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1. Introduction 

The analysis of survey data requires the application of 
special statistical methods to adjust for the effects of a 
complex sampling design that has been implemented to 
satisfy analytic objectives, contain survey costs, and 
ease the administrative burden of carrying out the 
survey. The complex sampling design may entail 
stratification, clustering, unequal probability sampling, 
and the use of auxiliary sampling flames. S/arndal, 
Swensson, and Wretman [ 1 ] provide a recent overview 
of statistical methods that account for the complex 
sampling design's effect on the expected error that is 
incurred in estimating finite population parameters. It 
is for this reason that in this paper we refer to the 
statistical adjustments that are made to survey weights 
to account for the effects of a complex sampling design 
as sampling design adjustments. 

Carefully designed and implemented estimation 
methodologies for sample surveys account for more 
than the effects of the complex sampling design on 
errors in estimation, however. Additional adjustments 
are routinely made to survey weights with the 
objectives of either reducing the potential bias of 
estimated population parameters or to accept increased 
potential bias in return for reducing their expected mean 
squared error. Among the adjustments that are intended 
for these purposes are 
• adjustments for unit nonresponse, 
• poststratification to known population totals, 
• weight trimming, and raking, 
• adjustments for noncoverage of the target 

population by the sampling flame, and 
• adjustments for expected differences in response 

patterns between sampled units that provide 
information on key survey topics compared to units 
that do not provide information. 

Because these adjustments are not associated with the 
error incurred in estimating population parameters as a 
result of the complex sampling design, we refer to these 
adjustments as nonsampling weighting adjustments to 
distinguish them from the sampling design adjustments. 
Although nonsampling weighting adjustments are made 
to reduce bias of point estimates, if the statistical 

methods used to estimate standard errors do not account 
for those adjustments, estimates of standard errors may 
be biased. This may have an untoward effect on the 
coverage properties of calculated confidence intervals. 

For example, a common and simple method that is used 
in sample surveys for estimating the standard error of a 
complicated statistic has been described by Woodruff 
[2]. This method has come to be known as the Taylor 
series linearization or delta method and is implemented 
in commercial software that is widely used to analyze 
complex survey data. As noted by Rust and Rao [3], it 
is conceptually straightforward to account for some of 
the nonsampling error adjustments explicitly in the 
Taylor series linearization method. However, these 
authors indicate that, as the number and complexity of 
nonsampling weighting adjustments increase, the 
difficulty in accounting for these adjustments using the 
Taylor series method increases. The extent to which 
this difficulty increases makes this approach to variance 
estimation inexpedient or impossible, when a full 
accounting for nonsampling weighting adjustments in 
the estimation process is desired. As a result, one would 
expect that estimated standard errors computed using 
the Taylor series method would be biased because these 
methods do not routinely account for all of the features 
of both the complex sampling design and the 
nonsampling weight adjustments. 

As an alternative to the Taylor series method for 
estimating standard errors from complex surveys, 
replication methods may be used. Rust and Rao [3] 
provide a recent review of these methods. These 
methods offer a simple way of accounting for all of the 
features of both the complex sampling design and the 
nonsampling weight adjustments. 

Also, Rust and Rao summarize the literature in which 
replication methods and the Taylor series method for 
estimating standard errors are compared with respect to 
their bias, coverage rates, and asymptotic properties. 
This literature was pioneered by Kish and Frankel [4], 
followed by work by Krewski and Rao [5], Lemeshow 
and Levy [6], Kovar et al. [7], Valliant [8], Rao and Wu 
[9], Shao and Wu [10], and others. Results from these 
investigations indicate that jackknife replication 
methods give similar results to those obtained by using 
Taylor series methods, both yielding estimates of 
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standard errors with negligible bias. However, we note 
that in all of this research, the implicit assumption was 
that nonsampling weighting adjustments were not 
required: There was no comparison of methods in the 
usual situation in which numerous and complex 
nonsampling weight adjustments are required. In this 
case, the conclusions obtained in this previous research 
may not generalize to the more common situation in 
which the Taylor series approach does not account for 
nonsampling weight adjustments, but the replication 
methods do. 

