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1 Introduction 

In this paper we study the impact of weight adjust- 
ment factors for nonresponse (NR) and poststratifi- 
cation (PS) on the variance of the calibrated sample 
estimate when adjustment factors are modeled via 
the generalized exponential model (GEM) of Fol- 
sore and Singh (2000) with suitable predictors and 
bounding restrictions on the adjustment factors. Us- 
ing the bias corrected estimating function (BCEF) 
approach of Singh and Folsom (2000), the estima- 
tion problem can be cast in the form of estimating 
equations, which in turn can be linearized to obtain 
sandwich-type variance estimate of the calibrated es- 
timator. The method is applied to the 1999 National 
Household Survey on Drug Abuse (NHSDA), and 
numerical results comparing variance estimates with 
and without adjustments are presented. We use the 
following notations 

U: Finite population of size N 
s*: Selected sample of size n* 
s: Subsample of respondents of size n 
y: Study or outcome variables 
x: Nonresponse (NR) predictor variables 
a: Model parameters associated with x variables 
z: Poststratification (PS) variables 
/3: Model parameters associated with z variables 
Tv: Population total for an arbitrary variable v 
0" An estimator of 0 
d: Design weight (inverse sample inclusion probabil- 
ity) 

Suppose we want to estimate some population pa- 
rameter, say Ty = F__,keU Yk. An estimator of Ty 

is given by T~ - Y]'~kes Yk dk. Generally, design 
weights are adjusted to reduce NR bias; and appro- 
priate PS control totals are used for variance and 

coverage-bias reduction purposes, see Section 6 for 
a list of covariates for NR and PS adjustments. Let 
us assume that fk(a) and gk(/3) denote NR and PS 
adjustment factors, respectively. 

In the presence of NR and PS adjustment factors, 
the estimator takes the following form: 

T,(a,/3) - Z Yk dk fk(a)gk(/3) (1) 
kEs 

where a and /3 can be estimated using well known 
techniques such as raking ratio, exponential or logis- 
tic regression or by the new GEM technique devel- 
oped by Folsom and Singh. They showed that under 
P~1~2 model the estimator (1) is unbiased and the 
calibrated estimator, Ty(&,/3), is consistent where p 
denotes sampling design, {1 and ~2 denote two inde- 
pendent super population models as defined below 

g ( 1  (?~1) --  gk 1 (/3) for each k C U 

where ~1= Number of times the kth unit in U ap- 
pears in the sampling frame, and 

E~2 (r12)- fk l (a)  for each k e U 

where ~2= 1 if the kth unit in U responds and zero 
otherwise. 

Variance Estimation of Ty(&,/)) 

In estimating the variance of 5by(&,~), it is of- 
ten difficult in practice to account for the variability 
present due to the estimation of a and/3. If the es- 
timated values of a and ~ can be treated as fixed, 
one can use standard methods in sampling theory to 
obtain the variance as if the final calibrated weights, 
Wk -- dk f k (6)  gk (/~), were design weights. Clearly, 
& and/~ are not fixed since they are based on the 
sample. Hence it is important to account for their 
variability in the estimation of variance of Ty(&, ¢)). 
To do this, we use the BCEF approach of Singh and 
Folsom. 
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2 C a l i b r a t i o n  E s t i m a t i o n  v ia  B C E F  

Let us denote 

hi (Ty, ct,/3) - E Yk dk fa (~) gk (/3) - Ty, 
kEs 

h2(a) - E xa d a f k ( a ) - -  E Xk dk and 
kCs kCs* 

h3(a,/3) - E Zk dk f k (a )  gk(/3) -- Tz. 
kCs 

Now, for simplicity we assume that a, /3 and Ty 
are scalars. Later on a, /3 and T v will be treated 
as vector valued parameters. Under the joint de- 
sign and super population model, p~l ~2, the estimat- 
ing functions have the following mean and variance- 
covariance matrices 

hi (Ty, ct,/3) ] 
- 

- 

The variance-covariance matrix, V (a,/3), for given a 
and/3 can be estimated using standard methods in 
sampling theory. To solve for Ty, a and 13 we simply 
solve the following equations 

hl ( Ty, ct, /~ ) -- 0 
h 2 ( a )  - 0 

- o 

and get solutions Ty, & and /3. To find the vari- 

ance of Ty(&,¢)) we use the Taylor series method 
and linearize hi - hl (Ty, a, /3), h2 - h2(a) and 

h3 - h3(a,/3) about (Ty, &, ~) and obtain 

( ~ - - c t  " - H  - 1  h2 (ct) 

where the (i, j ) t h  element of H is given by H(i ,  j)  - 
Ohiooj ](~/'y,d,~) , and 01 - Ty, 02 - a, 03 - / 3 .  Note that  

H is not in general a symmetric matrix. 

