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1. Introduction 
The finite population correction (fpc) is used to 

adjust a variance estimator when the sample is selected 
without replacement from a finite population. 
Incorporation of the fpc into the resampling variance 
estimators such as the jackknife and the bootstrap 
becomes more complex in the presence of imputation. 
When the fpc is non-negligible, these variance 
estimators without the fpc-correction can appreciably 
overestimate the variance. On the other hand, a naYve 
application of the fpc can cause an appreciable 
underestimation. This paper addresses this problem. 

The main variance components of estimators 
based on imputed data are the sampling variance and 
imputation variance, which is due to imputation. The 
standard variance estimators traditionally used 
underestimate the total variance in the presence of 
imputation by treating imputed values as observed. 
Many remedies to the problem have been proposed. An 
early starter is multiple imputation proposed by Rubin 
(1987). For single imputation, traditional variance 
estimation techniques have been modified to address 
the problem (see Lee, Rancourt, and S~irndal, 2000, and 
Shao, 2000 for review). 

Methods based on resampling techniques for 
imputed data do not provide the two variance 
components separately and this makes the application 
of the fpc difficult since it has to be applied only to the 
sampling variance component. 

In the case of the jackknife, there are some 
solutions to this problem. For example, for simple 
random sampling with uniform response mechanism, 
Lee, Rancourt, and S~irndal (1995) considered a simple 
solution, where the sampling variance is separately 
estimated using the respondents only so that the fpc is 
properly applied. 

Rao and Sitter (1995) considered linearized 
jackknife estimator assuming the set of respondents is a 
second phase sample from the full sample. Once the 
variance is linearized, the fpc can be easily 
incorporated. 

Steel and Fay (1995) studied another solution 
based on the adjusted jackknife variance estimator of 
Rao and Shao (1992). 

Shao and Sitter (1996) proposed a bootstrap 
variance estimator that can be applied to imputed data. 
Unlike the adjusted jackknife, which overestimates the 

variance, the Shao-Sitter bootstrap estimator 
underestimates the variance. As far as we know, no 
solution has been proposed for this problem. 

The all-cases imputation (ACI) method 
(Montaquila and Jernigan 1997) involves imputing for 
respondents as well as nonrespondents, then using the 
differences between imputed and actual values for 
respondents to estimate the imputation error variance 
component. Since the ACI variance estimator contains 
separate terms for the sampling and imputation error 
variance components, the fpc may be easily 
incorporated by applying it to only the sampling error 
variance component. 

In this article, we propose some solutions to 
address the fpc problem. We will discuss our proposed 
new methods in detail in section 2. We evaluated the 
new methods using a simulation study, of which the 
results are presented in section 3. In section 4, we give 
some concluding remarks 

2. New Approaches to the Problem 
To introduce the idea, let's assume a simple 

random sample design, where a sample, s, of size n is 
selected by simple random sampling without 
replacement (SRSWOR) from a universe of size N. The 

variable of interest is denoted by y and indexed as Yk 
to denote the value of the variable for the k-th unit. The 
set of m respondents is denoted by r. An auxiliary 
variable x is observed for all units in s. The parameter 
of interest is the population mean and it is estimated by 

* 

the sample mean. Let D*=  { y k l k  ~ s) be imputed 
* • 

data set where Yk=Yk for k s r  and Yk=)~k is the 

imputed value for k s s -  r .  If ratio imputation is used, 

then )~k =[~xk, k ~ s - r  with ~ = Z r y k / ~ r X k .  A 

random ratio imputation is achieved by adding a 

randomly selected residual (~ )  to [~x k where 

(observed) residuals are defined by ek = Yk-[~xk. 

Setting x k =1 for all k ~ s ,  we obtain mean 
imputation or hot deck imputation. 

After imputation, the population mean is then 
estimated by 

_, 1 • 
Ys = --  ~ Yk • 

1l k~s  
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Ignoring the fpc, the nai've jackknife variance 

estimator applied to D* is given by 

v j  = ~  -*)2 
/1 j=l  

m ~  

where Ys (-J) is calculated using the reduced data set 
with j-th unit deleted. This variance estimator 
underestimates the total variance by missing the 
imputation variance component completely. 

