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1. Introduction 
Consider a finite population U from which a 

sample of size n is selected using the design p(s). Denote 
the data by (Yk, Xk, dk), k ~ s, where for the k th unit in the 
sample, Yk is the study variable, Xk is a p-vector of 
covariates or predictor variables; and dk is the design 
weight. In practice, the d-weights are often adjusted to 
get the final w-weights in view of the triple concerns of 
(i) variance inflation of small domain estimates due to 
extreme values, (ii) bias due to nonresponse (nr), and (iii) 
bias due to under/over coverage. For the first one, 
winsorization (i.e., trimming part of the weight beyond 
the boundary defining extreme values) is often used to 
adjust extreme values but this may lose its impact after 
adjustments for nr and coverage; for the second one, 
weights are adjusted by the inverse response propensity 
factor (this is typically implemented by calibrating 
respondent weights to (random) control totals for 
covariates in the nr model obtained from the full sample 
of respondents and nonrespondents ) but in the process 
some weights could become extreme; and for the third 
one, weights are adjusted by poststratification (ps) (this 
is typically realized by calibrating weights to nonrandom 
controls for covariates in the ps model) but in the process 
some of the final weights could also become extreme. 
Note that while random controls used in calibration (as in 
the case of nr and extreme weights resulting from 
calibration (for nr and ps adjustments) may have the 
undesirable effect of inflating the variance, this effect 
could be offset by the anticipated variance reduction due 
to the correlation between y and x. 

There exist methods in the literature which 
impose bounds on the adjustment factor for ps, see e.g., 
Deville and S~imdal (1992), Rao and Singh (1997) and 
the review by Singh and Mohl (1996). However, they do 
not directly restrict the adjusted weight from being too 
extreme. In this paper we consider the problem of 
developing a unified approach of weight calibration to 
address the above three concerns such that there are built- 
in controls on the adjustment factors to prevent the 
adjusted weight from being too extreme. For this purpose 
the logit-type model of Deville and S~imdal (1992), 
denoted by DS in the sequel, is generalized to allow for 
more general and unit-specific bounds. A review of the 
DS model is provided in Section 2, and the proposed 

model is described in Section 3. The asymptotic 
properties of the proposed calibration estimator are 
presented in Section 4, and a comparison with alternative 
methods is given in Section 5. Finally, Section 6 contains 
numerical results comparing different methods using the 
1999 NHSDA data followed by concluding remarks in 
section 7. 

2. The Deville-Sarndal Model for Weight Calibration 
and Statement of the Problem 

For ps, in the logit-type model of Deville- 
S~imdal the adjustment factor for unit k is modeled as: 

6 (u- I) + u(l -~) exp (Ax~k) 
ak0~ ) : , (2.1) 

(u- 1) + (1-6) exp (Ax/)~) 
where 6< l<u ,  A:(u-O/(u-1)(1-O; 6,u are user- 
specified bounds, and ~. is the column vector of p model 
parameters corresponding to the p covariates x. The 
coefficient A in (2.1) is useful to control the behavior of 
ak(~. ) as the lower or the upper bound approach the 
center 1. For instance, in the absence of A, a kO0 goes 
to 1 as u goes to 1 regardless of whether x/~. is positive 
or negative which is clearly undesirable. However, in the 
presence of A, as u approaches 1, a k(~.) goes to 1 if xk/X 
is positive, and to the lower bound if it is negative. Also 
note that by construction,6<a k< u, and as 
6 -- 0, u-.oo ,ak(X ) -. exp(xk/L) which is the exponential 
model corresponding to the Raking-Ratio method of 
poststratification. 

The model parameters X are estimated from 

xk d,, - r - O, (2.2) 

where Tx is the vector of ps controls. The adjusted 
weights Wk: - dka k are close t o  d k in that they minimize 
A (w,d) (defined below) subject to (2.2) 

{ l 1 ~ ,  dk (a k _ 6)log + (u log u ak (2.3) 
-a,,) u - I  l 

We wish to generalize the above DS model to allow for 
(i) 6 >_ 1; this would be useful for the nonresponse 

adjustment. This implies that we need to change 
the center from 1 to c such that 1 _< 6 _< c _< u. 