Using standard techniques in variance estimation we 
get 

V -- ct " H - 1 V  h2(c t )  ( H  - 1 ) '  

_ H - 1  ~r ( H - l ) ,  

where V is obtained by standard variance estima- 
tion techniques, in which & and/3 are plugged in for 
unknown a and/3. 

So far we have assumed that  Ty, a and /3 are 
scalars. In practice, these parameters are vector 
valued. For example, in NHSDA, there are more 
than 20 study variables, 100-260 PS control totals 
and 140-300 predictors for NR adjustment. Suppose 
that  

Ynxr  - [Yl ,  Y 2 , . . . ,  Yr] denotes matrix of r outcome 
variables and the corresponding vector of population 

' - - [ T y  1 T y  2 Ty. ]  totals is denoted by T y  , , . . . ,  , 

X n .  xp - [x1,  x 2 , .  • • , Xp] d e n o t e s  m a t r i x  o f  p predic- 
tor variables used for NR adjustment and the asso- 
ciated parameters are denoted by 

_ 

Z n  x q - -  [Zl ,  Z2, • • • , Zq] d e n o t e s  m a t r i x  o f  q predictor 
variables used for PS adjustment and the associated 
parameters are denoted by/3 '  - [/31, ~2,.. . ,/3q]. 

In this case, the dimension of H matrix will be 
( r + p + q ) x ( r  + p + q ) .  If it is computationally 
prohibitive to invert H then we can use a nonstan- 
dard version of the Inve r se  P a r t i t i o n e d  M a t r i x  
formula. It is nonstandard in the sense that we 
are not trying to find the full H -1 from known in- 
verse of the lower dimensional principal submatrix 
of H. This is so because we are generally interested 
in the variance-covariance matrix corresponding to 
the r outcome variables which is a (r x r) subma- 
trix of H -1 ~r (H- l ) , .  A recursion formula to ob- 
tain the desired variance-covariance is given below. 
Let H (°) = H and V (°) = V. Let v denote the 
u-th recursion step. Consider the following confor- 
mal partition separating the last row and the last 
column. 

H(-) _ _  
o,  ]12 111 

G ~ I )  G~2)  , V - U 2  l(u) U~2)  

where G~.~ ) and U ~  ) are scalar 

matrices. Let H (u+l) = G~I ) - (G~2) G~I))/G~2 ) 

and V (~+1) = [I,-G~.% )/G~.~ )] V(")[I , -G~.~ )/G~.%)] ' 
then the desired variance-covariance is given by 
(H(P+q)) - 1 V  (p+q) [(H(P+q))-I] t. Note that  we only 
need to invert the matrices of order (r x r). Next, 
we discuss variance estimation using the GEM. 
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G E M  C a l i b r a t i o n  A d j u s t e d  V a r i a n c e  
E s t i m a t i o n  for To ta l  E s t i m a t o r s  

Folsom and Singh (2000) introduced an innovative 
approach for calibration of sampling weight for ex- 
treme values, nonresponse and poststratification us- 
ing the GEM. The model for the adjustment factor 
aa of the kth unit in the sample is defined as: 

ak(A~, A2, . . . , Aml(Vl,  V2, . . . , Vm), l, c, u) 

m 
la (ua - c a )  + uk (ca - - l a ) e x p ( A k  Y'~i=l vki £i) 

where 

(ua - ca) + (ca - la) exp  (Aa }-~i~__l vai Ai) 

(uk -lk) 
A a -  ( u a -  ca) (ca-  la)' la < ca < ua, 

Vkl , Vk2, . . .  , Vkm are the m predictor values for the 
kth unit and 

At -- [/~1, )~2 , - - . ,  Am] a r e  t h e  a s s o c i a t e d  parameters. 

