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1. The 1999 NHSDA: a brief description 
The National Household Survey on Drug Abuse 

(NHSDA) is designed to estimate prevalence of both licit 
and illicit drug use in the U.S. for various demographic 
and geographic domains. Since 1999, it has become a 
statewide survey that includes 50 States and the District 
of Columbia. The target population includes civilian, 
noninstitutionalized persons aged 12 or older. Eight 
States (California, Florida, Illinois, Michigan, New York, 
Ohio, Pennsylvania, and Texas), referred to as the "big" 
States, have a sample designed to yield 3600 respondents 
per State, while the remaining 43 "small" States have a 
sample designed to yield 900 respondents per State. The 
total sample size is 66706 persons (corresponding to 
51821 dwelling units (DUs) selected at the second phase 
out of 169166 DUs screened at the first phase) with a low 
of 756 for Nevada to a high of 1280 for Utah among 
"small" States, and a low of 2669 for New York and a 
high of 4681 for California among "big" States. 

In the NHSDA design since 1999, States serve 
as the primary strata, and field interviewer (FI) regions 
within each State serve as secondary strata. In the 
"small" States, 12 FI regions are created, while in the 
"big" States, 48 FI regions are formed. Segments within 
FI regions form first-stage sample units drawn with 
probabilities proportional to composite size measures 
using Chromy's algorithm (Chromy, 1981). DUs within 
segments form the second- stage units that are drawn 
according to a random systematic scheme with an 
EPSEM (equal probability selection method) goal. 
Within each FI region, segments are formed to contain a 
minimum of 150 DUs. From each FI region, two 
segments are drawn per quarter with a total of eight per 
year. On average, about 30 DUs are selected per segment 
with an objective of 10 completed person-level 
interviews. This average of three selected DUs per 
completed person interviews reflects various levels of 
attrition such as DU eligibility to the target population, 
DU-level nonresponse, and person-level nonresponse. 
The NHSDA design is a multistage design with deep 
stratification, which can be viewed as a two-phase design 
with the second-phase units of persons nested within the 
first-phase DUs. After the DU selection, first-phase 
information (e.g., eligibility, age, race/ethnicity, and 
gender) for all members of the DU is collected, and then 

age is used to define deep stratification variables for the 
second-phase sample of persons within eligible DUs. At 
this phase, 0, 1, or 2 persons are selected within each DU 
using an adaptation of Brewer's sampling scheme. 

2. Sampling Weight Calibration 
The sample weighting of the 1999 NHSDA 

posed new challenges because of the sheer magnitude of 
the number of State-specific predictors for use in 
nonresponse (nr) and poststratification (ps) adjustments. 
With the 51-State survey, it was not practical to use a 
single model for each of the adjustments. Also, treating 
each State separately was not desirable because individual 
State sample sizes are not large enough to support reliable 
estimation of a fair number of parameters. It was decided 
to group the 51 States into nine model groups 
corresponding to the nine Census divisions. This helped 
to keep a substantial number of predictor variables in 
each model while reducing computational time that would 
be associated with fitting a large number of models. 

The nine weight components at the phase I DU 
level and six at the phase II person level are shown in 
Exhibit 1. The generalized exponential model (GEM) of 
Folsom and Singh (2000) (see Section 4) for sampling 
weight calibration was used to adjust for extreme values 
(ev), nr, and ps. Note that m the weight component 8, the 
screener DU weights in the first phase are poststratified 
to population counts by adjusting DU's weighted 
contribution of person counts to various demographic 
domains. This will reduce coverage bias resulting from 
the first phase. The weight component 12 is a bit unusual 
in that it is ps of the selected persons (this includes 
respondents and nonrespondents) in the second phase to 
estimated controls from the large first phase sample of 
persons for various predictor variables at the segment, 
DU, and person levels. This will give stable controls for 
the step of nr adjustment of respondent weights. It may 
be noted that this would not have been possible in the 
absence of screener data information on demographics of 
members of the selected households. 

3. Covariates for Modeling Adjustment Factors 
Typical predictors used for the screener DU nr 

adjustment are State/region, quarter, group quarters 
indicator, population density, percentage hispanic in 
segment, percentage black in segment, percentage owner- 
occupied DUs in segment, and socioeconomic status 
(SES) indicator. Similarly, the predictors for the person- 
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level nr adjustments include, in addition to those stated 
above, age group, gender, race, hispanicity, and relation 
to head of household. For ps, predictors typically used 
are State/region, age, race, gender, Hispanicity, and 
quarter, and the model consists of main effects and some 
interactions of these predictors. For the separate 
adjustment for ev, we could use the same predictors as 
used in ps. 