(ii) nonuniform bounds (6, u) for different 
subgroups of weights, e.g., (61 , ul) for high 
extreme values,(r2, u2) for nonextreme, and 
(63 , u3) for low extreme values. This would be 
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(iii) 

useful for providing built-in controls over final 
adjusted weights for initially identified extreme 
values. 
a separate weight adjustment for extreme values 
after nr and ps adjustments. This can be 
achieved in a manner similar to ps except that 
the resulting weights meet the tighter bounds on 
the adjustment factor while continuing to satisfy 
the ps controls, i.e., preserve the sample 
distribution of various ps variables. 

3. The Proposed Model 
We propose a generalized exponential model 

(GEM) with unit-specific bounds (Qk, uk), k ~ s , for the 
adjustment factor a k (k) as follows: 

~k(uk-ck) + Uj,(Ct-Q~, ) exp (Akx~k) 
ak@ ) : , (3.1) 

(Uk-Ck) + (Ck-Qk) exp (Akx~k) 
where Ck are prespecified centering constants, such that 
Qk<ck < u k and Ak=(Uk-Qk)/(U,,-Ck)(Cl,-~k). Note that 
when l~k--1, ck--2, and uk-.~, the ak(k) approaches the 
inverse logistic function 1 +e xk'x . 

The k-parameters are estimated by solving 

~ s  xk dk ak(~) - 7"x = 0, (3.2) 

where ~ denote control totals which could be either 
nonrandom as is generally the case with ps, or random as 
is generally the case for nr adjustment. 

The final weights Wk: = dkak minimize the 
distance function A(w,d) defined as before except that 
(Q, 1, u) is replaced by(Q k, c k uk) , and A by Ak. 

Although the proposed model allows for 
arbitrary unit-specific bounds, in practice, it would 
generally be sufficient to specify three sets of bounds on 
the adjustment factors, (Q1 m k , ulm k ) ,  ([~2mk , u2m k ), and 
(Q3mk, u3ml,) for high extreme, nonextreme, and low 
extreme values identified among the initial weights where 
mk = b k /dk , b k is the winsorized value of the design 
weight d~ corresponding to different domains defining 
extreme values. Clearly, m k = 1 for nonextreme values. 
In specifying bounds (Q, u) 's,  we may first choose them 
for nonextremes, and then set ~1 =~2' U3=U2' and 
choose u 1 close to cl, and 1~3 close to c 3. All the three 
centering constants are typically set to a common value; 
in the case of ps it is 1, in the case of nr it can be chosen 
as inverse of the overall response propensity, and in the 
case of adjustment for extreme weights, it is set to 1 as in 
the case ofps.  It may be noted that allowing A k to vary 
with k might compromise the correlation of the covariate 
x with y. In practice, it would be sufficient to have only 
three values of A k corresponding to high extreme, 
nonextreme, and low extreme values, e.g., for high 
extremes, we can set A~:(ul-Ql) / (ui -c t ) (Cl-Ql) . ;  i.e., 

remove the factor m k from the denominator. Note that 
the factor A k cannot be dropped for reasons mentioned 
earlier. 

Assuming that the solution exists, the model can 
be fit using Newton-Raphson iterative steps as follows. 
Let X denote the n x p matrix of auxiliary (or predictor) 
variables x, and for the vth iteration, let 

rq~ : diag (d k q)~)), q)~o)= 1, 

q)(v)k =(uk - a(V))k (ak-(~)- l~k) / (uk - ck )  (Ck-~k) • 

Now the value of the vector k at iteration v is adjusted as 

~.(" : ~.('-1) + ( x '  r',,,_~ x )  -~ (T~ - ~ - ~ ) )  
where k (°) = 0. 

The convergence criterion is based on the 
Euclidean distance lIT x - ~v)II. At each iteration, it is 
checked whether it is decreasing or not. If not, then half- 
step length is used in the iteration increment. 

4. Properties of the GEM Calibration Estimator 
4.1 Asymptotic Consistency 

Assume the asyn-tptotic setup of Isaki and Fuller 
(1982). Forps when there is no coverage bias, the weight 
is adjusted primarily with the goal of variance reduction. 
In this case, under regularity conditions (see e.g., Deville, 
and S~rndal, 1992) which include the design-consistency 
of the Horvitz-Thompson estimator, we have 

