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1. I n t r o d u c t i o n  

Missing values are common in most sample sur- 
veys. Imputation methods are widely used to treat 
missing values. When a feasible value is inserted 
in place of missing value by a suitable imputation 
method, a complete data set is obtained. Then usual 
statistical analysis programs can be applied directly 
to the imputed data set and consistent estimator 
of population mean can be calculated. However, 
usual variance estimator calculated from imputed 
data does not cover the imputation variance so that 
it underestimates true variance of sample mean of 
imputed data. Therefore, it does lead to incorrect 
statistical inference. Several authors have given al- 
ternative methods or modified methods for consis- 
tent variance estimation. 

Multiple imputation was proposed by Rubin(1978, 
1987) as a way of handling missing data that re- 
tains advantages of single imputation and at the 
same time provides a method of estimating uncer- 
tainty due to imputation. Developed from Bayesian 
point of view, Multiple imputation provides consis- 
tent variance estimator so that leads to valid infer- 
ence from imputed data. However, it needs higher 
cost of storage and processing than single imputa- 
tion since it requires multiple complete data set and 
more seriously, it is available only when imputation 
method is proper. But proper imputation may not 
exist in some cases. 

An adjusted jackknife variance estimation method 
was proposed by Rao and Shao(1992) under weighted 
hot-deck imputation. In this method, jackknife vari- 
ance estimator is constructed from adjusted jack- 
knife replicates when a respondent is deleted. How- 
ever, their method is valid only when weighted hot 
deck imputation method is used. Furthermore, it 
does not be applied to the multivariate case be- 
cause of different adjustment for each variable and 
can not be applied to nonsmooth estimator such 
as sample quantiles. This method was extended to 
two phase sampling with ratio and regression impu- 
tation and stratified multistage sampling with de- 
terministic imputation. (Rao, 1996; Rao and Sit- 

ter, 1995; Sitter, 1997; Sitter and Rao, 1997). For 
the stratified multistage survey data, Shao, Chen 
and Chen (1998) proposed an adjusted balanced re- 
peated replication method under imputation. Also 
Shao and Sitter(1996) showed that correct bootstrap 
estimates can be obtained by imputing to the boot- 
strap data set in the same way as the original data 
set. 

A model-based method was suggested by SSrndal 
(1992). He introduced imputation model and de- 
composed total variance into sampling variance and 
imputation variance under the model explicitly. Here- 
after by estimating two variance components unbi- 
asedly, SSrndal obtained unbiased estimator of total 
variance for the imputed sample mean. 

In this paper, we extend the model-based method 
to more general regression imputation model. In 
Section 2, we briefly explain basic concept of SSrndal's 
model-based method under imputation model. This 
method is extended to general regression imputation 
model in Section 3. Here we suggest a prediction im- 
putation method, which is basically best linear unbi- 
ased prediction under the proposed regression impu- 
tation model. Furthermore, we propose an unbiased 
variance estimator of the total variance of sample 
mean from imputed data. In Section 4, a simula- 
tion study is conducted to study the performance 
of the proposed method compared with unadjusted 
and adjusted variance estimation methods. Finally, 
Section 5 gives concluding remarks. 

2. Backgrounds  

Let A, be a simple random sample of size n from 
a finite population, A~ a respondent set of size r 
among the selected sample and A~_~ nonrespondent 
set of size n - r .  Denote imputed value for the nonre- 
sponse unit k by ~k. Then an imputed data obtained 
by using a suitable imputation method is given by 

* / Yk, k E A~ "response value 
Yk - ,  ~k, k E A~_~ • imputed value (1) 

From the imputed data, sample mean, 9I, is 1{ } 
YI -- -- Z Yk + E Y~ (2) 

n kEA,. k E A ~ _ .  

Let p be simple random sampling design, q ignor- 
able response mechanism and ~ imputation model. 
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Then total error of Yl from the population mean Y 
can be decomposed into sampling error, Ys - Y, and 
imputation error, Y1 - Ys. i.e., 

9,  - ? - (9, - ? )  + (9,  - 9 , )  

where !7s is sample mean from all response. 
We say that  !7I is totally unbiased for the popu- 

lation mean if 

E¢ E,E~ ( ~  - Y) = o (3) 

where each subscript is associated with correspond- 
ing probability distribution. In addition, we define 
total variance' of !7I as 

l/tot - EeEvEq(flI  - Ix) ~, (4) 

which also can be decomposed explicitly into three 
variance components, sampling variance, V, ara, im- 
putation variance, V/rap, and covariance, Vmix, such 
a s  

Vtot - V~.~ + Vim v + V ~  (5) 

From the above formula, we come to know that  if 
we find unbiased estimators for three variance con- 
ponents, say, Vsam, virav and Vmix, then the sum of 
them 

Vtot  - -  V s a m  "~" V i m p  "~" V m i x  (6) 

become an unbiased estimator of total variance Vtot. 