Note that it is desirable (whenever possible) to 
include ps predictors (correlated with the outcome 
variable) as part of the nr predictors (correlated with the 
response variable) because of the potential variance 
reduction as an offset to the varaince inflation due to 
random controls used in the nr adjustment. In general, 
this is not possible due to the unavailability of 
information about demographic variables (often used for 
ps) for nonrespondents. However, with two phase 
designs such as NHSDA, this is not a problem because 
the screener data from the first phase have the necessary 
information. 

We used some general guidelines on choosing an 
initial set of State-specific covariates and modify the 
initial set iteratively as we faced problems in meeting 
them. We would begin with the baseline model of one- 
factor effects and then attempt to add higher order effects 
(two and three) although some collapsing might be 
needed along the way depending on the individual State 
sample sizes. In collapsing effects, every effort was made 
to include as many important state-specific covariates 
(typically defined by socio-demographic domains by state 
geography) as possible in models for nr and ps weight 
adjustments in order to obtain more precise state-level 
estimates. However, keeping a lot of state-specific 
covariates was not possible because individual state 
sample sizes were not large enough to support stable 
estimation of a fair number of model parameters. We, 
therefore, used a hierarchical structure in grouping states 
for covariate inclusion in the model; the order being 
covariates at the national level, followed by covariates at 
the census division level within the nation, then 
covariates at the combined -state level within the census 
division, and finally whenever possible covariates at the 
state level within the combined states. In situations where 
model parameters were inestimable due to insufficient 
sample sizes when certain additional covariates were 
included in the model, the hierarchy strategy mentioned 
above was used to combine states within a division so 
that covariates at the combined level could be included. 
The levels of the covariates were collapsed (or coarsened) 
only when combining states was not a feasible alternative. 
The reason for this is that ultimate estimation domains of 

interest are defined by covariate levels, and if stable 
estimates can be obtained at the combined state level, 
then this will be beneficial in obtaining more reliable state 

level estimates using the small area estimation techniques. 
The eight big states were not combined with other smaller 
states to the extent possible in order to get direct state- 
level estimates without relying on the small area 
estimation technique. 

The objective criterion of measuring the gain in 
efficiency (for a set of study variables) can be used to 
check for the suitability of the number of controls, 
assuming that they can be met by the sample. This should 
be done in addition to keeping a watch on the increase in 
the unequal weighting effect (UWE). For the NHSDA, 
it became apparent that the number of controls could be 
very high such as in excess of 1,000, which would be 
computationally prohibitive. The implementation of ps 
involves matrix inversion at each iterative step whose 
dimension corresponds to the number of controls. A 
solution is to use separate models within groups rather a 
single overall model. It can be shown under the 
assumption that whenever we need to collapse an effect 
(two factor or higher order), if it is always done within a 
group of States, then fitting an overall model is equivalent 
to fitting separate models for each group. In this way, we 
can reduce the computational problem when faced with 
too many controls. We, therefore, partitioned the smnple 
into nine model groups corresponding to the nine census 
divisions. 

4. Modeling of Weight Adjustment Factors by GEM 
The methodology of generalized exponential 

model (GEM) has several features: 
(i) It allows for different bounds on the adjusted 

weights for different cases (or sample units). Thus, 
adjustments on initially identified extreme weights can be 
kept under control by having a separate built-in control 
for extreme weights. 

(ii) The above built-in control on the adjustments 
to ev is often adequate in that the frequency of ev after nr 
and ps is not high. However, if this were not the case, 
GEM can also be used for a separate ev after ps such that 
sample distribution of weights obtained after the initial ps 
is preserved. 

(iii) GEM allows for a unified approach to 
extreme value treatment, nr adjustment, and ps of initial 
design weights. The differences are only in terms of 
bounds and control totals for the adjusted weights. 

(iv) GEM is a generalization of the commonly 
used raking-ratio method in which a distance function is 
minimized such that the initial weights are perturbed only 
a little, lie within certain bounds, and control totals are 
met. It is also a generalization of Deville and S~irndal's 
(1992) logit method in that bounds on weights are not 
required to be uniform. Moreover, the lower bound can 
be set to 1, often desirable for the nr adjustment. 