~'n = Op(n-l/2) ' and 

N -1 [E  s y,  d k a,  (~.,,) - Ty] -- 0 (in design prob.), 

i.e., the calibrated estimator is also design-consistent for 
the population total T . Note that in the model for 
ak(k)as explained in the previous section, ll,U 1 etc are 
supposed to be prespecified. The m k, however, are 
sample dependent and hence random. Under our 
asymptotics, we assume that mk-. l in probability 
uniformly in k so that asymptotically we have only one 
set of bounds (12,u 2)which are nonrandom as in the DS 
model. This is only an heuristic argument, and needs 
rigorous justification. The variance estimators presented 
in this section do not take into account of the random 
variability in m~. When there is coverage bias, assume a 
superpopulation model {1 for the multiplicities variable 
(rlk, say) taking nonnegative integer values, i.e., for each 
k i n U  
Eel (# times the kth unit in U is enumerated) - ak-10v), 

(4.1) 
For an explanation of this model, see Singh and Folsom 
(2000). It follows that for known ~., the calibrated 
estimator is p~l-unbiased. Now, under regularity 
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conditions with respect to the joint p~-distribution, the 
estimator ~'n is an asymptotically consistent estimate of 
k. Next using Taylor expansion of the estimator < (~.) 
about k, the poststratified estimator can be shown to be 
p~-consistent. 

For nr adjustment, assume that specific to the 
survey objectives and conditions, one can assign a value 
of 1 or 0 for the response indicator to each unit in the 
finite population. Now suppose ~2 denotes the 
superpopulation model for the response indicator (8 k, 
say), i.e., for each k in U, 

P~2 (kth unit in U responds)= ak-~(k), (4.2) 

Analogous to ps, asymptotic consistency of the 
nr adjusted estimator follows. To show asymptotic 
consistency under both nr and ps adjustments, we need to 
assume two independent superpopulation models ~1 and 
~2 giving rise to adjustment factors a~k(k~) and a2k(k2). 
Now as before, the estimator ~2ffkdka~k(kl)a2k(k) is 
p~2-unbiased, and asymptotic consistency of the 
calibration estimator involving estimates (~'1, i2) is 
established by Taylor expansion about (k~, k2) and the 
asymptotic consistency of (~.~, i2). 

The extreme value adjustment is part of nr and 
ps under GEM. If an additional adjustment for extreme 
values (ev) is used after ps, then as mentioned earlier in 
Section 2, it is performed by another ps-type GEM such 
that sample distribution by various ps control variables is 
preserved but the extreme values are controlled by tight 
bounds. Thus ev adjustment is analogous to ps (for the 
case of no coverage bias), and the resulting estimate is 
design-consistent. 

4.2 Asymptotic Variance 
For nonresponse, the design-based variance of 

~ (in) defined below is obtained about 
u Yk 8k ak(k),which is the conditional mean given ~2, 

and 6 k is the response indicator at the population level. 
For coverage, the variance is also conditional 
about ~u '  Yk ak(k) (or ~v  Yk rlk ak(k)) given ~l where 
the population U' exhibits both types of coverage errors 
(over or under) but U denotes the actual population. 
Notice that values of the multiplicity factor (qk) are not 
needed for unbiased estimation because the target 
parameter based on U' doesn't involve rlk- The design- 
based variance gives only the conditional variance. In 
fact, we need the variance about Ty "= ~u  Yk, but the 
second term in the unconditional variance is negligible by 
comparison. Observe that 

(in):: Es Yk dk ak(in) -- ~ (k) + H,2(X ) (i n - X) (4.3) 
where 

< (k): : E s Yk dk ak(k) , H12(~') : ~s Yk (O a k(k)/0 k)/d k 

Moreover, since i n solves (3.2), we get from Taylor, 

0 = L ( ~ n )  - ]~'x = ( L (~') - ff~'x) + H 2 2 ( X ) ( i n - ~ ' ) ,  
where 

H22()v) = E s X k ( 0  aI,(k)/O X)/dl. 

Therefore, 

= ~s ekdkak(k) + B ( X ) ~  , (4.4) 

where e k are the residuals Yk - B(k)Xk, and 
B(k)= H,2(X)H~'(X ) . 

From (4.4), Taylor variance of the calibration 
estimator can be estimated using standard formulas in 
sampling theory. Note that in the case of nr adjustment, 
the vector of control totals 7[, is random since it is 
derived from the full sample. Therefore, for the nr case 
the second term in (4.4) leads to an extra contribution to 
the variance. Also note that k ,Hl2(~.), and H22,(k ) are 
replaced by their consistent estimates ~. , H12@), and 
H22(~, ) in the variance expression obtained from the right 
hand side of (4.4). The lmearization (4.4) is similar to the 
one obtained earlier by Folsom (1991) for nr adjustment 
under a somewhat different model for ak(k ). 