This paper presents a case study of the bias that is 
incurred by estimated standard errors using the Taylor 
series method that does not account for the numerous 
nonsampling weight adjustments in the National 
Immunization Survey (NIS). To make this evaluation, 
we compare results to those obtained using the 
jackknife replication method described by S~irndal et al. 
[1, p. 415]. In making comparisons, we tailor the 
jackknife to account for all of the features of the 
complex sampling design and all of the nonsampling 
weight adjustments used in the NIS. 

In Section 2 of this paper we give a synopsis of the 
complex sampling design of the NIS. Also, we 
summarize how the NIS sampling weights are 
constructed, highlighting sampling design and 
nonsampling weight adjustments. In Section 3 we 
review the Taylor series method for obtaining estimated 
standard errors of estimated vaccination coverage rates 
and give an example of how the method yields biased 
estimates when it does not account for nonsampling 
weight adjustments. Also, we describe how a properly 
constructed jackknife estimate of variance accounts for 
the complex sampling design and all of the 
nonsampling weight adjustments. We review the 
literature that shows that a properly constructed 
jackknife estimate of variance has negligible bias. 

In Section 4 we present the results of our investigation, 
showing the extent of the bias in standard errors using 
Taylor series methods for the NIS. In Section 5 we 
conclude with a discussion of the results and related 
literature. 

2. The NIS Sampling Design 
The NIS covers 78 Immunization Action Plan (IAP) 
areas, which include the 50 states and 28 urban areas, 
including the District of Columbia. Each lAP area 
represents a stratum of the sampling design within 
which the NIS samples independently. Within each lAP 
area, the design of the NIS includes 2 phases of 
sampling: a random-digit-dialing (RDD) survey of 
households followed by a mail survey of vaccination 
providers of eligible children in sampled households. 

In the RDD sampling phase of the NIS, the respondent 
in a sampled household with eligible children is asked 
to provide information on the demographic and 
socio-economic characteristics of the household. Also, 
in the RDD interview the respondent is asked for 
consent to contact eligible children's immunization 
providers to obtain information about their vaccination 
histories. If verbal consent is obtained, the vaccination 
providers are mailed a questionnaire from which 
vaccination histories are obtained. Ezzati-Rice et al. 
[ 11] and Zell et al. [ 12] give a more detailed description 
about the sampling design of the NIS. 

2.1 Sampling Design and 
Adjustments 

Nonsampling Weight 

In the NIS, 9 separate weight adjustments are made. 
Among these, only 2 are sampling design adjustments, 
and the remaining 7 are nonsampling error adjustments. 
The following paragraphs describe each of these 
adjustments, the order in which they are made, and their 
purpose, as well as indicating whether the adjustment is 
a sampling design weight adjustment (SDA) or a 
nonsampling weight adjustment (NSA). 

The base samplinz weizht (SDA). Each child with data 
in the NIS receives a base sampling weight, equal to the 
reciprocal of the probability of selecting the 
household's telephone number into the sample. 
Specifically, this weight is the ratio of two totals for 
that lAP area: (1) the number of telephone numbers in 
the population, and (2) the number of telephone 
numbers drawn from the population. 

Base sampling weight trimming (NSA). In an RDD 
sample it is possible for a household to be sampled 
from an lAP area but to physically be located in an 
adjacent lAP area. Because a large range in the base 
weights can substantially increase the variance of 
estimates, each child's base weight is not allowed to 
exceed three times the base weight for the lAP area in 
which the child resides, as calculated above. 

Multiple residential telephones (SDA). A household 
with two or more residential telephone numbers has a 
proportionally higher probability of being selected into 
the RDD sample. To preserve the relationship between 
the base sampling weight and this probability, an 
adjustment is made for the number of non-business 
voice-use telephone numbers reported in the household. 

Multiple residential telephone adjustment weight 
trimminz ~SA). Division of a household's trimmed 
base sampling weight by the number of non-business 
voice-use telephone numbers reported in the household 
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can introduce considerable variation in the adjusted 
weights. This is known to increase sampling variability. 
Thus, the reported number of these telephones is 
limited to no more than 3. In doing this we accept bias 
in order to reduce variance. 