For estimating A parameters we refer to Folsom and 
Singh (2000). 

So far we have not assumed any model for NR and 
PS adjustment factors. Next we assume that  fk (a )  
and ga(¢~) follow the GEM and obtain variance- 
covariance matrix of 

(a [2y 2y (a Wy , 1 , , , ' -  , . , • 

To do so, we first write r + p +  q estimating functions 
as given below 

h i ( T y i ,  Ot ,  ~ )  

for i=1 to r, 

Z Yai d a f k  (a )  9k (13) - Ty, 
k C s  

hr+j(c~) - E x k j d a f a ( ~ ) - -  E Xkjdk  
k C s  k C s *  

for j - 1  to p, and 

hr+p+t(c~,¢t) - Z zat da f a ( a )  gk(fit) -- Tz, 
k E s  

for t = l  to q, and where T~ - [Tzl ,Tz2, . . . ,  T~.q] are 
known population control totals for PS adjustments 
and f a ( a )  and ga(¢t) are defined below 

f a (a  ) - a a  (o~l  , O~2, . . . , O~p[ ( x l  , x 2 ,  . . . , X p ) ,  l l  , Cl  , ? t l  ) 

g a ( ) ~ )  - -  aa(~l,~2,...,~q[(Zl,Z2,...,Zq),12,c2,u2). 

Also, let Ala 
Aa(12,c2,u2).  

- A a ( l l , c l , u l )  and A2k = 

We set hi - 0 for i - 1, 2 , . . . ,  (r + p + q) and obtain 
&, /5 and T ~ ( & , ~ ) .  Now the variance-covariance 
matrix of the estimated parameters is given by 

V ~ - c z  - H - I V  h2 (cz) ( H - l )  ' 

- / 5  h3 (cz, 13) 

- H - l ~ r  ( H - l )  ' 

where 
h ' l  = [ h l , h 2 , . . . , h r ] ,  
h '2  = [ h r + l ,  h r + 2 , . . . ,  h r + p ] ,  

h'3 = [h~+p+l, hr+p+2, . . . ,  hr+p+q], 

H -  H21 H22 H23 
H31 H32 H33 

and H l l  is (r x r), H22 is (p x p) and H33 is (q x q) 
matrices. The analytic expression for H may seem 
to be tedious but as shown below, it is fairly simple 
and follow certain patterns. The components of H 
matrix are defined below 

H l l -  0 5 1 ( W y , a , / 3 ) l  = - I ( r x r )  (%,a,3) 

H12 - 0 -~  h i  (Wy,  o~, ~)](Ty,{:~,~) -- y t  X*  

- , ~ ) l (Wy, (~ ,~ )  = Y '  Z* n l a  o-~ hi  (Wy, c~ 

o h2(a) l  - O(p × r) H21 - ~ (d~) 

- - X '  X**  H22 0-~ h2 (c~) I((~) 

H23 - 0-~ h2(c~)l((~) - O(p x q) 

_ o h 3 (a  /3)1 - O(q x r) H31 ~ , (~,/)) 

o h 3 (a  /3)1 = Z 'X*  H32 - -  ~ , ( ~ , ] ~ )  

H33 - o -~  h3(cz ,  # ) l ( a , / 5 )  = Z' Z* 

where 
X*(k, j) = X ( k , j )  dk 9k(tb) Dik  

X** (k, j) - X(k, j )  dk Dik  

Z*(k, j )  = Z (k , j )  dk fk(o~) D2k and 
D l k  = D k ( O ~ l , O ~ 2 ,  . . . , O ~ p l ( X l , X 2 ,  . . . , X p ) , l l , C l ,  U l  ) 

D2k = Dk(/31,/32,...,~ql(Zl,Z2,...,Zq),12,C2,U2) 
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and 

D k ( / ~ l ,  /~2, . . . , ,~ml(V1,  V2,  . . . , V m ) ,  l, c, lt) - -  

(uk - lk) (Ck -- lk) (Uk -- ck) Ak e x p ( A k  E i % l  Vki ~i) 

[(uk - ck) + (ck - lk) e x p ( A k  Ei~=l vki )~i)]2 

Note that  the H matrix involves d , /3 ,  and is there- 
fore computable, whereas the covariance matr ix V 
involves the unknown parameters c~ and /3, which 

^ 

are replaced by it and /3  to get an approximate an- 
swer. 

