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1. Introduction 

We consider the problem of finding a Taylor 
linearization variance estimator of the poststratified or the 
general calibration estimator such that four goals, 
somewhat analogous to those of S/~mdal, Swensson, and 
Wretman (1989), are met. These are : (i) the variance 
estimator should be consistent under a joint design-model 
distribution, i.e., in a quasi-design based framework, (ii) 
should have a single form with general applicability, (iii) 
the model postulated for the quasi-design based 
framework should be driven by the real need for unbiased 
point estimation, and (iv) should be expected to have 
sensible conditional properties under a conditional 
inference outlook whenever it can be suitably defined. 
By way of notation define a finite population U from 
which a sample of size n is selected using the design 
p(s). Denote the data by (Yk, Xk, dk), k c s, where for the 
k th unit in the smnple, Yk is the study variable (considered 
scalar here for simplicity), x k is a p-vector of covariates 
or predictor variables; and d k is the design weight. Now 
consider a simple example of the often recommended 
Taylor linearization variance estimator of the ratio 
estimator (a simple type of poststratification (ps)) for 
domain or area a. The population total estimator is given 
by (the symbol k c a is used to denote the membership of 
the unit k in the population domain a) 

f'ya, ratio = ( Tya /Na ) N  = " ~ Y k l k ~ 4 g k  (1.1) 

where Ty~ = ~ y k l k ~ 4 ,  ~ = ~s 4 I ~  , N = ~ v l k ~ ,  

gk = N / A ) ,  and the variance estimate Pr~.o,g is 

( N ~ / ~ )  2 ~'(Ty-R,~)IR__~= ;(~seklk~,dkgk) (1.2) 

where ek = yk = t~y, Xk, l~y, = f'y /1V . 

In the above, P denotes the design-based variance 
estimator. The standard Taylor linearization variance 
estimator ( Cochran, 1977, p. 135), on the other hand, is 
given by 

(1.3) 

i.e., here the g-weight (= N / / V  ) or the ratio adjustment 
factor is not used to adjust the design weight d k in the 

linearized estimator. In the sequel, we will refer to (1.2) 
as the g-weighted variance estimator while (1.3) as the 
standard variance estimator. 

If there is no coverage bias, then under regularity 
conditions (see e.g., Isaki and Fuller, 1982) the 
estimator Vratio,g is design-consistent. It has a single but 
general form of variance applicable to the class of 
generalized raking estimators, and is expected to have 
reasonable conditional properties ( Rao, 1985) in that 
unlike l~ra,o, it is sensitive to whether or not the realized 

is near its expectation N ,  i.e., the variance 
estimator gets inflated if it is below the expectation and 
deflated otherwise; this is clearly a desirable feature. To 
justify the use of the factor gk in the g-weighted variance 
estimator, a model expressing the relation between the 
study variable (y) and the auxiliary variable (x) is 
postulated to get guidance in choosing among a multitude 
of design-consistent variance estimators. S/~rndal et al. 
(1989) use a regression superpopulation model (for the 
present example it is simply a domain-specific constant 
mean model) to show that the g-weighted variance 
estimator unlike the standard estimator has the important 
property of being approximately model unbiased. This is 
often termed as a model-assisted approach. On the other 
hand, Royall and Cumberland (1981) using a pure 
model-based approach in the context of simple random 
sampling also obtained a variance estimator only slightly 
different from the g-weighted estimator. An alternative 
justification of the use of the g-weighted variance 
estimator was given by Yung and Rao (1996) by showing 
that it is identical (under the commonly made assumption 
of with replacement selection of clusters or PSUs) to the 
linerarized jackknife variance estimator, and using the 
fact that jackknife variance estimator is known to have 
good conditional properties as demonstrated by Royall 
and Cumberland (1981). Note that the term linearization 
of the jackknife signifies that the nonlinear random part 
in the estimator arising from the pseudo-replicated 
subsample is linearized about its full sample counterpart. 
Incidentally, the well known SUDAAN software also 
calculates the Taylor variance of the ratio estimator using 
the g-weighted variance estimator. 