(v) Like the raking-ratio method, GEM fitting 
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requires iterations (such as in Newton-Raphson). 
Let Tx denote the p-vector of control totals 

corresponding to predictor variables (x,, ..., Xp, say). 
Then, the model parameters ~. are estimated by solving the 
calibration constraints. 

~l,~s xk dk ak(~') : T~ 

at,(~. ) - 
~k (Uk-Ck) + uk(ck-~k) exp (A kxk/L) 

(Uk-Ck) + (Ck-~k) exp (Akxk/X) 

For more details, see Folsom and Singh (2000). 

5. GEM Implementation 
5.1 Definition of Extreme Values of Sampling Weights 

An important aspect of GEM is the built-in 
provision of extreme value treatment. For this purpose, 
sampling weights are classified as extreme (high or low) 
if they fall outside the interval, median + 3*interquartile 
range (IQR), for some pre-specified domains defined 
usually by design strata corresponding to deep 
stratification. For example, the DU (DU) level weight 
adjustment for 1999 CAI NHSDA uses the FI region as 
the domain. Person-level weight adjustment uses the 
hierarchy of three domains: (a) State x age group, (b) FI 
Region, and (c) State. The hierarchy is used in the sense 
that a minimum of 30 observations is required for 
defining the extreme boundaries or critical values. If this 
is not met at the lower level, then the next level up in the 
hierarchy is used. In fact, the deep strata are field 
interviewer (FI) region x age group, which turn out to be 
unsuitable for outlier definition-domains because of 
insufficient sample sizes. So, collapsing FI regions 
within a State gives rise to such domains as State x age 
group. Even at this level, sample sizes may be 
insufficient, and then FI regions, and later States 
themselves can be used as outlier definition domains. 
The critical values for low and high ev are denoted by b k 
0) and b k ~u) in the sequel. 
5.2 Definition of Lower and Upper Bounds 

For implementing extreme value control via 
GEM, the variable mk is defined as the minimum of (bk(u) 
/Wk) and 1 for high ev, and the maximum of (bk0)/Wk) and 
1 for low ev, where Wk is the sampling weight before 
adjustment, and (bk(u) , bk(l) ) denote the threshold or the 
critical value for the ev. Note that for the high ev, the 
more extreme the weight is, the smaller the mk will be. 
While for the low ev, the smaller the weight is, the bigger 
the mk will be. Non-extremes have a value of 1 for mk. 
Now, the upper and lower bounds for the adjustment 
factor are defined respectively as the product of mk and 
the upper and lower boundary parameters of GEM. GEM 
allows inputs of three different upper and lower boundary 

parameters (L1 and U1, L2 and U2, L3 and U3, 
respectively) for high, non-, and low ev. By applying 
small upper boundary parameter for high ev, and high 
lower boundary parameter for low ev, the ev could be 
controlled in the modeling. GEM also requires 
specification of centers C1, C2, and C3 such that L < C 
< U. For nr, it is desirable to require all adjustments to be 
greater than 1 because they represent the inverse of 
response propensities. Thus, all the three L1, L2, and L3 
are set to 1. The value of C in this case is chosen as the 
inverse of the overall response propensity. For ps, C's 
are set to 1 because we want to adjust the weights not too 
far away from the original design weight. Here L2 is 
chosen to be less than 1, and U2 greater than 1 because 
the control totals could be larger or smaller than the 
estimated totals based on the design weights. Subsection 
5.7 gives guidelines for the choice of L, C, and U 
parameters. The case of ev treatment is analogous to ps. 

5.3 Definition of Control Totals 
GEM modeling for nr, ps, and ev involves 

estimation of parameters of the adjustment factor model 
such that certain control totals are satisfied. There are 
three types of control totals. For nr, the control totals are 
from the full sample (i.e., respondents and 
nonrespondents), while for ps, control totals are obtained 
from external sources, such as the Census Bureau or a 
large first-phase sample, and for ev, from the sample of 
respondents. For example, in the 1999 NHSDA, the 
control totals for various domains for the (selected) 
person-level ps were obtained from the first-phase sample 
containing roster information, and the control totals for 
the (respondent) person-level ps were obtained from the 
Census Bureau's postcensal population estimates for 
various demographic domains. 
5.4 Efficient Computation by using Grouped Data 