G E M  C a l i b r a t i o n  A d j u s t e d  V a r i a n c e  
E s t i m a t i o n  for R a t i o  E s t i m a t o r s  

Suppose we are interested in finding the variance of 

/~i = ¢y~(d~,~) for i=1 to r. The estimating equa- 

tions in this case can be written as 

E Yki dk f k ( ( ~ ) g k ( ~ )  
kEs kGs 

= 0 

for i=1 to r, 

xk j  dk f k (c~) - ~ xk i  dk - 0 
kCs kEs* 

for j = l  to p, and 

zkt dk fk((~)  gk (~ )  - T~., 
kCs 

- 0  

for t=  1 to q, and T,.,, fk (c~), and gk (fl) are defined in 
the previous section. The components of H matr ix 
for estimating functions corresponding to the esti- 
mating equations given above are defined below 

HII ( i )  - - E  b'ki dk f k (o~)gk ( f l ) ,  i - -1 to r where 
kCs 

-- ~ '  X* H13 H l l  is a diagonal matrix, H12 , - -  

- -  Z ~ ~ '  Z*, H22 - X'  X**, H32 - Z' X*, H3a Z*, 
and H21, H2a, H31 are null matrices, and ~I, = 
[(Yl - / ~ l X l ) , . . . ,  (Yr - /~rx~)] .  The sandwich vari- 
ance of /~i ' s  can now be obtained by using results 
described in the previous section. 

5 S A S - I M L  M a c r o  

To obtain sandwich variance a SAS-IML macro was 
developed and is currently being used at RTI. It re- 
quires several parameters as described below 

i n d a t a :  input data set of respondents and nonre- 
spondents  

y-var :  list of study variables 
d o m n - v a r :  list of domain variables for ratio esti- 
mates 
x - n o n r s p :  list of NR predictor variables 
x - p s t s t r :  list of PS adjustment variables 
1-nonrsp ,  c - n o n r s p ,  u - n o n r s p :  lower, center and 
upper bounds for NR adjustment factor 
1-ps ts t r ,  c - p s t s t r ,  u - p s t s t r :  lower, center and up- 
per bounds for PS adjustment factor 
w-des ign :  design weight 
w - n o n r s p :  NR adjustment factor 
w - p s t s t r :  PS adjustment factor 
r e s p - i n d :  response indicator variable 
v -s t r :  s t ra tum variable 
v - rep :  replicate within s t ra tum variable. 

In our experience the macro is easy to use and 
takes only few minutes on a PC equipped with Pen- 
tium III-450 Mhz chip with 128 Mb of RAM for large 
data sets such as that  for NHSDA. 

6 A p p l i c a t i o n s  to  t h e  N H S D A  

We demonstrate the methodology for the East South 
Central (AL, MS, KY, TN) Census Division. The 
data is taken from the 1999 NHSDA. We used 96 
predictors for PS adjustment,  and 138 for NR ad- 
justment. Total size (respondents and nonrespon- 
dents) of the data set was 4664 and there were 3688 
respondents in the data sets, see Chen, Penne, and 
Singh (2000). 

P r e d i c t o r s  for t h e  N R  a d j u s t m e n t "  Typically, 
we use State/region, quarter,  group quarters indica- 
tor, population density, % Hispanic in segment, % 
Black in segment, % owner occupied dwelling units 
in segment, and socio-economic status indicators, 
age group, gender, race, Hispanicity, relation to head 
of household and various interaction terms. 

P r e d i c t o r s  for t h e  P S  a d j u s t m e n t :  Predictors, 
typically, used are State/region,  age, race, gender, 
Hispanicity, quarter, and the model consists of main 
effects and some interactions of these predictors. 