Multi-level household nonresponse (NSA). Unit 
nonresponse can occur at several points in the NIS 
interviewing process. At each point a different amount 
of information is available about the nonresponding 
telephone number. To reduce potential bias, the NIS 
applies a separate weighting-class adjustment for each 
of three amounts of information: 

1) The interviewer has identified an eligible household, 
but the interview has not been completed; 

2) The survey has reached a household, but nothing 
more is known; and 

3) It is unknown whether the telephone number is 
residential. 

Within each of a set of cells or classes the adjustment 
increases each respondent's base sampling weight to 
account for the nonrespondents. For example, where 
each nonrespondent is known to be an eligible 
household, each respondent's base weight is multiplied 
by the ratio of the number of respondents and 
nonrespondents to the number of respondents. The 
cells are defined by IAP area, the residential directory- 
listed status of the sample telephone number, and 
telephone-exchange-level demographic and 
socioeconomic characteristics. 

these differences often arise from differential 
nonresponse. 

Provider-reported vaccination histotT nonresponse 
(NSA). The weighting estimation methodology that is 
currently in use for the NIS has been designed 
specifically to also adjust vaccination coverage 
estimates for provider-reported vaccination history 
nonresponse bias (Smith et al. [14, 15]). Within each 
lAP area, the methods achieve this by grouping 
sampled children into adjustment cells according to the 
similarity of their response propensities to have a 
provider-reported vaccination history. As a first step in 
forming adjustment cells, a response propensity model 
was developed using logistic regression. The response 
propensity is the probability that a sampled child has a 
provider-reported vaccination history. 

The provider immunization history nonresponse 
adjustment cells were formed by sorting the children in 
an lAP area by their response propensities and then 
forming five cells with equal unweighted counts of 
sample children. To adjust for vaccination history 
nonresponse bias, within each adjustment cell, children 
with vaccination histories are assigned a revised set of 
weights that are obtained by dividing their l st-phase 
sampling weights by the cell-specific weighted 
response rate. By dividing the l st-phase sampling 
weights of children who have provider vaccination 
information by their adjustment-cell-specific weighted 
response rate, these children more fairly represent all of 
the children in the cell as a whole. 

Nontelephone coverage (NSA). Random-digit dialing 
yields a sample of children in households that have 
telephones, but the NIS aims to measure vaccination 
coverage levels for all children 19 to 35 months of age. 
Data from the National Health Interview Survey 
(NHIS) indicate that vaccination levels are generally 
lower among nontelephone children than among 
telephone children. In some IAP areas a substantial 
proportion of age-eligible children reside in 
nontelephone households. To compensate for such 
potential noncoverage bias, the NIS employs a weight 
adjustment procedure described by Battaglia et al. [ 13]. 

Poststratification (NSA). Poststratification separates the 
actual sample into cells defined by characteristics that 
are related to noncoverage and vaccination status. Then 
the weighted distribution of completed interviews over 
the cells is brought into agreement with a corresponding 
set of population totals. The purpose of this adjustment 
is to reduce bias incurred by obtaining samples that 
have weighted totals that do not agree with known 
population totals of variables that are believed to be 
associated with vaccination coverage. In RDD surveys 

Raking (NSA). The revised weights may not match 
poststratification totals used to construct l st-phase 
sampling weights. Also, the revised weights may not 
match the 1st phase sample weighted totals of other 
variables that are known to be important predictors of 
being up-to-date. To reduce bias attributable to these 
differences and to maintain the nonresponse bias 
adjustment, we rake the revised weights to match 
poststratification totals, outcome predictor totals, and 
the adjustment-cell-specific l st-phase sampling weight 
totals. 

3. The Taylor Series and Jackknife Methods for 
Estimating Standard Errors 

Wolter [16] provides a complete description of 
commonly used methods for estimating standard errors 
of estimated finite population parameters. In Section 
3.1 we review the Taylor series linearization method 
applied to the problem of estimating the variance of a 
ratio estimate for a subdomain of the target population 
when the sampling design corresponds to a stratified 1- 
stage cluster sampling design, as in the NIS. In Section 
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3.2 we describe how the jackknife can be applied to 
estimating the variance of this ratio estimate, 
accounting for nonsampling weighting adjustments, 
also. 