Now, in the case ofps, if there is coverage bias, 
we have analogous to the nr bias case, 

<(~',) = ~s ek dk ak(X) + B(X) T. , (4.5) 

where the control totals ~x are now treated as 
nonrandom, and no longer contribute to the variance. 

Observe that in the above linearized 
approximation to the calibration estimator, presence of 
the adjustment factor ak(k ) will tend to increase the 
variance; however, presence of residuals e k will in 
general tend to decrease the variance, and the net effect is 
usually a reduction in variance after ps. As in the case of 
nr, the vector ~. and H matrices are replaced by their 
consistent estimates in the estimated variance from (4.5). 

In the absence of coverage bias, k-0 and 
ak(k )-  1, we get 

<(~'n) = ~s ek dk + B(0) T ,  (4.6) 

/ / -1 where B(O) = (~-'s Yt, xt, dl,) (~'~XkXl, dk) , and 
ek = Yk -B(O)xl," Note that the right hand side of (4.6) is 
identical to the generalized regression estimator. Thus, 
for ps when there is no coverage bias, GEM calibration 
estimator is asymptotically equivalent to the regression 
estimator. This extends the result of Deville and S~imdal 
(1992) to include GEM. However, in the above 
lmearization, the adjustment factor ak(X ) is absent unlike 
the case with coverage bias. Singh and Folsom (2000) 
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give a simple theoretical justification of why the factor 
ak(k ) should be included in variance estimation via the 
estimating function approach, and obtain an alternative 
but equivalent sandwich-type variance estimate which is 
computationally more efficient than the linearization 
based solution when the covariance matrix for a vector of 
calibration estimators is required. 

So far we considered calibration estimators of 
totals Ty. For estimating means or ratios Ry v (" - Ty/T v), 
the linearized form of the calibration estimatorRyv(~.n) 
after subtracting Ry~ is given by 

T v  I [ Ty()~) - R y  v L ( ) ~ )  - B ( ) ~ ) ( L ( ~ . ) -  ~ x ) ]  (4.7) 

from which the approximate variance estimate can be 
obtained after substituting consistent estimates of k ,  T ,  
R v, and B@). 

To estimate variance of the estimator 
]~s Yk dk alk(~'l)a2k(~2) , adjusted for both nonresponse 
and poststratification, above type of lineafization can be 
carried through. Altematively, the estimating function 
approach of Singh and Folsom (2000) provides a simple 
sandwich-type estimate for the Taylor variance when 
successive weight adjustments are performed using GEM. 

5. Alternative Methods: Review and Comparison 
For ps, raking-ratio and regression methods are 

commonly used. The generalized raking methods such as 
DS provide bounds on the adjustment factor. As 
mentioned earlier, raking-ratio (or exponential model) and 
DS can be obtained as special cases of GEM by choosing 
uniform bounds ~ and u suitably. For raking-ratio, Q =0, 
and u=~o (which may give rise to extreme values) while 
for DS, we have 0 < Q < 1 < u. The regression method 
does not invoke any bounds, and may give rise to 
negative weights. 

The form of the adjustment factor for the 
regression method is ak(k ) : 1 + x/~. , -oo <a k< ~o. 
Despite no range restrictions on ak, this method generally 
works well in practice, and is easy to implement without 
need to resort to iterative methods. Its use for 
nonresponse adjustment has also been recently advocated; 
see Fuller, Loughin, and Baker (1994) for a combined nr 
and ps adjustment by regression, and Lundstr6m and 
S~imdal (1999) for nr adjustment. Folsom and Witt 
(1994) proposed a modification of the DS method, termed 
the scaled constrained exponential model for nr 
adjustment such that a k(~. ) _>_ 1. The basic idea is to 
multiply the adjustment factor by a constant P-~ >- 1 such 
that 9-1Q_> 1. By choosing Q=p_<l<u, we get the 
desired lower bound as p- 1~ = 1 < c = P- 1 < P- l u. They 
suggest choosing P as the overall response propensity 
estimated from the sample of respondents and 
nonrespondents. Folsom (1991), and Singh, Wu, and 