We compute three Taylor-type variance estimates 
(i) accounting for the nonresponse and poststratifi- 
cation (ii) accounting for poststratification only and 
finally (iii) the unadjusted variance estimates. If 
the estimator is a ratio (such as the drug prevalence 
rate) then the unadjusted variance estimate consid- 
ered here does take into account for the nonlinear 
nature of the statistic by using residuals obtained 
by linearizing the ratio estimator. This is so even if 
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the denominator (representing a domain total) be- 
comes constant after PS adjustment. In Table 1, 
the suffixes FLAG, YR, MON denote lifetime, year 
and monthly usage respectively, and prefixes ALC, 
CIG and MRJ and COC denote Alcohol, Cigarette, 
Marijuana and Cocaine respectively. The data in 
Table 1 represent the percent relative standard er- 
rors (standard error/estimate) for the chosen drug 
recency variables. We use similar notations in Table 
2. The data in Table 2 represent the percent relative 
standard error for the ratio estimators of the chosen 
drug recency variables. 

In Table 1 and Table 2 the numbers in the un- 
adjusted row are based on SUDAAN variances, as- 
suming that fk(&)'s, gk(/~)'S are fixed and do not 
contribute to the variances of the estimators i.e. 
we treat dk fk(&),gk(~) as the basic design weight. 
The numbers in PS-adj and NRPS-adj rows are ob- 
tained by the methods described in Sections 3 and 
4. The PS-adj row corresponds to the assumption 
that fk(&)'s are fixed and do not contribute to the 
variances of the estimators. Whereas the numbers in 
the NRPS-adj row do not assume that  fk(&)'s and 
gk(/))'s are fixed and hence their contribution to the 
variance is accounted. 

The numerical results given in this section show 
that the variance estimates are remarkably stable 
and, in general, show gains in efficiency after cal- 
ibration. It may be noted that if there are too 
many parameters, then the sandwich variance may 
become unstable and may be more than the unad- 
justed variance. With nonresponse adjustment, we 
generally expect that  the variance may go up al- 
though the variance inflation due to random con- 
trols (corresponding to predictors used in NR ad- 
justment) may be offset by the correlation between 
the outcome and predictor variables. Also, after the 
poststratification adjustment we expect the variance 
to go down because the controls are nonrandom and 
the corresponding predictors are expected to be well 
correlated with the outcome variable. 

The variances were computed using the standard 
methods in sampling theory based on treating PSUs 
as iid. In the 1999 NHSDA, there are 12 strata 
or Field Interviewer regions per small state, each 
having two (pseudo) PSUs defined by grouping four 
segments-one from each quarter. Since the number 
of PSUs is not that large compared to the number of 
parameters, it suggests that  the degrees of freedom 
available for variance estimation is probably more 
than the total number of PSUs minus the number 
of strata; which is 4(24-12)=48 for the East South 
Central Census division. Although the notion of de- 

grees of freedom with survey data is still not well 
understood, it is conjectured that the effective sam- 
ple size might be a better starting point for assessing 
the available degrees of freedom. 

7 Final  R e m a r k s  and Future  Research  

The main points are listed below. 
• Although the H matrix looks complicated but it 
follows a nice pattern and can easily be calculated 
and inverted by using SAS IML. 
• Even with a large number of predictor variables 
used in calibration, the variance estimates adjusted 
for calibration seem remarkably stable and, in gen- 
eral, show gains in efficiency after calibration. 
• The BCEF methodology is very general and can 
easily be adapted to other types of calibration tech- 
niques. 

In future we plan to do a validation study by com- 
puting resampling variance estimates using Jack- 
knife and compare the results with the BCEF ap- 
proach based on the Taylor method. It may be noted 
that  the Jackknife method for obtaining adjusted 
variance could be quite tedious for large data sets, 
and with somewhat elaborate NR/PS models. 

A c k n o w l e d g m e n t s :  This work is partially sup- 
ported by Substance Abuse and Mental Health 
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Table 1- Comparison of Percent Relative Standard Error for Different Types of Calibration Adjustment in Taylor 
Variance 