In view of the fact that adjustment factors remain 
the same for units (DUs or persons) that have common 
values for explanatory variables used in the model, one 
can reduce the sample data size by grouping units having 
common values of the explanatory variables. This can 
save computation time significantly, especially if the 
original sample size is large. The units with ev are 
grouped such that in addition to the common explanatory 
variables, they also have common values of mk. Note, 
however, that for GEM with grouped data, the UWE and 
t-test statistics normally produced in the output would be 
misleading because the weights in grouped data are sums 
of the weights for the individual units within each group. 
Also the definition of variance estimation strata (VESTR) 
and replicates (VEREP) required for variance calculation 
would not be proper. To avoid these misleading results 
from using the grouped data, the final model should be 
rerun with the full (i.e., ungrouped) data. 
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5.5 Steps in GEM Fitting 
After specifying the GEM parameters, such as 

the initial upper and lower bounds, the number of the 
Newton-Ralphson iterations and half-steps, and the type 
of the weight adjustment (nr, ps, or ev), a forward 
selection method for modeling can be used. The model 
with only the main effects is first fit to obtain the baseline 
upper and lower bounds for extreme and non-ev and to 
calculate a baseline UWE. Without unduly increasing the 
UWE and the ev proportion, as many higher order 
interactions as possible should be added to the model to 
help reduce coverage bias. Convergence problem can be 
addressed by loosening Ls and Us, and collapsing or 
dropping variables. In GEM, t-tests and p-values for 
significance of various effects can be computed for a 
previously converged model, which is helpful in deciding 
about collapsing of effects when convergence problems 
arise with tighter bounds. 

Collapsing i n ,  lies combining the values of one 
variable with another variable explicitly present in the 
model, while dropping implies combining with the 
reference levels of the variables not explicitly present in 
the model. Collapsing or dropping of lower order 
interactions have a direct impact on the number of higher 
order interactions. When adding higher order terms, all 
previously selected explanatory variables are retained in 
the model to the extent possible. Possible reasons for 
nonconvergence include explanatory variables 
corresponding to domains with small sample sizes, or the 
domains with large discrepancy between estimated totals 
based on the initial weights and the target control totals. 
The variables causing problems of convergence can be 
identified by high magnitude of the estimated model 
parameters. Once the explanatory variables are finalized, 
freer adjustments of Us and Ls can optimize the model in 
the sense of small UWE and the ev proportion. 
5.6 Quality Control Checks 

Comparisons of the weight distribution, 
maximum over mean factor, and UWE across various 
domains before and after the adjustment are conducted to 
uncover any unusual impact of weight adjustment on the 
initial weights. The ev proportion after adjustment is 
checked to see how effective the modeling was on 
controlling ev. Coverage bias analysis based on the 
slippage rates is also conducted to check the impact of ps 
on various non-controlled domains. In addition, after the 
final weight adjustment, point estimates for the main drug 
use variables as well as their standard errors computed 
using a sandwich variance formula (see Vaish, Gordek, 
and Singh, 2000), are compared with the corresponding 
estimates and standard errors for the baseline (or the main 
effects) model. 
5.7 Practical Guidelines in using GEM 

(i) Collapsing Checks :for Small Domains: 

Examine the number of observations or the sample sizes 
in various domains defined by levels of the factor effects. 
If the domain sample size is zero, then the corresponding 
factor level is either dropped or collapsed with some other 
level. This would automatically collapse the 
corresponding factor level with reference level. 
However, if the corresponding control total is not zero, 
then this would effectively prevent the control total to be 
met by the reference level. This may not be desirable if 
the reference level involves big states because we would 
like to meet the big state level controls as much as 
possible. 

If a domain sample size is small, then collapse 
the corresponding factor effect with another effect based 
on substantive considerations. If state is involved, then 
it would be better in general to collapse over states than 
over other factor levels as discussed in Section 3. Need 
for collapsing should be checked at each stage of model 
enlargement in the forward selection of factors. The 
reason for this is that if some collapsing was done at a 
previous stage, the corresponding factor levels should 
also be collapsed at succeeding stages involving higher 
order factor effects under the hierarchy principle. 

(ii) Singularity Cheeks: As in the case of 
collapsing checks, singularity (linear dependence of 
columns of values of the predictors) checks should also 
be done at each stage of model enlargement because it 
depends on what other predictors are in the model. Note 
that although all variables are linearly independent of 
each other, it is possible that the columns of their realized 
values may be linearly dependent. 