3. P r e d i c t i o n  Imputa t ion  and its U n b i a s e d  
V a r i a n c e  Est imat ion  

3.1 R e g r e s s i o n  Imputat ion  Mode l  

We consider a regression imputation model • 

! 
yk -- Xkl3 + ek, ek ~ (O, Vka2), k - 1 , . . . , N  (7) 

where/3 = (/31, ..., 13ra)' is regression coefficient ver- 
vor, Xk = (Xkl, ...,Xkra)' is known auxiliary data of 
unit k, Vk = V(Xk), which is dependent of unit k 
only, a 2 is unknown variance imposed on the error 
C k. It is assumed no covariance among errors. 

After rearranging response and nonersponse units, 
we introduce some notations • 

• Xs = ( xk j , k  e A s , j  = 1 , . . . ,m)  

• Xr  = (Xkj, k 6_ A r , j  = 1, ..., m) 

• X s - r  = (xkj, k E As - r ,  j = 1, ..., m) 

• Yr = (Yk, k E At )  : response vector 

• Wr = diag(vk, k EAr )  : diagonal matrix 

• Ws-r  = diag(vk, k E As-r) :  diagonal matrix 

• Vs-r = (vk ,k  E As-r)  : nonresponse vector 

Under the regression imputation model, a miss- 
ing value may be replaced by the best linear unbiased 
predicted value as the correct response value. By the 
prediction theory, we have the best linear unbiased 
predictor for/3 from Ar as 

3~ - ( X ' ~ W / ~ X ~ ) - ~ X ' ~ W i - ~ W ,  (8) 

so imputed value become ~)k ' ^ - Xk~r. Thus imputed 
data set is given by 

y~ _ { Yk, k E Ar 
' ' - -1  ' - -1  (9) X k ( X r W r X X r )  X r W r  Yr, k E A s - r  

Also, sample mean of imputed data is expresed as 

1 
9I - { 1 '  - rYr + l s - rXs-r /3r}  (10) 

n 

We can show that the imputed sample mean, yI, 
is totally unbiased for the population mean and also 
find an unbiased estimator of the total variance. The 
following theorem gives the result without proof. 

T h e o r e m  1 Suppose p is simple random sampling 
design with sample size n and q is an ignorable re- 
sponse mechanism. Let r be the size of response set. 
Then under the regression imputation model ~ as in 
(7), we have the following results : 

(a) The sample mean from imputed data, yI, is to- 
tally unbiased for the population mean Y.  
(b) An unbiased estimator of total variance of yI is 
given by 

s~ 1 
Vtot  = - - +  { ( I ' X s +  ' X r )  

• n n ( n -  1) s lr  

- (11) 
k E s - r  ) 

where 

6 .2 - 1 - - L  (yr - Xr~r) 'W~- l (yr  -- Xr~r) ,  (12) 
r - m  

s~ is sample variance from the imputed data, and ~r 
is given as in (8). 

3.2 Rat io  Imp u ta t ion  M o d e l  
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Ratio imputation model is a simple case of re- 
gression imputation models, where m = 1. We con- 
sider 

Yk -- Zk~  + Sk, ek ~ (O, vka2) ,  k =  l , . . . , N  (13) 

wherexk > O , v k - - X g k  and0_<g_<2 .  
Then imputed data is obtained as 

, { Y k ,  k E A r  

2-g k E As- X k ) ,  r 

and sample mean from imputed data is given by 

- _ ! 
2--g YI Yk + xk "-"ker 

n k - r  

(15) 

As a result, unbiased total variance estimator is 
given by 

V t o t  - -  - -  -I- 
n n ( n -  1) 

2--g 
X E k E r  X k  

- 

) 

where 

(17) 
r - 1  xg k Yk -- Xk ~ ,ke~  Xk 

The usual ratio model is the case of g - 1 and the 
result of g - 1 is the same as that of S/irndal(1992). 