Drug Recency 

ALCFLAG 

ALCYR 

ALCMON 

CIGFLAG 

CIGYR 

CIGMON 

MRJFLAG 

MRJYR 

MRJMON 

COCFLAG 

COCYR 

COCMON 

Type 

Unadjusted 

PS-adj 

NRPS-adj 

Unadjusted 

PS-adj 

NRPS-adj 

Unadjusted 

PS-adj 

NRPS-adj 

Unadjusted 

PS-adj 

NRPS-adj 

Unadjusted 

PS-adj 

NRPS-adj 

Unadjusted 

PS-adj 

NRPS-adj 

Unadjusted 

PS-adj 

NRPS-adj 

Unadjusted 

PS-adj 

NRPS-adj 

Unadjusted 

PS-adj 

NRPS-adj 

Unadjusted 

PS-adj 

NRPS-adj 

Unadjusted 

PS-adj 

NRPS-adj 

Unadjusted 

PS-adj 

NRPS-adj 

Overall 
1.94 

1.55 

1.47 

3.18 

3.55 

2.47 

4.58 

5.79 

3.46 

1.99 

1.67 

1.64 

4.38 

4.49 

3.88 

4.43 

4.52 

3.93 

3.48 

2.98 

2.60 

6.81 

6.88 

6.29 

14.06 

10.76 

10.73 

10.33 

9.84 

8.80 

21.73 

19.90 

17.69 

40.27 

31.71 

35.34 

12-17 
4.43 

4.10 

4.18 

4.94 

4.51 

4.58 

7.56 

6.75 

7.19 

4.57 

4.15 

4.15 

5.55 

5.49 

5.31 

6.68 

7.15 

6.71 

7.36 

7.20 

7.05 

8.81 

8.63 

8.58 

14.20 

16.03 

13.70 

20.94 

30.77 

20.84 

29.26 

42.94 

27.49 

48.05 

86.07 

43.91 

Age Group 

18-25 
2.23 

2.16 

2.00 

3.54 

3.28 

3.12 

5.02 

4.31 

4.14 

2.28 

1.96 

1.79 

3.84 

3.75 

3.47 

4.31 

4.18 

3.94 

4.36 

3.88 

3.77 

6.59 

6.55 

6.24 

10.78 

10.34 

9.76 

12.12 

11.41 

11.00 

15.60 

15.34 

14.81 

37.18 

35.12 

32.83 

26-34 
1.76 

1.70 

1.65 

3.83 

3.77 

3.47 

6.24 

5.31 

5.16 

3.05 

3.06 

2.88 

7.14 

6.16 

6.10 

7.83 

6.51 

6.48 

5.30 

4.83 

5.00 

16.57 

16.89 

16.37 

21.51 

21.38 

21.94 

11.86 
9.81 

9.11 

31.12 

30.31 

29.38 

51.27 

48.54 

54.87 

35+ 
3.03 

2.46 

2.31 

5.30 

6.23 

4.35 

6.77 

9.54 

5.32 

2.95 

2.52 

2.49 

7.37 

7.16 

6.51 

7.20 

7.11 

6.38 

6.16 

5.16 

4.21 

17.02 

18.31 

17.30 

51.12 

37.53 

35.54 

16.25 

16.10 

14.06 

48.08 

45.81 

38.87 

86.13 

79.65 

74.07 

Table 2: Comparison of Percent Relative Standard Error of Ratio Estimators for Different Levels of Calibration Adjustment in 
Taylor Variance 

Ratio of Population Totals of 

ALCFLAG CIGFLAG 

MRJFLAG CIGFLAG 

COCFLAG CIGFLAG 

COCFLAG MRJFLAG 

Type 

Unadjusted 

PS-adj 

NRPS-adj 

Unadjusted 

PS-adj 

NRPS-adj 

Unadjusted 

PS-adj 

NRPS-adj 

Unadjusted 

PS-adj 

NRPS-adj 

Overall 
1.61 

1.57 

1.58 

4.04 

3.23 

3.06 

10.38 

9.39 

8.81 

9.11 

8.60 

8.07 

12-17 

4.69 

4.47 

4.39 

6.63 

6.60 

6.08 

20.16 

22.15 

20.11 

20.63 

22.53 

21.15 

Age Group 

18-25 
2.17 

2.20 

2.13 

3.64 

3.47 

3.36 

11.99 

11.39 

11.06 

12.11 

11.68 

11.30 

26-34 
2.96 

2.96 

2.97 

5.62 

4.81 

4.91 

11.10 

8.58 

8.26 

9.89 

7.85 

7.20 

35+ 
2.40 

2.37 

2.34 

6.58 

5.10 

4.58 

16.36 

15.08 

14.19 

14.52 

13.51 

12.90 

621 