(iii) Finding the Initial Factor Set: After the 
collapsing and singularity checks, the remaining factor 
effects at a given stage of model enlargement form the 
initial factor set. 

(iv) Baseline Model: Start with the model 
consisting of all one-factor effects from the initial factor 
set and find a convergent version (after some collapsing 
if necessary) and the corresponding p-values under no 
bound restrictions. Use p-values to decide about 
collapsing, and optimize it with respect to the model 
characteristics (see guideline vii below) (i.e., try to reduce 
the UWE, and tighten the bounds). 

(v) Baseline plus Two-factor Effects." Start with 
the baseline model, and add all the two-factor effects 
from the initial factor set. Find a convergent version and 
the corresponding p-values under no bound restrictions. 
Proceed as in guideline (iv) above. In our application, 
first add the non-State two-factor effects, and then in a 
separate step add the State two-factor effects. 

(vi) Baseline with Two and Higher Order 
Factor Effects: Start with the optimized model from 
guideline (v), and add the higher order factor effects. 
Now, proceed similar to guideline (v) to get an optimum 
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version. 
(vii) Optimizing a Model with respect to the 

Target Model Characteristics: These are summarized in 
the following points based on empirical and heuristic 
considerations: 

1. For each step of model enlargement, compute 
the UWE for the initial weights, and as a guideline, allow 
tolerance in the resulting UWE increase up to 20% or the 
maximum allowable UWE (generally under 6), whichever 
is lower. 

2. Use the following guidelines for setting 
bounds. In the case ofps, set L1 - L2, and U2 - U3, and 
C1 = C2 - C3 =1. Now for high ev, start with 1.5 for U 1 
and try to keep it close to 1 and;  for nonev, start with 
(.5,3) for (L2, U2) and vary them inside (.3, 4); and for 
low ev, start with .8 for L3 and try to keep it close to 1. 
These guidelines are only rough in that a lot depends on 
the realized values of maximum and minimum adjustment 
factors under loose bounds. The critical points for ev 
within GEM modeling are defined as median +/- 2.5 
times the interquartile range (IQR) which is conservative 
in that weights lying on the boundary but inside are also 
controlled. However for QC purposes, the original 
definition with the factor of 3 for IQR should be used for 
checking the ev proportion. 

3. In the case ofnr, set L1 - L2-  L3 -1,  and U2 
- U3. All the C's are set equal to the common value of 
the overall inverse response propensity. Now for ev, start 
with a value of U 1 slightly bigger than C 1, and try to stay 
close to C1, and for nonev, start with (1, 3) for (L2, U2) 
and vary them inside (1, 4). 

4. For target percentage ev and outwinsors 
within GEM for nr and ps, the general guideline is to try 
to keep respectively the unweighted ev, weighted ev, and 
outwinsors under 3%, 15%, and 5%; actually, these 
percentages are rather liberal and serve as upper bounds 
only. ( The term outwinsor is used to signify the 
proportion of weight-sum out of the total weight-sum that 
would be trimmed if weights were winsorized). In 
practice, it is preferable to be able to reduce them by half. 
If these guidelines cannot be met, a separate GEM for ev 
after ps is implemented. Note that the botmd specification 
for ev is similar to that for ps. 

(viii) Evaluation Measures: After each stage 
of model enlargement, it is important to examine various 
characteristics for large values such as UWE, maximum 
over mean weight factor, percentage ev and outwinsors, 
and other characteristics such as distance between the 
total sample weighted count and the target population 
count, i.e., slippage rates by different domains, weight 
summary statistics, and distributions of adjustment factors 
for highly asymmetric tails. Also with the bounds 
realized for the final model, run the baseline model, and 
then compare point estimates and SEs for selected 

outcome variables for the two models. Generally, the two 
estimates are likely to be close, but not the SEs. The SE 
for the final model is expected to be smaller but at times 
may be larger. Larger SEs should be identified and 
examined. In situations where the SEs of the estimates 
are much larger than the ones for the baseline model, 
there is an indication of the instability in model parameter 
estimates due to possible overfitting and insufficient 
sample sizes. In such situations, the final model should 
be revised to get a more parsimonious model. 