Despite the popularity of the g-weighted variance 
estimator, there is still uncertainty among the practitioners 
regarding its use because of the speculative nature of the 
superpopulation model used as a guide to choose among 
the variance estimators. Deville (1999) describes the use 
of g-weighted variance estimator for superior 
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performance as a mystery. The main purpose of this 
paper is to provide a simple realistic justification of the 
preference of the g-weighted variance estimator by 
arguing that there is indeed a need of a suitable model for 
unbiased point estimation under the joint design-model 
distribution when ps is viewed as adjusting for the 
coverage bias reduction. Note that ps is often used in 
practice in the dual role of both variance and coverage 
bias reductions. In the sequel, we use the term ps for 
coverage bias adjustment. However, this definition is 
quite general in that the case of no coverage bias can be 
obtained as a special case by letting the bias tend to zero. 

In this paper we approach the problem of variance 
estimation adjusted for coverage bias (via ps) by using the 
conceptual similarity to the variance estimation adjusted 
for nonresponse(nr) bias, results for which are well 
known. To this end, it is observed that use of calibration 
equations for nr and ps adjustments leads quite naturally 
to the nonoptimal estimating function (EF) framework 
introduced by Binder (1983) for variance estimation for 
finite population parameters under a quasi-design based 
framework, i.e., under the joint superpopulation model 
and design-based distribution, and the optimal EF 
framework introduced by Godambe (1960) and Godambe 
and Thompson (1989) for finite or infinite population 
parameters. In view of the superpopulation model 
required for correcting coverage bias or nr or both, we 
therefore propose a bias corrected estimating function 
(BCEF) approach under a quasi-design based framework 
for estimating variance adjusted for ps or nr or both. The 
BCEF are functions of data including design weights, 
finite population parameters, and parameters in the 
modeling of adjustment factors (g-weights) for bias due 
to nr and coverage errors. The proposed approach is 
based on a simple idea, and has been used implicitly by 
Folsom (1991) in the context of nonnresponse bias 
adjusted variance estimation, but the authors are not 
aware of its use in the context of coverage bias 
adjustment. Section 2 first provides a review of variance 
estimation adjusted for nr, and then a motivation for the 
proposed method of variance estimation adjusted for ps 
using similarity with the problem of adjustment for nr. 
The BCEF method is described in Section 3. It is shown 
that (i) ps has the dual property of variance reduction as 
well as bias reduction because both objectives give rise to 
the same set of estimating equations, (ii) by linearizing 
the EF about the estimated bias-model parameters, one 
obtains a simple direct justification of why g-weights 
should be used in variance estimates adjusted for 
calibration; earlier justifications come from 
model-assisted and empirical considerations, and (iii) the 
variance estimator advocated by Deville-S~irndal (1992) 
for the generalized raking estimators can be justified for 
a subclass having exponential-type adjustment factors. 

Note that the above observations can also be made by 
considering directly the calibration estimators (rather than 
EF) and linearizing them about the true bias-model 
parameters. However, for multivariate or complex 
nonlinear estimators, BCEF is expected to offer a simpler 
framework. Moreover, using properties inherent to EF, it 
is further shown that (iv) although, asymptotically the 
calibration estimator is unique only up to a constant 
multiple tending to unity, and so is the variance 
estimator, the finite sample Godambe optimality of EF 
(analogous to score functions) does provide a unique 
estimator (analogous to mle) whenever it exists, and (v) 
for the general multivariate case, the calibration-adjusted 
variance estimate can be obtained by a simple 
sandwich-type formula (analogous to the inverse of the 
information matrix) which is relatively easy for computer 
automation. Illustrative examples are presented in Section 
4. Finally, Section 5 contains a brief summary. 
2. Review and Motivation 

It would be useful to review variance estimation 
adjusted for nr because of the conceptual simi'larity 
between the problems of variance estimation adjusted for 
the nr bias, and adjusted for the coverage bias, and the 
fact that the g-weight (in the form of nr adjustment factor) 
does show up in the variance estimation adjusted for nr 
under the joint design-model distribution. Based on this 
observation, it follows that handling coverage bias via ps 
would indeed require a model to achieve design-model 
unbiasedness of the bias-adjusted point estimator (recall 
objective (iv) mentioned in the introduction), and that the 
g-weights would appear naturally in the variance 
estimator. Thus we are borrowing ideas from methods to 
deal with the nr problem to the problem of coverage bias. 
It may be of interest to note that ever since the publication 
of the seminal paper on calibration estimation (viewed as 
a general form of ps) by Deville and S~imdal (1992), 
research efforts have been among others to take the 
reverse route, i.e., to try to use calibration methods for the 
purpose of nr adjustment. However, in the process the 
coverage bias reduction aspect of ps has apparently been 
overlooked. Selected papers on the use of calibration 
methods for dealing with nr are due to Folsom (1991) 
who used the raking (traditionally used for ps) idea to fit 
the inverse logistic model for nr adjustment, thus ensuring 
that the adjustment factor is at least 1; Fuller, Loughin, 
and Baker (1994) used the usual regression model with 
known totals from external sources to adjust for both nr 
and ps; Singh, Wu, and Boyer (1995), similar to Folsom 
(1991), proposed a raking-type calibration method for the 
inverse logistic nr model except that the unit-level 
information for the nonrespondents was not deemed to be 
available, and instead the calibration feature of the 
estimating equations was exploited to use external 
controls obtained from alternative sources such as census 
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or administrative data; and Lundstrom and Sarndal (1999) 
proposed use of a single common regression model with 
full sample level controls used for nr and census -level 
controls for ps. The recent paper by Folsom and Singh 
(2000) also describes a new calibration method which 
provides a unified approach of weight adjustment for 
extreme values, nr, and ps. 