Boyer (1995) also proposed a modification of the raking- 
ratio method for nr adjustment such that a,.(k) _> 1. Here * X r~ • • 
the basic idea is to find a k (~.) ( = e e~) by raking-ratio 
such that the deficiency control total (defined as the 
difference between full sample and respondent subsample 
totals) are met. The final adjustment factor ak(k ) is then 
def'lned as 1 + a k (~.). This was termed as the deficiency 
raking method by Singh, Wu, and Boyer, and their main 
motivation for proposing this method was to use external 
control totals for nr adjustment when unit-specific 
information for the nonrespondents was not available in 
the context of longitudinal surveys. Another motivation 
was, of course, to generalize the usual weighting cell 
adjustment method to more general covariates while 
ensuring that the adjustment factor was at least 1 as in 
Folsom (1991). 

The extreme values are commonly treated by 
winsorizing. However, as mentioned in the introduction, 
this may lose its impact after nr and ps, i.e., the final 
weights may have extreme values. The proposed method 
of GEM can be used to directly address this extreme 
value problem after nr and ps adjustments have been 
made to reduce biases due to nr and coverage errors. 
Thus, GEM provides a unified approach for weight 
adjustments for extreme values, nr, and ps. In addition, 
by choosing nonuniform bounds on ak(k), GEM allows 
for the user to exercise control on the extent of 
adjustment on the initially identified extreme values at 
each step of weight adjustment. 

6. An Illustrative Example 
Using the 1999 National Household Survey on 

Drug Abuse data for the East South Central Census 
Division (consisting of states, AL, MS, TN, and KY), the 
three methods RR (raking-ratio or exponential model), 
DS (in the case of nr, it is modified DS as given by the 
scaled constrained exponential model), and GEM 
(generalized exponential model) are compared; see Chen, 
Penne, and Singh (2000) for more details. For this 
comparison, we consider weighting (referred to as weight 
components 12-14 in Chen, Penne, and Singh) for the 
second phase sample of persons selected for the drug 
questionnaire after the first phase sample of dwelling 
units selected for screening questionnaire. For all the 
three methods, we started with a common set of initial 
weights. Before respondent person level nr (res.per.nr) 
and respondent person level ps (res.per.ps) adjustments, 
a somewhat new step of selected person level ps 
(sel.per.ps) was introduced to take advantage of the 
information about selected persons (i.e., both respondents 
and nonrespondents) in the large first phase sample of 
households for screening. Here the ps controls for the 
selected persons are estimated from the first phase 
sample. This additional step is expected to lead to more 
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stable estimated totals needed for the next step of 
nonresponse adjustment. Table 1 shows summary 
statistics for weight adjustment factors and the resulting 
calibrated weights. It is seen that with the built-in control 
for extreme weights in GEM, one can reduce the 
proportion of extreme values in the adjusted weights 
considerably. Here the extreme value cut-off points are 
defined as median + 3(IQR) where IQR denotes the 
interquartile range. The cut-off points are specific to the 
domains defming extreme values. The term "outwinsor" 
is used to signify the proportion of weight-sum out of the 
total weight-sum that would be trimmed if weights were 
winsorized. Also the UWE (unequal weighting effect, 
i.e., one plus squared coefficient of variation of weights) 
tends to be smallest for GEM. For domains defined by 
age groups (12-17, 18-25, 26+), the histograms (not 
shown here) of adjustment factors are found to be quite 
similar except for slightly heavier tails for RR. It is 
interesting to note that for this particular example, the 
final estimates (not shown here) for recency of use of 
cigarettes, alcohol, marijuana, and cocaine at the census 
division level for various age groups tum out to be close 
to each other despite differences in treatment of extreme 
values. This is probably due to the fact that the outwinsor 
proportions are not that high for the altemative methods. 
The GEM SEs, interestingly, also mm out to be generally 
similar to the DS ones except being somewhat lower most 
of the time. Also the RR based estimates (with no bound 
restrictions on the adjustment factor) tum out to be more 
or less precise than either DS or GEM. This similarity 
between estimates is possible for our example because the 
final UWE for the three methods are similar in 
magnitude. However, for domains involving high 
weights under RR (and hence high UWE), we would 
expect RR based estimates unstable compared to DS and 
GEM. For a comparison of unadjusted SE, adjusted SE 
for ps, and adjusted SE for nr and ps, see Vaish, Gordek, 
and Singh (2000). 
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Table la - [sel.per.ps] [ 
UWE 

