1457	0.0722	0.0660

Table 1: The table compares bias and mean squared error (MSE) for estimating the coefficients of $Y=1+1 X-.5 X^{2}+\varepsilon$ with σ_{ε}^{2} either 0.25 or 1.0. W refers to the observed data, measured with error, X_{1} refers to the adjusted data when only the first-order cross-product is matched, X_{2} refers to the adjusted data created by matching both the $x y$ and $x^{2} y$ cross-products.

Using the transformed data leads to large reductions in the bias and MSE for the least squares estimates. For example, Table 1 shows that when $\sigma_{u}{ }^{2}=0.25$ and $\sigma_{\varepsilon}{ }^{2}=1.0, \beta_{2}$ is overestimated by 0.1800 , on average, when using the observed data. It is still overestimated, though the bias is reduced by about half, when using transformed data that matches moments and the $x y$ cross-product. However, when the $x^{2} y$ crossproduct term is also matched, the bias is reduced to only -0.0163 , on average. This is accompanied by a reduction in the mean squared error from 0.0347 to 0.0093 . Similar results are obtained for the other coefficients and for other combinations of $\sigma_{u}{ }^{2}$ and $\sigma_{\varepsilon}{ }^{2}$.

Approximating Variance

It is important to account for the variability introduced when transforming the sample values; we cannot simply estimate variance by treating the transformed values as though they were the observed values. Table 2 compares the results from the Monte Carlo standard errors of the 1000 simulated data sets with the means of the standard errors estimated using M-estimation.

$\sigma_{\mathbf{u}}{ }^{2}$	$\boldsymbol{\sigma}_{\mathrm{\varepsilon}}{ }^{2}$	Parameter	Monte Carlo	M-estimation
.25	.25			
		β_{0}	0.0809	0.0767
		β_{1}	0.0793	0.0757
.25	1.0	β_{2}	0.0822	0.0718
		β_{0}	0.1085	0.1026
		β_{1}	0.0982	0.0945
1.0	.25	β_{2}	0.0952	0.0852
		β_{0}	0.1676	0.2117
		β_{1}	0.1491	0.1841
1.0	1.0	β_{2}	0.1557	0.2091
			β_{0}	0.2577
		β_{1}	0.2091	0.2990
		β_{2}	0.2569	0.3416

Table 2: The table compares the Monte Carlo standard errors with the mean approximate standard errors from M-estimation. The Monte Carlo standard errors are the square roots of the Monte Carlo variances for 1000 simulated data sets and the mean approximate standard errors are the means of the square roots of the approximate variances.

While the M-estimation standard errors appear to slightly overestimate the standard error when measurement error is relatively large, this overestimation decreases as the sample size increases (data not shown).

Summary

When data are measured with error, the measurement error transformation leads to least squares estimators for a quadratic model that have reduced bias and mean squared error compared to those found using the observed data. The primary benefit of this method may be when conducting exploratory analyses. In exploratory analyses it would be tedious and timeconsuming to constantly correct parameter estimates for measurement error. Yet ignoring measurement error may lead to qualitatively different conclusions about the relationships between variables. Our method allows for the correction to be made prior to carrying out the exploratory analyses and estimated parameters calculated from the transformed data will be corrected for measurement error. It is also possible, using Mestimation, to approximate standard errors for estimates calculated from the transformed data.

Bay (1997) shows that this method also works well for estimating a cumulative distribution function, the coefficients in a linear regression, and the coefficients in a logistic regression.

References

Bay, J.M. (1997). "Adjusting data for measurement error," Ph.D. Thesis, North Carolina State University.

Carroll, R.J., Ruppert, D., and Stefanski, L.A. (1995). Measurement Error in Nonlinear Models. Chapman \& Hall, London.

Fuller, W.A. (1987). Measurement Error Models. John Wiley and Sons, New York.

Stefanski, L.A. (1990). "Unbiased estimation of a nonlinear function of a normal mean with application to measurement error models," Comm. Statist., 18, 43354358.