In this paper, as mentioned above, we turn to ideas 
used for point and variance estimation in the presence of 
nr to deal with the problem of coverage errors. To this 
end, we first review the calibration approach to 
nonreponse bias adjustment. It is assumed that specific to 
the survey objectives and conditions, we can assign a 
random variable 8ktaking values of 1 or 0 for the 
response indicator to each unit in the finite population. 
Thus we suppose a superpopulation model ~l for the 
response indicator for eack k in U, given by 

glk (Xl), P~ (kth unit in U responds) = -1 (2.1) 

which i n ,  lies that the adjustment factor is inverse of the 
response propensity, and the adjusted 
estimator~sYkdkgl~(kl), based on the respondent 
subsample s,  becomes unbiased for Ty under the joint 
p{,- distributio 9. For the inverse logistic model 

g~k(k) = 1 + e-x k x~ (which ensures that the adjustment 
factor is at least 1). Folsom (1991) proposed to use the 
estimating equation for estimating k, 

-X/kkl ~ Yk dk ( 1 + e ) = Tx (2.2) 

where ~ denotes random controls obtained from the full 
sample. The above equation can be solved by the usual 
raking method used for ps. A similar adjustmem was also 
proposed by Singh, Wu, and Boyer (1995) in the context 
of nr with longitudinal surveys where for some covariates 
the unit-specific information for the nonrespondents and 
hence the control total T was not available. They 
suggested to replace Tx by a reasonable alternative set 
of nonrandom values T obtained from some other 
source. Note that the above approach for nr is clearly 
similar to the calibration for ps except that the adjustment 
factor is restricted to be at least 1. Now using the idea of 
sandwich-type variance estimation for estimators of finite 
population parameters via estimating functions as 
pioneered by Binder (1983), Folsom proposed an 
equivalent version in terms of residuals as in the case of 
generalized regression estimators. This variance estimate 
can also be derived directly by linearizing the estimators 
Ty(~,,), and ~(~.,) about k I as follows. Since 

we have, Ty (~'l)given by 

~]s Yk dkg,k(i , )  = Ty (X,) - H,2(X,) H22'(~.1) (Tx(X,) - T.v~ 
(2.3) 

where Hl2(kl) = - ~sYk dk (0 glk(kl)/Okl )/ 

H22(~'1 ) = - ~]'s Xk dk (O glk(~'l)/O ~'l )/" 
Therefore, 

Ty(X, ) = ]C ekd~,k(~.,) + B(X,) ~ ,  (2.4) 

where e k are the residuals Yk-  B(kl)xk, and 
B0v~) = Hl20vl) H221(~q) • 

Now the Taylor linearized variance estimate of the nr 
adjusted point estimator can be obtained from standard 
methods in survey smnpling. In fact, the design variance 
is conditional about ~2 U Yk 8kglk(kl) given ~1, and the 
second term in the unconditional variance about 
T = ~ u  Yk is negligible by comparison under regularity 
conditions. Note that k~ is replaced by its consistent 
estimate ~,~ in the variance expression obtained from the 
right hand side of (2.4). The above linearization (2.4) is 
useful for interpretation in that the residuals ek are 
expected to have less variability than Yk due to correlation 
between y and x, and so a net variance reduction is 
expected to be realized, in general, despite additional 
variance due to the presence of the g-weights and the 
random controls T .  Here, we wish to emphasize the 
presence of the g-weights, i.e., &(k) in the expression 
(2.4) which gives rise to the g-weighted variance 
estimator. The alternative but equivalent variance 
estimate obtained as a sandwich (see next section) using 
EF as mentioned in Section 1 has a simple but general 
form, and is more amenable for automation. 