Extreme Values 

Weight Distribution 
Weightl-12 

Weight 12 

Adiustment  

Unwtd 
Wtd 

Outwinsor 

Min 
25% 

Median 
75% 
Max 

Cactors for RR.  DS & G EM (summary statistics~ 
Raking Ratio(RR) I 

Before I After 
3.05 3.32 

O. 00% 1.14%! 
0.00% 2.40% 
0.00% 0.60% 

131.58 0.45 
713.36 678.85 

1,134.98 1,114.58 
2,714.98 2,787.29 

32,261.61 89,355.27 

DS I GEM 
Before I After Befo_re I After 

3.02 3.3 3 

0.00% 1.11% 
0.00% 2.21% 
0.00% 0.42~, 

131.58 39.9! 
713.36 673.34 

i 

1,134.98 1,110.66 
2,714.98 2,782.561 

32,261.61 65,990.62 

3.05 .27 

0.00% 1.09% 
0.00% 2.29% 
0.00% 0.35% 

131.58 39.93 
713.36 675.77 

1,134.98 1,117.42 
2,714.98 2,762.72 

32,261.61 66,015.7£ 

n/a 0. 3 
n/a 0.83 
n/a 0.9~ 
rda 1.12 
n/a 3.49 

. . . .  

Min 
25% 

Median 
75% 
Max 

, ,  

n/a 0 
n/a 0.84 
n/a 0.96 
n/a 1.11 
n/a 5.86 

n/a 0.3 
n/a 0.83 
n/a 0.96 
n/a 1.12 
n/a 3.49 

Table I b - [res.Per.nrl 
3.38 ' 3.91 3 . 2 9  3.88 3.28 3.87 UWE 

Extreme Values 

Weight Distribution 
Weight l-I 3 

Weight l 3 

Unwtd 
Wtd 

Outwinsor 

Min 
25% 

Median 
75% 
Max 

Min 
25% 

Median 
75% 
Max 

0.84% 2.03°/' 
2.10% 5.23°/, 
0.69% 1.19~, 

0.45 0.45 
664.31 767.5 

1,078.01 1,326.57 
2,462.36 3,136.07 

89,355.27 101,325.20 

n/a 1 
n/a 1.1 
n/a 1.18 
n/a 1.33 
n/a 17.63 

0.95% 2.11% 
2.04% 5.38% 
0.46% 0.92% 

39.93 40.0." 
665.2 764.79 

1,080.22 1,317.52 
2,482.69 3,108.04 

65,990.62 74,851.38 

n/a 1 
n/a 1.08 
n/a 1.17 
n/a 1.33 
n/a 3.47 

0.89% 1.14% 
1.96% 2.66% 
0.40% 0.40% 

39.93 40.02 
667.11 766.96 

1,079.41 1,327.54 
2,487.23 3,161.65 

66,015.70 70,614.65 

n/a 0.73 
n/a 1.07 
n/a 1.16 
n/a 1.34 
n/a 3.5 

Table 1 e - Ires.per.psi . 
UWE 3.91 3.95 3.91 3.87 '3187 UWE 

Extreme Values 

Weight Distribution 
Weight l-14 

Weight 14 

Unwtd 
Wtd 

Outwinsor 

Min 
25% 

Median 
75% 
Max 

Min 
25% 

Median 
75% 
Max 

2.28% 2.20% 
5.74% 6.34% 
1.34% 1.36% 

0.45 0.23 
767.5 772.94 

1,326.57 1,337.13 
3,136.07 3,138.95 

101,325.20 100,216.20 

n/a 0.05 
n/a 0.96 
n/a 0.99 
n/a 1.04 
n/a 4.28 

3.88 

2.30% 
5.32% 
1.05% 

40.03 
764.79 

1,317.52 
3,108.04 

74,851.38 

n ] a  

n/a 
r~'a 
rda 
n/a 

2.25°,4 
5.69% 
1.04% 

12.01 
762.64 

1,332.39 
3,145.70 

76,818.01 

0.3 
0.96 

1 
1.04 
2.99 

1.44% 0.38% 
3.09% 0.97% 
0.52% 0.09% 

40.02 13.53 
766.96 775.42 

1,327.54 1,347.02 
3,161.65 3,093.14 

70,614.65 62,606.7~ 

n/a 0.3 
n/a 0.9~ 
n/a 1.01 
n/a 1.05 
n/a 2.96 
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