6. Numerical Results 
The 1999 NHSDA data for the East South 

Central Census Division is used to illustrate results 
obtained by fitting GEM at both the first phase for nr and 
ps of the screener DUs and the second phase for ps for 
selected persons followed by nr and ps for respondent 
persons. Table 1 gives the summary of characteristics of 
various models fitted, while Table 2 gives summary 
statistics in terms of UWE, ev and outwmsor proportions, 
as well as distributional characteristics of the weight 
distribution. It is seen that % ev is reasonable after ps, 
and therefore, there is no need for an extra ev step.) Table 
3 compares point estimates and SEs for baseline and fmal 
models across a set of drug use variables. For 
confidentiality reasons, only ratios of point estimates 
(final over the baseline) are presented. However, 
individual RSEs (SE over the estimate) are presented. 
Two types of RSE are given; one is tmadjusted signifying 
no adjustment for calibration, and the other is ps-adjusted 
RSE denoting a sandwich type formula to adjust for ps as 
given in Vaish, Gordek, and Singh (2000). It is seen that 
the two (baseline and final) RSE are quite comparable. 
Interestingly, the fmal RSE can be lower than the baseline 
RSE although it has more covariates. In cases where the 
final is higher, it is only marginally so showing no 
problems of overfitting. 
References 

Chromy, J.R. (1981). Variance estimation for a 
sequential selection procedure. In Current Topics in 
Survey Sampling (eds. Krewski, D., Platek, R, and Rao, 
J.N.K.), Academic Press, New York, pp 329-347. 

Deville, J.-C., and Samdal, C.E. (1992). 
Calibration estimation in survey sampling. JASA, 87, 
376-382. 

Folsom, R.E., Jr., and Singh, A.C. (2000). A 
generalized exponential model for sampling weight 
calibration for extreme values, nonresponse, and 
poststratification. ASA Proc. Surv. Res. Meth. Sec. 

Vaish, A.K., Gordek, H., and Singh, A.C. 
(2000). Variance estimation adjusted for weight 
calibration via the generalized exponential model with 
application to the National Household Survey on Drug 
Abuse. ASA Proc. Surv. Res. Meth. Sec. (to appear). 

608 



Table 1. Summary of Model Characteristics (Census Division: East South Central) 

Sample Size 

Resp. Rate(unwtd,wtd) 

Bounds(L<C<U) 

High-extreme values 

Non-extreme values 

Low-extreme values 

# Variables in the Model 

Total 

1 factor 

2 factor 

3 factor 
i 

SDU Level Person Level 
s d u . n r  I sdu.ps sel,per,ps I res t~ r .n r  I res.l~r.ps 

8,903 8,230 4,664 3,688 3,688 

(92.4%, 92.3%) (79.1%, 72.1%) 

(I.00,1.08,1.35) (0.30,1.00,1.01) (0.30,1.00,1.70) (1.00,1.39,1.40) (0.30,1.00,1.201 

(1.00,1.08,1.45) (0.30,1.00,2.20) 

0.00,1"0S,t-45) 

85(of 204) 111(of 144) 

20(of 22) 16(of 16) 

52(of 86) 53(of 57) 

13(of 96) 42(of71) 

(0.30,1.00,3.50) (1.00,1.39,3.50) (0.30,1.00,3.00 

(o.4oj.oo,3.5o) 

164(of 238) 138(of 238) 98(of 158'~ 

33(of 34) 33(of 34) 16(of 16) 

92(of 119) 74(of 119) 48(of 57) 

39(of 85) 32(of 85) 34(of 85) 
, ,  

Table 2. Summary Statistics for 1999 NH,SDA CA! ~/eig. htAd!ustments. (Ce .nsu's Division: East South Central) 
Person Level 

sdu.nr 

iUWE 
iExtreme Values 

Unwtd 
Wtd 

Outwinsor 
Weight Distribution 

Wt. Adj. Factor 
Min 

25% 
Median 

75% 
Max 

Weight Product 
Min 

25% 
Median 

75% 
Max 

, i  , i . . .  

Before [ 
1.11 

1.49% 
1.94% 
0.29% 

Screener D.U.Leve I ,. sdu.ps '" ] 

After Before [ After ,. l 
1.12! 