Similarly, for ps, if we postulate a model (~2)  for 
coverage bias in the sense that for each k in U, 

E~2 (# times the kth unit in U is enumerated) 
-1 

= g2k (~2), (2.5) 
then as in the case of nr we will naturally get the desired 
g-weighted Taylor variance estimator. In the model (2.5), 
it is assumed that each unit k in U corresponds to a 
realization of a random variable qk (taking nonnegative 
integer values) defining the number of times the unit is 
listed or enumerated, and the model gives its expected 
value. The problem of undercoverage is quite common 
due to outdated frames for which rlk takes the value of 0 
while the problem of overcoverage might arise due to 
multiple listings, e.g., children may get listed both at their 
homes by parents as well as in the dorms in which case 
qk is at least 1. Thus the expectation of qk may be more 
or less than or equal to 1. For adjusting for both nr and 
coverage biases, we can postulate two independent 
superpopulation models ( ~1, ~2) such that under the joint 
p ~  ~2-distribution, the adjusted estimator is unbiased, 
and then the standard linearization gives rise to the 
appropriate g-weighted variance estimate. This is the 
motivation for the method proposed in the next section. 
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3. The Proposed Method 
The calibration equations used in estimating k- 

parameters of the superpopulation models defined in the 
previous section give rise to a set of bias corrected 
estimating functions (these are functions of data including 
design weights, finite population parameters, and 
parameters in the modeling of bias adjustment factors) 
with mean zero and appropriate covariance that can be 
consistently estimated under the P~I ~2 -distributi°n" In 
fact, along the lines of the argument mentioned in the 
previous section, only the design-based variance 
estimation is sufficient for consistent estimation, and this 
is usually given by a conservative approximation under 
the assumption of with replacement selection of first 
stage units. The above defines a semiparametric (in the 
sense of first two moments) finite population model in a 
quasi-design based framework from which estimators and 
their variances can be obtained analogous to the 
framework of score functions derived from the log- 
likelihood. However, unlike score functions (whose 
dimension matches the number of unknown parameters), 
there may be more (elementary) estimating fimctions than 
the number of parameters. This could happen in the case 
of panel data where several panel specific estimating 
functions may contain the same set of parameters. 
Godambe and Thompson (1989) provide an optimal 
method for combining elementary estimating functions. 
The estimating function approach is quite appealing in 
practice because like maximum likelihood estimation and 
information matrix obtained from score functions, it 
provides a simple but general formulation of point and 
variance estimation. This is the approach we take for the 
proposed method of BCEF to obtain Taylor linearization 
variance estimates. Note that the resampling methods 
provide an alternative method for variance estimation, but 
they may be computationally tedious for large data sets 
involving a large number of parameters in nr and 
coverage bias models which need to be estimated for each 
resample. 

For the problem under consideration, the number of 
estimating functions is equal to the number of parameters, 
and so we don't need to consider the problem of 
combining elementary estimating functions. All we need 
is to define the sandwich matrix (analogue of the 
information matrix) for Taylor variance estimation by 
linearizing the estimating functions. We consider BCEF 
for coverage bias. The case for for both nr and coverage 
biases is analogous. 

3.1 BCEF for Coverage Bias Adjusted via 
Poststratification 

Under the p~z-distribution, we have unbiased 
estimating functions hy (Ty, X2) , h x (X2) defined by 

• = (3.1) 
hx(~2) ~s xk dk g2k(~'2 ) - 
The semiparametric finite-population model for 

estimating the population total Ty where ~'2 are the 
nuisance parameters, is now approximately given by 

/ \ 

/hy(T'  )~2)/hx(X2) --~ (0, Vh(~,2) ), (3.2) 

where Vh(k ) is a design-consistent estimate of the P~2- 
covariance matrix of the vector of estimating functions. 
Now linearizing the h-functions about ~ and ~'2, we get 
(note that unlike the estimators, the EFs are linearized 
about the model parameter estimates and not the 
parameters), 

}2sXkdkgzk(X2)- Hzl(i2) H22(~2)) i2-;< 2 
(3.3) 

where HI~, H12 , H21 , H22 are the partitioning submatrices 
of the negative Hessian H. In this case, H~=I, H21=0, 

and others are defined as in (2.20. We have 

g -~ = (3.4) 
(0 H; 1 ) 

