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1. Introduction 

Survey sample design in general and sample 
allocation problems in particular can benefit from a 
mathematical programming formulation, especially 
when operational or sample size constraints lead away 
from straightforward or closed-form solutions. This 
paper presents an introduction to this approach and two 
specific applications. The paper concludes with some 
discussion of more complicated problems and 
suggestions for future applications and research. 

2. Sample Design 

Sampling statisticians are principally concerned 
with the design of efficient samples. Sample efficiency 
is measured either by cost or precision, given the other, 
and the final sample design often reflects an attempt to 
strike some compromise between the two. An explicit 
solution is available for practically every sample 
design, at least in the context of a single variable of 
interest (Cochran, Hansen et. al., Kish, 1965). These 
solutions either solve for the sample size required for 
specified precision or indicate the precision offered by a 
specific sample size. These solutions can become more 
complicated with additional constraints (e.g., on stratum 
specific sample sizes) or variables of interest. 

The precision of a sample design is usually 
measured by the sampling variance of the statistic of 
interest. Variances are typically controlled by 
stratification and clustering and the effect of these 
techniques are measurable or estimable. The variance 
implications of other design features, such as a 
deviation from proportional allocation or the 
introduction of differential weighting effects are also 
measurable (Kish, 1992). 

The cost of a proposed sample design can be 
measured naively by sample size or through a more 
complex cost function if the appropriate data is 
available. When such data is available at the stratum 
level along with variances, optimal allocation formulas 
may be used (Cochran.) These formulae essentially 
assume a single variable of interest. 

Given the truly multi-variate nature of most 
sample surveys, other techniques are required for more 

complicated and efficient design. Mathematical 
programming has been used to solve the multi-variate 
sample design optimization problem (Bethel, Leaver et. 
al., Valliant and Gentle) and is also appropriate for a 
wide range of other problems encountered in sample 
design (see section 5 for an overview.) 

3. Mathematical Programming 

Mathematical programming problems have the 
following three characteristics: 

1. Decision variables. 
2. An objective function. 
3. Constraints on the decision variables. 

In general, the decision variables are allowed to 
take on any values as needed, subject to certain 
constraints, in order to solve all other aspects of the 
mathematical programming problem. The objective 
function is a function of the decision variables and can 
be either linear on nonlinear. The nature of the problem 
often requires that the objective function be maximized, 
minimized or set to a particular value. The constraints 
are often explicit constraints on the decision variables 
themselves or implicit constraints on other linear or 
non-linear functions of the decision variables. 
Sometimes the decision variables are subject to certain 
reality or practicality constraints. For example, sample 
sizes and sampling rates must be > 0. A general linear 
programming problem might be expressed as follows: 

Decision variables: Xi 

Objective function" MIN(Z K i xi) 

Constraints: Li < xi < Hi 

~ C i x i < Y  

4. Two Specific Applications 

4.1 Two-Wave Sample Allocation Problem 

The Substance Abuse and Mental Health 
Services Administration's (SAMHSA) Alcohol and 
Drug Services Survey (ADSS) used a national 
probability sample of drug treatment facilities. The 
sampling frame for this survey was a list of drug 
treatment facilities maintained by SAMHSA. 
Stratification information was available on the frame, 
however the information was known to be out-of-date 
due to considerable changes in the treatment facility 
population and included missing values that made it 
impossible to assign some facilities to a specific 
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sampling stratum. Seven sampling strata were used, 
with six strata being of analytic interest and the seventh 
sampling stratum containing the facilities with missing 
stratification information. 

Facilities were sampled in two waves. The first 
wave was released in order to obtain sample-based 
estimates of the sampling stratum - actual stratum 
transition matrix. The second wave sample allocation 
was based on the transition matrix and the actual 
stratum target sample sizes. 

This was handled as a linear programming 
problem (specifically, a transportation problem.) The 
problem was expressed in the following linear 
programming notation: 

Minimize: 

Subject to: 

I 
t !  

~ n i  
i=1 

O<ni<N ; 
t t  

nj>_ T"j. 

I 
tt t !  

Where: nj = ~ ni PO 
i=1 

" is the second wave sample size in sampling 
ni stratum i 

,, is the population size in sampling stratum i 
Ni after wave 1 

n~- is the expected second wave sample size in 
actual stratum j 

T) is the required sample size for wave 2 in 
actual stratum j 

P'0 is the wave 1 percent of sampled units in 
sampling stratum i that belong in actual 
stratum j. 

