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In this interesting session on weight calibration, Ralph 
Folsom and Avi Singh and their colleagues at Research 
Triangle Institute (RTI) reported their recent work on 
survey weight calibration for extreme design weights, 
nonrepsonse and poststratification, using a generalized 
exponential model (GEM). Taylor linearization method 
is used to estimate the variance of the calibration 
estimator of a total, T y ,  by expressing the estimator as 

a solution to estimating equations. The proposed 
methods are applied to data from the National 
Household Survey on Drug Abuse (NHSDA). 

The paper by Folsom and Singh introduces the GEM 
model. In Section 2, the adjustment factor for k-th 
sample unit, ak(2) ,  is modelled as a "logit" model 

proposed by Deville and Sarandal (1992). This factor 
satisfies range restrictions (RR), l < a k ( 2 ) < u ,  for 

specified lower and upper bounds l and u. But a 

solution 2n that satisfies the benchmark constraints 

(BC), ~, ,sXkdkak ( 2 c ) - T  x = 0 ,  may not exist, where s is 

the sample, d k is the design weight and T x is the vector 

of known population totals of poststratification 
variables. The logit model is generalized to GEM in 
Section 3 by introducing unit-specific bounds (1 k , u  k ) ,  

k6 s which are grouped into three sets to handle 

extreme design weights. Again a solution 2,, may not 

exist. For poststratification no models are involved, but 
Section 4 introduces superpopulation models for 

coverage bias and nonresponse, and control totals T x 

which are random in the case of nonresponse 

adjustment are introduced ( T  x = T  x for poststrati- 

fication or coverage bias). Assuming ~,~ exists, the 

variance of the calibration estimator T y ( ~ n )  = 

Z~ Yk dk ak (2~) under nonresponse or coverage bias is 

obtained in the paper by Singh and Folsom by 

expanding 7~, (2n) and 7~x (~,~) - T x - 0 around the 

superpopulation parameter 2 ,  assuming 2, converges 

in probability to 2 .  Poststratification is treated as a 

limiting case with /l = 0 and a~ (/l) = 1. In the paper by 

Vaish, Gordek and Singh, the results on variance 

estimation are extended to cover both coverage bias and 
nonresponse adjustment. The paper by Chen, Penne and 
Singh implemented the proposed method on data from 
NHSDA. 

In a recent paper (Demnati and Rao, 2000), we have 
developed a new approach to Taylor linearization 
variance estimation which covers poststratification with 
general ak(2,) of the form a k ( 2 ) =  F(x~2) for some 

F(.); F ( x ) = e  -x gives generalized raking ratio 

weights. Our method is based on representing Taylor 
linearization in terms of partial derivatives with respect 
to design weights d k . It leads to variance estimators 

with good conditional properties and agrees with a 
jackknife linearization variance estimator (Yung and 
Rao, 1996) when the latter is applicable. The method 
covers general calibration estimators of a total, T y ,  as 

well as other estimators defined either explicitly or 
implicitly as solutions of estimating equations; in 
particular, estimators of logistic regression parameters 
with calibration weights. For the general calibration 
estimator of T y ,  it is interesting to note that our 

variance estimator is identical to the Folsom-Singh 

variance estimator, but we do not assume that 2,, 

converges in probability to 2 .  Also, our variance 
estimator is different from the variance estimator 
proposed by Deville and Sarandal (1992) except in the 
case of 0F(x) / Ox - F(x) which is satisfied for the 

generalized raking weights case with F ( x )  = e -x . 

As noted by Folsom and Singh, the proposed 
calibration after winsorization of extreme design 
weights looks appealing, but its asymptotic properties 
are unknown. The validity of the Taylor variance 
estimators will depend on the consistency of the 

solution 2n. 

An alternative to Taylor linearization is to use a 
resampling method such as the jackknife, BRR or 
bootstrap (Rao and Wu, 1988) when applicable. The 
bootstrap or BRR can handle quantiles as well as 
general parameters such as logist regression parameters; 
the Taylor methods of Folsom and Singh are not 
applicable to nonsmooth estimators like quantiles. Also, 
for the case of calibration after linearization of extreme 
weights, a resampling method might be more appealing 
because it applies the same estimation procedure for 
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each pseudo-replicate. The main drawback of a full 
jackknife (e.g., delete one-cluster jackknife for 
stratified multistage sampling) is that the computation 
can become cumbersome when the number of pseudo- 
replicates is large because the calibration weights have 
to be obtained for each pseudo-replicate. To simplify 
the computations, one may use a delete-a-group 
jackknife variance estimator with fewer pseudo- 
replicates, but it can be very unstable. On the other 
hand, the bootstrap variance estimator with the same 
number of pseudo-replicates is more stable than the 
delete-a-group jackknife variance estimator (Canti and 
Davison, 1999). Computation can be further simplified 
by using only a one-step Newton Raphson method with 

/~n as the starting value to get the jackknife adjustment 

factors for each pseudo-replicate. 

I have already noted that a solution '~n that satisfies 

both RR and BC may not exist, if RR is fairly tight. Rao 
and Singh (1997) proposed a "ridge-shrinkage" method 
which is designed to yield a solution by using a built-in 
tolerance specification procedure to relax BC while 
satisfying RR and design consistency. It would be 
worthwhile to explore this method when a solution that 
satisfies both BC and RR does not exist. 

For the case of nonresponse adjustment, Folsom and 
Singh obtained their variance estimator conditional on 
population response indicators. But the contribution 
from the term involving the variance over response 
indicators under the assumed model may not be 
negligible if the sampling fraction is not negligible 
(Shao and Steel, 1999). 

All in all, the four papers presented in this section make 
important contributions to calibration estimation by 
unifying weight calibration for extreme design weights, 
nonresponse and coverage bias/poststratification. 
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