Therefore, < (22) - T is approximately 

} 
(~s  xk dkg2k(k) - 

It follows that the Taylor variance estimate of if" can be 
approximated as a sandwich-type variance V(< (Yi 2)) and 
i~ given by 

t 1 -H12(~2)H221(i2 )) Vh(i2)(1- H12(i2)H221 (i2~'3.6) 

Clearly the above variance estimate is g-weighted because 
Vh(X ) is. In view of the correlation between y and x, we 
expect a net variance reduction in the g-weighted variance 
estimator despite variance inflationary effect due to the 
presence of the g-weights; see also the comment below 
(2.4). Also observe that If y is replaced by x, then the 
poststratified estimator reproduces T x perfectly, and its 
variance should be zero. This is indeed the case with the 
sandwich variance (3.6). To check this, note that in the 
conformally partitioned matrices, 

( )  (v,2) Hi1 Vl H12 , V = l 
m = 021 H2 2 V21 V22 , 

when y = Xl, the first x-variable (say), H~1 is simply the 
(1,1) element ofHz2 , H~2 is the first row ofHz2 , and Hzl is 
the lS' column of H22. Similar relationship exists in the 

_ 

submatrices of V. It follows that H~2H221 reduces to the 
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row vector (1, 0, ..., 0),  and the sandwich variance (3.6) 
degenerates to zero. 

If there is no coverage bias, then k2 =0, and gzk (~.)=1, 
and the Taylor expansion (3.3) can still be justified in the 
limiting sense as ~2 -* 0 using continuity of the EFs. Note 
that we need this limiting argument because if we set 
k2--0 in the left hand side, the g-weights disappear from 
the EFs. However, theoretically it is valid to leave 
g2k(~2) in the variance estimate Vh(~.2)because g2k(~2) "-' 1 
(in p-probability) uniformly in k under regularity 
conditions. This would be beneficial if g2k(~.2) is not 
close to 1 or if there is some doubt about the coverage 
bias. In addition g-weighted variance estimator is known 
to have good conditional properties. The above gives a 
heuristic justification why use of g-weights in the 
variance estimate should lead to good empirical results in 
practice even when the objective is not coverage bias 
reduction. 

Moreover in the absence of coverage bias for the 
class of generalized raking estimators, Deville and 
Sgrndal (1992, equation 3.4) advocate not only use of the 
g-weighted variance estimator involving residuals e k 
(equivalent to the sandwich variance), but also use of 
somewhat different residuals defined as 

ek = Yk 
Hl~S0~2)~ Z YkX/k dk &k0~2 ) , ,  - 

L&~ / ~. . 
H22 (k:,): F.,sXtX kdkg21,( 2) 

The residual version of the sandwich variance (3.6) does 
DS not give rise to the residuals ek because of the 

difference in H-matrices defined as in (2.3). It is easily 
seen that the two versions coincide if 
Og2k(~.2)/O~.2 = g2k(~.2)Xk, i.e., the adjustment factor is of 
the exponential type. So for the subclass of generalized 
raking methods involving exponential type adjustment 
factors, ( e.g., the usual raking), the proposed BCEF 
approach provides a direct theoretical justification of the 
Deville-S~imdal's suggestion based on model-assisted 
considerations. However, for nonexponential-type 
adjustment factors such as the generalized regression, we 
are not able to reconcile the two versions. 

Furthermore, it may be noted that in the absence of 
coverage bias, the estimator after ps does not change 
because the adjustment factor g2k()k,2) (the functional form 
of which is motivated from some distance minimization 
criterion, see e.g., Deville and S~imdal, 1992) is obtained 
such that for auxiliary variables x ,  the true value of T~ is 
perfectly estimated, i.e., ~-2 is estimated to satisfy 

~_-,sXkdkg2k(~.2 ) = T x (3.7) 
The reason for using the above estimating equation is that 
in view of the anticipated high correlation between y and 
x, the estimator of Ty given by (3.5) is expected to have 
higher precision than the unadjusted estimator £sXkd k, 
because when y is replaced by x, the error becomes zero. 

Thus with or without the presence of coverage bias, the 
expression for T, (~'2) is identical, and therefore ps is 
expected to have (he dual property of variance reduction 
as well as bias reduction. 