Table 1. Two-wave sample allocation- solution 

Table 1 below gives the solutions we obtained 
for this problem. Note that we could not reach the target 
sample size for actual stratum 1 due to the maximum 
workload limitation (a value less than the population 
size) and the poor relationship between this actual 
stratum and any of the sampling strata. Since we could 
not obtain a feasible solution, we modified the results in 
Table 1 to reach results that were more or less 
acceptable. 

4.2 Three-Dimensional Stratification Problem 

The National Center for Educational Statistics' 
(NCES) Early Childhood Longitudinal S t u d y -  Birth 
Cohort (ECLS-B) will use a national probability sample 
of children born in the year 2001. The sampling frame 
for this survey will be birth registrations available 
through the National Center for Health Statistics 
(NCHS.) Children will be sampled throughout the year 
2001 and on a flow basis as NCHS receives the 
registered births. Detailed data is available on the birth 
certificate, including mother's and father' s 
race/ethnicity, the child's birth weight and plurality 
(single birth, twins, triplets etc.) all of which represent 
specific analytic domains with varying numbers of 
levels and specific precision requirements. Similar 
detailed data was available for previous years and was 
used to estimate the 2001 population. Using each 
domain as an independent stratification variable, the 
sample allocation problem was treated as a multi- 
dimensional stratification problem. Figure 1 provides an 
illustration of our three dimensional problem. A birth in 
the year 2001 Could fall into any one of the thirty cells 
that make up this cube, yet contribute to one level 
within each of three domains. Overall sampling rates 
were required for each of the 30 cells and were 
calculated given target actual sample sizes and expected 
population counts. 

Sampling 
stratum 

(i) 

Maximum 
workload 

603 

600 

463 

598 

1,025 

595 

807 

Actual (n j) 

Sample 
size 

603.0 

600.0 

463.0 

482.9 

819.8 

595.0 

807.0 

4370.7 

2534 

0.58 

0 

0 

0 

0 

0.01 

0.01 

363.8 

374 

0.04 

0.82 

0 

0 

0.01 

0.03 

0.13 

647.1 

374 

Actual stratum (j) 

0.01 

0.01 

0.92 

0.01 

0.03 

0.01 

0.03 

497.6 

374 

0.01 

0 

0 

0.53 

0.09 

0.02 

0.17 

484.8 

374 

0.07 

0.01 

0.07 

0.43 

0.84 

0.27 

0.57 

1597.5 

664 

0.30 

0.15 

0.01 

0.03 

0.03 

0.66 

0.08 

771.9 

374 
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Hispanic 

Black, non Hispanic 

Chinese 

Asian, Pacific Islander (not 
Chinese) 

White, non Hispanic 

Figure 1" Three Dimensional Stratification 

This was handled as a mathematical 
programming problem. The problem was expressed in 
the following mathematical programming notation" 

H I J  
Minimize: Z Z Z nhij 

Subject to: 0 < nhO <- Nho ; 

where 

I J  
ZZnhO 

dh 
~ > - t h  etc. 

is the actual sample size in cell nh O 
ho 

Nh O. is the population size in cell hij 

th,t i ,tj  are the target effective sample 
sizes of levels h, i, j in domains 
H, LJ', and 

dh N 2 nhO. 

etc. are the design effects for 
levels h, i, j in domains H,/,  J. 

Table 2 gives the actual sample size solutions we 
obtained for the thirty distinct sampling strata that result 
from crossing all levels of all domains. Table 3 gives 
the actual and effective (i.e., adjusted for the differential 
weighting effects) sample sizes by level of domain. 
Note that this problem could be extended to practically 
any number of domains with any number of levels. 

Table 2. Three dimensional stratification - solution by cell (n@.) 

Race/ethnicity X birth weight Twins Not twins Total 

Hispanic, VLBW 

Hispanic, MLBW 

Hispanic, NB W 

Black, VLBW 

Black, MLBW 

Black, NBW 

Chinese, VLBW 

Chinese, MLBW 

Chinese, NB W 

API (not Chinese), VLBW 

API (not Chinese), MLBW 

API (not Chinese), NBW 

White, VLBW 

White, MLBW 

White, NB W 

Total 

36.6 

84.9 

88.7 

90.3 

129.6 

91.8 

1.4 

5.7 

5.4 

7.1 

20.3 

17.8 

180.2 

428.0 

481.3 

1,669.3 

182.6 

177.0 

1,397.7 

434.6 

320.9 

1,221.2 
5.4 

19.8 

502.9 

40.7 

81.6 

1,184.9 

615.2 

587.8 

3,966.1 

10,738.4 

219.3 

261.9 

1,486.4 

524.9 

450.5 

1,313.0 
6.8 

25.6 

508.3 

47.8 

101.9 

1,202.7 

795.4 

1,015.8 

4,447.4 

12,407.7 
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Table 3. Three dimensional stratification- solution by level of domain 