4. A S i m u l a t i o n  S t u d y  

We conducted a simulation study to examine the 
performance of the proposed method compared with 
others. We considered three regression models, sim- 
ple ratio model (Model 1), simple regression model 
(Model 2) and multiple regression model (Model 3) 
with two auxiliary variables. Model 3 is expressed 
as 

Y -- ~0 -I- ~ l X l  -I- ~2X2 -I- e (18) 

(/9o=0 and ~2=0 in Model 1 and/~2=0 in Model 2). 
Auxiliary variable Xl was generated from gamma 
distribution G ( g l , h l )  and x21xl was from gamma 

distribution G(g2 , x11/5), and error e was from nor- 
mal distribution N(0, va  2) independently. For each 

model, three variance components v were consid- 
ered. In case of Model 3, 

1 + xl + x2)  
v3--  3 

g 

, g -- 0, 1.0, 1.5 (19)  

( vl -- x~ in Model 1 and v2 - ((1 +xl) /2)g  in Model 
2) 

For each model, we chosen a simple random sam- 
(14)ple of size n - 30 and then we got a respondent 

set with response rate 70% from the selected sam- 
ple. Here, we used three response mechanisms, one 
ignorable(a = 0) and two nonignorables( a=-0.7, 
0.7) in the response probability p : 

P ~ (/90 + ~1xl +/~2x2) ~ (20) 

As a result, all 27 kinds (3 Models x 3 variance 
components x 3 response mechanisms) of respon- 
dent set were obtained. For each respondent set, 
we got four imputed data set by employing four im- 
putation methods including mean imputation (M), 
ratio imputation (R), regression imputation (G) and 
hot-deck imputation (H). 

For comparision study, all 9 kinds of variance 
estimators were considered. First, four naive vari- 
ance estimators, VIM, VIR, rIG and VIH, were calcu- 
lated from imputed data, here subscripts are asso- 
ciated with imputation methods. Next, we consid- 
ered design-consistent variance estimator (Cochran, 
1977) : 

(11)  
V c - "  - - 8 r y  -I- -- - -  - -  8 r d  (21) 

n r n 

2 where sty = Y'~ker(Yk -- # r ) 2 / ( r -  1) and sr d2 __ 
~ k e r ( Y k  - - ( Y ~ / X r ) X k ) 2 / (  r -- 1). It is constructed 
based on two-phase sampling procedure (first phase 
- sample selection and second phase- response) and 
no imputation is used. The ratio imputation is also 
used in two-phase sampling procedure, then sample 
mean after ratio imputation become ratio estimator, 
i.e., 

yk+  xk= R (22) 
r k E r  7% - -  r k - r  

So, v c  can be an alternative variance estimator un- 
der ratio imputation model with g - 1. However, 
if we start with model-based approach under ratio 
imputation model with g = 1, we can expect vR as 
in (15) with g = 1 to be obtained. Rao and Sitter 
(1995) considered ratio imputation under two-phase 
sampling and proposed a jackknife variance estima- 
tor, v j R ,  based on adjusted imputed values, which 
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was shown to have large sample validity under uni- 
form response mechanism. 

For an imputed data by hot-deck imputation, 
Rao and Shao (1992) proposed an unified technique 
that adjusts jackknife replicates when a respondent 
is deleted to naive jackknife variance estimator. The 
adjusted jackknife variance estimator, V J H  , is given 
by 

n - I  n 
VjH -- E (zj~ ( - - j )  -- ~71) 2 (23) 

n 
j = l  

where 9~ is adjusted jackknife replicates. Finally, 
the proposed variance estimator, vc, is given as in 
(10) under the assumed regression imputation model. 

To evaluate the performance of 9 methods, we 
generated B = 100,000 independent samples for 27 
cases. First, we calculated the percent relative bias 
of the sample mean from imputed data, which is 
given by 

" - 

R E B -  E ~ × 100 (24) 
b--1 

where ~(/) is sample mean from bth replication. Sec- 
ondly, we got the percent relative bias of the variance 
estimator, 

B ( v ( b )  _ 

R E V -  E V(~7,) x 100 (25) 
b=l  

where v (b) is variance estimator calculated from the 
bth replication and V (~7I) is estimated variance of yI 
through simulation. All simulations were performed 
using SAS/IML, version 6.12. The results are sum- 
marized in Table 1, 2 and 3. 

It can be noted from Table 1 that under ignorable 
response mechanisms (a = 0), sample means from 
imputed data have small relative biases. They are 
not so different. However, under nonignorable re- 
sponse mechanisms, imputed sample means by mean 
and hot-deck imputation are seriously biased upward 
(c~ =-0.7) or downward(a=0.7). But sample means 
after ratio or regression imputation have less bias 
than others. In particular, sample mean with regres- 
sion imputed values is nearly unbiased regardless of 
ignorable or nonignorable response mechanism. 