For the purposes of this section, let 

N h = the number of primary sampling units (PSUs, or 

households in the case of the NIS) in stratum 
h; 

n h - t h e  number of PSUs sampled in stratum h, 

h=l, ... ,L; 

Mhi =the number of subjects in PSU i of stratum h 

belonging to the target population; 

mhi =the number of subjects in PSU i in stratum h 

who were sampled in the survey; 

Why.-the overall sampling weight for subject j 

sampled in PSU i of stratum h, accounting for 
all sampling weight and nonsampling weight 
adjustments; 

Yh0 = 0 when subject j in PSU i of stratum h is not up- 

to-date on a specific vaccination, and Yh0 1 

when the child is up-to-date; and 

~hlj -- 1 when subject j in PSU i of stratum h belongs 

to the domain of interest, and ~h0 = 0,  

otherwise. 

Nh M~,i Nh Mhi 

Letting Yh -- E E ~ h , j Y h o  and T h - E E ~ h 0 . ,  
i=1 j=l  i=1 j=l  

the true but unknown vaccination coverage rate is 
L 

0 - -  h=l 
L 

h=l 

3.1 Taylor Series Linearization Variance Estimation 
gt h mhj rib mhi 

Let ~ - ZZ(~ho.Wh~Yho. and 7~h = ZZ(~ho.Who.. 
i=l j=l i=1 j=l 

Then the combined ratio estimator (Cochran [17, p. 
165]) of the vaccination coverage rate for the domain of 
interest is 

L 

0 - -  h=l 
L 

h=l 

(1) 

Letting Zho.- 
6 ,jw ,j 

value of (1) and letting 

n h 

~Zh, 
Z h  -- 

i=1 

/qh 

variance of 0 is 

denote the linearized 

mhi 

Zhi -- E Zho and 
g=l 

the Taylor series estimate of the 

L /Vlh 
/Th )2 

VT (~) - Zh=~ nh - 1 Z(Zh~,=~ - Z h  " (2) 

3.2 Jackknife Replication Variance Estimation 

Wolter [16, p. 175] indicates that, although the 
jackknife is conceptually simple, when applying this 
method to stratified sampling designs, special care must 
be exercised to obtain a correct expression for the 
jackknife variance. For a stratified 1-stage cluster 
design used in the NIS, let the sampled PSUs that 
yielded a completed interview in stratum h be 

partitioned at random into A h groups of approximately 

equal numbers of PSUs (all sample telephone numbers 
that did not yield a completed interview are also 
randomly partitioned into equal sized groups). After 

omitting the ath group from stratum h, let B(ha) denote 

the remaining complement of PSUs in stratum h. We 

refer to B(ha) as the ath replicate sample in stratum h. 

For sampled units belonging to the replicate sample 

B(ha), we compute a separate set of replicate sampling 

w(ha) weights, {"h0 }" These replicate weights are 

constructed as if only the ath replicate sample, B(ha), 

had been obtained in the sample in stratum h. In this 
case, all of the sampling design and nonsampling 
weight adjustments described in Section 2.1 are applied 

, ¢W (ha) W ( h a )  to construct L"h0 }. Also, "h0 - 0 for all 

sampled units in stratum h not belonging to B(ha). Note 

w(ha) that, in general, "'hO ~ Who.. In this respect 

w(ha) differences between ,, h0 and Whig. reflect variability 

that can be attributed to sampling design and 
nonsampling weight adjustments. 
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FI h m hi 

Let ~rh(a)--ZZ(~ho.Wh(ijha)Yhij and 
i=l j=l 

?7 n m hi 

" hv . Then the re licatep estimator 
i=1 j=l 

of 0 based on what remains in the entire sample after 
omitting the ath group from stratum h is 

L 

" m h "~h 
O(ha) L " 

Th( a ) -l- Z Th , 
h ';e h 

The jackknife estimator of the variance of (1) is 

L (A~ -1)£ 
I)'J(O)-~~:~ A~ a:l ( 0 ( h a ) - - 0 )  2 . (3) 

A A 

Note that differences between O(ha) and 0 in (3) reflect 

variability from differences between the replicate 
W (ha) weights ,, nv and the overall weights Why. Because 

W (ha) differences between ,, hV and Why reflect variability 

that can be attributed to sampling design and 
nonsampling weight adjustments, (3) adjusts the 

estimated variance of 0 to reflect variability from both 
of these sources. Wolter [16] shows that, to second- 
order moments, the jackknife estimator of variance is 
unbiased. This result is congruent with the empirical 
findings of Kish and Frankel [4] and other research 
summarized by Rust and Rao [3 ]. 