Analytic subgroup 

Hispanic 

Black, non-Hispanic 

Chinese 

Asian, Pacific Islander (not Chinese) 

White, non-Hispanic 

Very low birth weight (VLBW) 

Moderately low birth weight (MLBW) 

Normal birth weight (NB W) 

Twins 

Single births and other non-twins 

Actual Wave 1 
completes 

1,968 

2,288 

541 

1,352 

6,259 

1,594 

1,856 

8,958 

1,669 

10,738 

Weighting effect 

(dh etc.) 

1.24 

1.44 

1.00 

1.02 

1.37 

1.00 

1.17 

1.25 

1.05 

1.38 

Effective Wave 1 
completes 

1,590 

1,590 

539 

1,322 

4,572 

1,590 

1,590 

7,156 

1,590 

7,810 

Total 12,408 1.51 8,190 

5. Other Applications 

Mathematical programming solutions have been 
developed for a variety of sample design problems, 
including raking, controlled selection, multi-way 
stratification, overlap control and multivariate sample 
design. Table 4 below provides a cross-reference of 
selected problems and references. 

Raking, or iterative proportional fitting, has been 
treated as a linear programming problem (Arthanari and 
Dodge; Causey, Cox and Ernst), specifically as a 
transportation problem. Controlled selection and multi- 
way stratification have been treated as linear 
programming problems (Causey, Cox and Ernst; Rao 
and Nigam; Sitter and Skinner), with this approach 
offering a nice and previously difficult to obtain 
solution to the controlled selection problem. Overlap 
control has been treated as a linear programming 
problem, with the size of the problem growing rapidly 
with changes in strata and large numbers of units 
(Arthanari and Dodge; Causey, Cox and Ernst). An 
alternative linear programming procedure has been 
proposed to help reduce the size of the overlap control 
problem and may be reasonably optimal in practice 
(Ernst and Ikeda.) Multivariate sample design and 
optimization has been treated as a mathematical 
programming problem (Arthanari and Dodge; Bethel; 
Leaver et. al; Valliant and Gentle), with the nonlinearity 
due to precision related terms either in the objective 
function or in the constraining equations. 

6. Suggested Applications and Research 

Mathematical programming can offer solutions 
to atypical designs, where standard sample design 

formulae are inappropriate. For example, study 
directors often prefer to pick a small number of field 
test PSUs purposively, covering a number of desirable 
properties with each selected PSU. This purposive 
selection essentially eliminates the first stage selection 
probability, which usually ensures desirable sample 
design properties. For example, under PPS sampling, 
the first stage measure of size and the resulting 
probabilities can be used to reflect a PSU's 
concentration of a rare subgroup as well as achieve (at 
least roughly) equal within PSU workloads. In the 
absence of the first stage selection probability, a 
mathematical programming formulation can be used to 
calculate within PSU selection probabilities (e.g., in a 
two-stage design) while controlling the variability in 
within PSU workloads and also the deviation from 
proportional allocation to subgroups. 

Mathematical programming approaches may also 
be useful in developing automatic PSU formation 
software and automatic stratification software. Both of 
these problems could be conceived as binary 
programming problems, given an appropriate objective 
function (i.e., cost or variance) and a number of 
constraints, all functions of the binary decision 
variables. Binary programming problems are notorious, 
however, for their tendency to become extremely large 
very quickly and therefore difficult or impossible to 
solve with most modern computers. The PSU formation 
and stratification problems are no exception to this rule, 
however some of the mathematical programming 
concepts can still prove useful in developing algorithms 
that are relatively optimal. Our work to date at Westat 
on automatic PSU formation software has been very 
encouraging and may be a future presentation topic. 
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Table 4. Mathematical programming problems in sample design and associated references 

Application 
Raking 
Controlled 
Selection/Multi-way 
Stratification 
Overlap Control 
Multivariate Sample 
Optimization 

Arthanari & Causey, Cox 
Dodge Bethel & Ernst 

X X 

X 

X X 

X X 

Reference(s) 
Leaver Rao & 

Nigam 
Sitter & 
Skinner et. al. 

X 

X X 

Valliant & 
Gentle 

X 
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