For the variance estimation, as it can be seen 
from Table 2 and 3, we can say as a whole that the 
proposed estimator, vc, performed better than any 
other estimators for the most cases and next, two 
adjusted jackknife variance estimators, V J R ,  under 
ratio imputation and V J H  under hot-deck imputa- 
tion were more efficient than other estimators except 
VG. 

T a b l e  1. Percent  Relat ive Biases of Sample Means from 
Impu ted  D a t a  

a MD 
-0.7 1 

0.7 

g 
0.0 
1.0 
1.5 
0.0 
1.0 
1.5 
0.0 
1.0 
1.5 
0.0 
1.0 
1.5 
0.0 
1.0 
1.5 
0.0 
1.0 
1.5 

YM ffl:/ .YG yH 
-16.35 -0.01 -0.01 -16.37 
-16.36 -0.02 -0.02 -16.37 
-16.37 -0.03 -0.04 -16.37 
-13.14 4.17 0.00 -13.15 
-13.14 4.18 0.01 -13.14 
-13.13 4.18 0.01 -13.14 

-9.17 4.34 0.00 -9.20 
-9.17 4.34 0.01 -9.21 
-9.17 4.34 0.01 -9.22 
0.01 -0.01 -0.01 -0.02 
0.01 -0.01 -0.01 -0.01 
0.01 -0.01 -0.01 0.00 
0.01 0.15 0.00 0.02 
0.01 0.16 0.01 0.02 
0.02 0.16 0.01 0.02 

-0.02 0.37 0.00 -0.02 
-0.02 0.38 0.00 -0.02 
-0.01 0.38 0.01 -0.02 
18.95 -0.00 
18.95 0.01 
18.96 0.01 
13.20 -2.78 
13.21 -2.78 

0.00 18.95 
0.01 18.98 
0.01 19.02 

-0.00 13.24 
-0.00 13.24 
-0.00 13.24 
0.00 9.46 
0.01 9.46 
0.01 9.46 

0.0 
1.0 
1.5 
0.0 
1.0 
1.5 
0.0 
1.0 
1.5 

13.21 -2.78 
9.47 -2.92 
9.47 -2.91 
9.47 -2.92 

Table 2. Percent  Relat ive Biases of Naive Variance 
Es t imators  

a MD VIM VlR rIG VlH 
-0.7 

0.7 

g 
1 0.0 

1.0 
1.5 

2 0.0 
1.0 
1.5 

3 0.0 
1.0 
1.5 

0 , 1 

2 

3 

0.0 
1.0 
1.5 
0.0 
1.0 
1.5 
0.0 
1.0 
1.5 
0.0 
1.0 
1.5 
0.0 
1.0 
1.5 
0.0 
1.0 
1.5 

-49.55 - 1 3 . 6 8  - 9 . 5 0  -40.90 
-50.45 -37 .27  -37 .27  -41.77 
-51.05 -50 .79  -48 .28  -42.36 
-50.65 7.77 - 9 . 2 2  -42.23 
-50.86 -12 .86  -28 .83  -42.52 
-51.04 -27 .90  -41 .45  -42.74 
-50.04 5.86 - 5 . 4 2  -41.98 
-50.65 -5.33 - 19.82 -41.I0 
-50.75 -16 .46  -32 .02  -41.22 
-51.78 -8.08 -5.68 -42.88 
-51.87 -27.03 -27.03 -43.08 
-51.81 -38.84 -36.68 -43.09 
-51.67 4.93 -7.69 -43.28 
-51.59 -10.27 -19.75 -43.11 
-51.55 -22.25 -28.62 -43.01 
-51.58 6.13 -4.87 -43.01 
-51.50 -3.90 -15.05 -42.96 
-51.44 -14.03 -23.99 -42.92 
-52.53 -3.37 -2.48 -43.96 
-52.36 -15.10 -15.10 -43.84 
-52.12 -23.11 -21.83 -43.64 
-52.32 5.75 -8.69 -43.59 
-52.21 -4.63 -14.86 -43.39 
-52.09 -13.34 -17.89 -43.23 
-51.44 10.56 -5.24 -42.67 
-51.41 1.55 -12.49 -42.59 
-51.38 -7.62 -17.59 -42.55 
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Table 3. Percent Relative Biases of Adjusted Variance 
Es t imators  