4. Results 

To evaluate the bias of standard errors obtained using 
the Taylor series method, the jackknife method was 

used with A h = 40 in each stratum of the NIS. This 

value was selected to provide a sufficiently large 
number of degrees of freedom for variance estimation 
that would be suitable for many different types of 
statistical analysis that may be conducted with data 
from a single stratum. 

The jackknife estimate ~[Vj and Taylor series estimate 

~-~T of the standard error of the estimated 4:3"1 

vaccination series coverage rate (4 or more doses of the 
diphtheria-tetanus-pertussis (DTP) vaccine, 3 or more 
doses of polio vaccine, and 1 or more doses of the 
measles-mumps-rubella vaccine (MMR)) were 

obtained for each state using data from the 1999 NIS. 
Using these statistics for each state, we computed 

• ~l~r/I) ' j  , an estimate of the bias of the Taylor 

series estimated standard error, relative to the 
estimated standard error obtained using the 
jackknife estimate, 

• W95%,r/W9so/o,j-z.97s~r/t.97s,o~j, the 

relative half-widths of the 95% confidence 
intervals formed using jackknife and Taylor series 
estimates of the standard errors, and 

• l - - o @  -- 2 x T ~ ( z . 9 7 S ~ / ~ r T / ~ r j ) - - l ,  the 

estimated actual confidence coefficients of the 
nominal 95% confidence intervals formed using 
the Taylor series estimate of the standard error, 
assuming that the jackknife estimate of the 
standard error provides the bias-corrected estimate 
of the standard error of the estimated 4:3:1 
vaccination coverage rate. 

Here t.975,0 is the upper 97.5%-ile of Student's t 

distribution with ~ degrees of freedom, and Z.975 is 

the upper 97.5%-ile of the standard normal distribution. 

For each state, the degrees of freedom ~ equals 

A ~ - l t i m e s  the number of strata (lAP areas) 

contained within the state. Also, T O (o) denotes the 

cumulative distribution function of Student's t 

distribution with q~ degrees of freedom. 

Table 1 gives selected quantiles of the distribution of 
the ratio of these statistics estimated from each of the 
50 states and the District of Columbia. This table shows 

that the range of~/I~T/I) J is from 0.796 to 1.352, 

suggesting that estimated Taylor series standard errors 
may be biased by 20% or more. Also, Table 1 shows 

the 75%-ile of 4 1 ) v / l ) j  is 1.080, suggesting that 

the Taylor series method for estimating standard errors 
tends to underestimate standard errors of 4:3:1 state- 
level estimated vaccination coverage levels. 

Also Table 1 shows that the statistic W95%, r/W95%, J 
ranges from 0.771 to 1.331, indicating that the width of 
the 95% confidence interval computed using a Taylor 
series estimate of the standard error may be as much as 
23% too narrow or 33% too wide. We note that only 
3% of the difference in widths of the confidence 
intervals is accounted for as a result of the relative 

difference between /.975,0 and Z.975. 
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Finally, Table 1 shows that the distribution of the actual 

confidence coefficient, 1 - a t ,  ranges from 0.873 to 
0.990, indicating that the actual confidence coefficient 
of 95% confidence intervals can differ greatly from the 
nominal 95%. Among the 50 states and the District of 
Columbia, 40 have actual confidence coefficients that 
differ from the nominal level by 1 percentage point or 
more. 
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Table 1: Selected quantiles of the distribution of the 
ratio of estimated standard errors, 95% confidence 
interval widths, and actual confidence coefficients of 
nominal 95% confidence intervals. 

Percentile 3/I~T/I)j W95./o,T/W95%,j 1 - a  T 

0% 0.796 0.771 0.873 
25% 0.942 0.921 0.930 
50% 0.976 0.954 0.939 
75% 1.080 1.058 0.961 
100% 1.352 1.331 0.990 
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