0.27% 
0.61% 
0.06% 

0.59 
1.03 
1.07 
1.11 
1.45 

353.1 365.7 
502.2 552.9 
583.7 693.6 
819.8 875.8 

2,708.20 2,523.60 

1.12 1.15 

0.27% 0.49% 
0.61% 1.01% 
0.06% 0.08% 

0.3 
0.98 
1.08 
1.22 
2.2 

365.7 112.5 
552.9 570.6 

sel.per.ps 
Befor e ..... [ .After 

3.02 3.27 

0.00% 1.09% 
0.00% 2.29% 
0.00% 0.35% 

0.3 
0.83 
0.96 
1.12 
3.49 

693.6 746 
875.8 975.1 

2,523.60 3~914.60 

131.6 
713.4 

39.9 
675.8 

1,135.00 1,117.40 
2,714.20 2,762.70 

32,261.60 66,015.70 

I res.per.nr 
Before [ ,After 

3.28 3.87 

0.89% 1.14% 
1.96% 2.66% 
0.40% 0.40% 

0.73J 
1.07 
1.16 
1.34 

3.5 

39.9 40 
667.1 767 

1,079.40 1,327.50 
2,487.20 3,161.70 

66,015.70 70~614.60 

res.per.ps 
Before [ After 

3.87 3.87 

1.44% 0.38"A 
3.09% 0.97"A 
0.52% O.09Y, 

0.2 
0.97 
1.01 
1.05 
2.96 

40 13.5 
767 775.4 

1,327.50 1,347.00 
3,161.70 3,093.10 

70~614.70 62,606.80 

Table 3. Ratio of Estimates under Baseline and Final models and comparison of Unadjusted and 
ps-adj usted RSE(%) 

Ratio of 
Estimates (F/B) 

i 

Marijuana Past Year ! 
Overall 

I "/-Dec 

18-25 

26-34 

35+ 1 

Alcohol Past Year 
Overall 

17-Dec 

18-25 

26-34 

35+ 

Cocaine Past Year l 
Overall 

17-Dec 

18-25 

26-34 

35+ 

Cigarette Past Year 
Overall 

17-Dec 

18-25 

26-34 

35+ 

Unadjusted RSE 

Baseline ] Final 

1 
1.02 

1 
0.98 

1 

1 
1.02 
0.99 

1 
1 

1 
1.01 

1 
0.99 
1.01 

Ii 
1.02 

1 
0.99 

1 

6.75 
8.61 

6.5 
16.56 
16.53 

3.15 
4.91 
3.45 
3.84 
5.28 

21.46 
28.76 
15.44 
31.55 

48 

4.43 
5.49 
3.76 
7.17 
7.42 

6.81 
8.81 
6.59 

16.57 
17.02 

3.18 
4.94 
3.54 
3.83 

5.3 

21.72 
29.26 

15.6 
31.12 
48.08 

4.38 
5.55 
3.84 
7.14 
7.36 

ps-adjusted RSE 

Baieline l Final 

6.4 
8.3 

6.52 
16.65 
17.65 

3.08 
4.55 
3.41 
3.71 
5.12 

20.96 
31.49 
15.63 
32.26 
46.67 

4.22 
5.41 
3.74 
7.32 
7.06 

6.88 
8.63 
6.5[ 

16.8~ 
18.311 

3.55 
4.51 
3.28 
3.77 
6.43 

19.9 
42.94 
15.34 
30.31 
45.81 

4.4~ 
5.4~ 
3.7.= 
6.1( 
7.1( 

Exhibit 1. The Weight Components at the 
dwelling unit and person levels 

Phase I D~l/ing Unit Le~.el 

I# 2 Quarter Segment Weight Adjustment / 

i # 3 Subsegmentation Inflation Adjustment I 

~ # 4 Inver~ Probability' of Selecting Dwelling Unit 
_'- ~n~ ~-.~ ?roba;,iLity of Added Dwelling Unit 

~# 6 Unit / Release DweUing Subsampling Adjustment 

Ii 
7 Dweiling"Unit ~;onrespons¢ Adjustment (sdu.nr) ' 

8 Dwelling Unit Poststratification Adjustment (sdu.ps) 

9 Dwe~ng Unit Extreme Value Check/Adj (sdu.ev) 

Phase 11 person Level 

# 10 Inverse Probability of Selecting a Person Within a 
Dwelling Unit 

11 Person Sub~tmpling Adjustment 

1 
i# 12 Per~n(~4ected) Level Poststratlflcaiion (seLpcr.ps) 

# 13 Person(respondent)(res.per. n• ) Level Nonresponse Adjustment 

# 14 Per~n(rcs_pondent) Level Poststratification 
Adjustment (rc~per.ps ) 

15 Person(respondent) Level Extreme Value Check/Adj 
(r~r~,~,) , 
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