Lastly we note that the above properties of the 
estimator Ty (~-2) could have been derived without using 
EFs although EFs do make it convenient. However, we 
mention two other properties which inherently need the 
framework of EFs. One is, of course, the computational 
simplicity realized via sandwich-type variance estimation 
already mentioned in the previous section. Other is the 
uniqueness of the point and variance estimators. Clearly, 
one cannot distinguish asymptotically between various 
estimators (and the corresponding variance estimators) 
differing by constant multiples tending to 1. However, 
using the finite sample optimality criterion of regular EFs 
in the sense of Godambe (1960) and Godambe and 
Thompson (1989) which does give rise to a unique EF up 
to a constant multiple, it is known that the resulting 
estimator is unique (provided a solution to the EF exists) 
and the corresponding variance estimator is given 
uniquely by the inverse of the Godambe information 
matrix. Notice that it is analogous to the properties of the 
score functions and maximum likelihood estimators. It 
follows that since the number of equations in BCEF is 
equal to the number of unknown parameters, BCEF are 
optimal in the Godambe sense, and hence the 
corresponding point and variance estimators are unique. 
glk(~l) and g2k(~2). Vaish, Gordek, and Singh (2000) 

provide computational details for calibration-adjusted 
variance estimation for a general exponential model. 

4. Examples of BCEF for Coverage Bias Adjustments 
via Poststratification 

The following examples are presented assuming that 
there is coverage bias. Identical results also hold for the 
case of no coverage bias by considering the limit as the 
model parameter vector X tends to zero. Here we 
suppress the subscript 2 used earlier for denoting the 
model parameters under ps. 
4.1 Ratio Estimation 

For the estimator defined in Section 1, we have 
ga0v) : 1 + )v, ~. = N/iQ~ - 1, V k~ U 

I ( I 
~s Ikeadk (1 + )v)- N ) 0 -]¢/~) )v - )v 

V(Ty,ratio) ~. (1 - T y a &  -1) Vh(2)(1 - Tya &- l )  ' 

=(1 + ~.)2 ~,(F~eldk) 
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which is exactly the g-weighted variance estimator Wratio,g 
given in Section 1. 

4.2 Generalized Regression (greg) Estimation 
The greg estimator is given by 

t ,  greg = ~'s Yk dk ( 1 + X/k k) ,  g~(k)= 1 + x/k ~" 

Note that the ratio estimator is a special case of greg 
when the covariate x is a scalar indicating the domain a. 
Now, linearization of the BCEF gives 

) ZsXkdk(1 +Xk g~ ) - ~" 0 -ZsXkXk' d k k - ~. 

and V (f'y,greg) is approximately 

fr(Xs(Yk- (~sYkXk ' dk)( ~s Xk Xk' dk)-lXk ) dk ( 1+ x k' ~.)) 

which is the well known g-weighted variance estimator 
f'(~s ek dk ( 1 + x k' k)), see S~irndal et al. (1989). 

4.3 Raking Ratio Estimation 
We have the estimator given by ^ Xkt~. 

Ty, raking = Zk Yk dk e 

and the corresponding BCEF is 

xk~. 
Zsy k d k e 

~,sXkdk e'~kk 
- - o -XsX X 'd f'y,raking-~_~ T 

So the sandwich variance is obtained as 

, -~  , -*k xkk) 
~s(Yk-(F-,sYkXk dke )(F-,~xkx k dke k)-lxk)dke 

which is the g-weighted variance estimator of the type 
recommended by Deville and S~irndal. 
5. Summary 

The proposed bias corrected estimating function 
method was motivated by observing the similarity 
between ps and nr when one takes the perspective of 
coverage bias reduction in ps. The BCEF method is based 
on a simple semiparametric model built on estimating 
functions that are commonly used for estimating 
parameters for modeling nr and ps adjustment factor. It 
uses the joint p~-distribution for specifying the model in 
a wide sense (i.e., up to first two moments). It provides a 
simple justification of why g-weights should be used in 
the Taylor linearized variance estimate for calibrated 
estimators. Using the property inherent to estimating 
functions, the BCEF method provides a sandwich 
variance estimate adjusted for ps or nr, or both (this is 
simply the inverse of the Godambe information matrix), 
which has a simple yet general form useful for computer 

automation. Also, using the Godambe finite sample 
optimality criterion of estimating functions, it is shown 
that the point and variance estimators (whenever the 
solution of the estimating function exists) are unique 
analogous to maximum likelihood estimation for 
parametric models. 
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