a MD g v c  v R  va  R VG_ v j  H 

-0.7 1 0.0 
1.0 
1.5 

2 0.0 
1.0 
1.5 

3 0.0 
1.0 
1.5 
0.0 
1.0 
1.5 
~.0 
1.0 
1.5 
0.0 
1.0 
1.5 

0.7 1 0.0 
1.0 
1.5 

2 0.0 
1.0 
1.5 

3 0.0 
1.0 
1.5 

-22.20 14.00 0.40 0.16 5.17 
-26.52 -0.42 -0.87 -0.42 3.60 
-28.75 -11.37 -1.95 -0.58 2.53 
-25.69 47.79 6.00 0.01 2.79 
-27.32 29.48 3.83 -0.14 2.29 
-28.44 14.59 1.95 -0.19 1.90 
-30.50 87.80 4.50 -0.07 3.25 
-29.35 75.61 4.03 0.35 3.04 
-28.24 61.04 3.36 0.62 2.83 

-0.20 7.95 0.09 0.01 1.66 
-1.10 -0.48 -0.77 -0.48 1.30 
-1.33 -8.13 -1.27 -0.49 1.27 
0.01 28.52 1.05 0.20 0.89 

-0.32 17.99 0.55 0.22 1.20 
-0.56 8.15 -0.03 0.23 1.39 
-3.36 72.97 0.41 -0.20 1.41 
-2.95 61.98 0.40 0.05 1.49 
-2.48 48.80 0.30 0.26 1.56 
11.60 2.60 0.25 0.19 -0.28 
22.84 -0.29 -0.32 -0.29 -0.05 
30.90 -4.10 -0.62 -0.38 0.29 
15.43 16.23 3.04 -0.14 0.37 
20.26 10.76 2.07 -0.16 0.73 
24.31 5.03 1.20 -0.13 1.00 
26.19 59.33 3.40 -0.23 1.99 
26.36 49.72 2.81 -0.02 2.15 
26.52 38.32 2.16 0.19 2.21 

Specifically, the proposed estimator va worked 
well for most cases of our simulation and will be ex- 
pected to be highly efficient if the assumed model 
holds. Furthermore, although our theoretical devel- 
opment of variance and its estimator was derived 
under ignorable response mechanism only, the sim- 
ulation results say that the proposed variance esti- 
mator can work well under nonignorable response 
mechanism if the assumed model holds. This is a 
by-product of the simulation study. 

Secondly, as in Table 2, four naive variance es- 
timators underestimated the true variance seriously. 
it underestimated by over 50 % for most cases in 
case of mean imputation, and by over 40 % in case 
of hot deck imputation. Two other estimators, vIR 
and vIG, also underestimated up to 30 %. They were 
already expected because the true variance of the es- 
timator from imputed data is greater than that from 
all observed data due to imputation, but naive vari- 
ance estimator does not cover the imputation effects 
by using imputed data as if observed data. 

Thirdly, in the first column in Table 3, design 
consistent variance estimator vc worked well in case 
of ignorable response pattern( c~=0 ). By contrast 
percent relative biases were over 20% in nonignor- 
able cases(c~ = 0 .7 , -0 .7  ). It resulted from the 
fact that since ve was constructed under uniform 

response mechanism, it come to have large va~riation 
if the assumption is violated. Fourthly, in the sec- 
ond column of Table 3, vR, has lower percent bias 
under the Model 1, i.e., simple ratio model and has 
large biases under the other models. Because vR is 
best only in case of the ratio imputation model with 
g = 1, so it does not works well in the other cases. 

Finally, we came to know that two adjusted jack- 
knife variance estimators, vgR and VJH were good 
candidates for variance estimation from imputed data 
regardless of response mechanism, ignorable or non- 
ignorable. In particular, the table showed that v jR 
is very efficient under the first model. 

5. C o n c l u s i o n  

In this paper we have studied a prediction method 
for imputation and its unbiased variance estimation 
method under regression imputation model. We pro- 
posed best linear unbiased predicted value as an im- 
puted value and derived sample mean from imputed 
data. Also, we obtained unbiased variance estima- 
tor of the imputed sample mean under the model. 
Through a simulation study, we conformed that the 
sample mean after prediction imputation is nearly 
unbiased under nonignorable as well as ignorable re- 
sponse mechanism and the proposed variance esti- 
mator is more efficient than other known adjusted 
variance estimators. Furthermore, the proposed es- 
t imator is applicable regardless of ignorable or non- 
ignorable response mechanism. 
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