To correct the underestimation, Rao and Shao 
(1992) proposed to use an adjustment to the imputed 
data for hot deck imputation. The adjustment is applied 
only to the imputed values depending on whether the 
deleted unit for the jackknife estimation is a respondent 
or not. The basic principle is that when the deleted unit 
is a respondent, the imputed value should be modified 
to reflect the effect of the reduced data set without the 
respondent to the imputation procedure. Reimputation 
was tried to incorporate this effect (Burns, 1990) for hot 
deck imputation but Rao and Shao (1992) proved that 
the resulting jackknife variance estimator overestimates 
the variance and proposed the adjustment approach. 

The adjustment proposed by Rao and Shao 
(1992) is defined as follows: 

y;(a) ( j )  = I Yi if j e s - r  
LYk + E (Yk ) -  E(Yk ) if j ~ r  

where E is the expectation under the imputation 
procedure with the full data set and E'  is the same 
expectation but with the j-th unit deleted. The adjusted 

jackknife variance estimator, denoted by v(j a), is 
/ \  

obtained by applying the jackknife variance estimator 
to the adjusted values. This variance estimator is valid 
if the sampling fraction is negligible. However, if the 
sampling fraction is appreciable, the adjusted jackknife 
variance estimator overestimates the variance of the 

imputed estimator, y . On the other hand, if the fpc is 

naively applied (i.e., (1-f)v(ja)),- then the variance is 

underestimated because the fpc is applied not only to 
the sampling variance but also to the imputation 
variance, which does not need the correction. 

Our approach to handle this problem is to first 
estimate the sampling variance by the ordinary 
jackknife variance estimator, v j ,  applied to unadjusted 

data set D*. The imputation variance is then estimated 

by v(ja)-vj, and is set to be zero if v(j a)-vJ is 
i \ 

negative. Applying the fpc to the sampling variance 
component and adding the imputation variance 
component to it, we obtain the following new fpc- 

corrected adjusted jackknife variance estimator for 
imputed data" 

(1- f )v j  
if v(j a) - Vj >_ 0 
otherwise 

Turning to the bootstrap method, the basic 
principle of the modification Shao and Sitter (1996) 
proposed for imputed data is to follow the spirit of the 
bootstrap method, where the sampling and response 
behaviors are mimicked through simulation. To 
incorporate the imputation variance the modified 
bootstrap uses reimputation to replace the 
nonrespondents' original imputed values in the 
bootstrap sample using the respondents in the bootstrap 
sample. The bootstrap sampling for survey data that 
provides the basic framework for the Shao-Sitter 
proposal is done to mimic the finite population 
sampling and so it is supposed to incorporate the fpc in 
the bootstrap sampling procedure. ~qaen this finite 
population bootstrap sampling is modified for imputed 
data, the finite population sampling feature is carried 
over and thus, the fpc is automatically incorporated if 
present. The variance estimate obtained from the 
modified bootstrap method, however, include the 
imputation variance and it gets corrected unnecessarily, 
which results in underestimation of the variance. This 
was also noticed by Lee, Rancourt, and S~irndal (2000). 

In our solution to this problem, we assume that 
the ordinary bootstrap variance estimator (without the 
Shao-Sitter modification) estimates the sampling 
variance correctly. This is usually the case for 
stochastic imputation methods such as hot-deck and 
random ratio imputation. 

Let VOB be the ordinary bootstrap variance 

estimator applied to imputed data and let Vss B be the 
Shao-Sitter modified bootstrap variance estimator, 
which contains the imputation variance (let this be 

denoted by VB.IM although it is not estimated in the 
procedure). The above discussion can be summarized 
by the following equation: 

VSSB = v O B  + (1 - f ) v B - t M  • 

The unnecessary multiplication of ( I - f )  to VB.IM 

causes the underestimation. Then the correct variance is 

given as VOB + VB_IM. However, the imputation variance 
is not directly estimated. Our solution is to obtain an 

estimate of the imputation variance using VOB and 

Vss B by algebraic manipulation from the above 

equation, namely, VB.IM -- (1 -- f ) - l  (Vss B _ VO B)- 
Inserting this in the correct formula, we get 
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•(c) 
SSB = vOB + (1 - f ) - I  (Vss B _ Vo B ) 

- (1 - f ) - I  (Vss B _ fvoB). 

Alternatively, a bootstrap sampling method that is used 
for a with-replacement sample may be used to obtain an 
fpc corrected modified bootstrap variance estimator for 
imputed data. We will use primed symbols to denote 
the bootstrap sampling quantities (for the with- 
replacement sample) that correspond to the bootstrap 

sampling quantities (rOB and Vss B for the without- 
replacement sample). Then an fpc-corrected variance 
estimator is obtained by 

•,(c) r r 
SSB - - V S S B  - - f - ~ O B  " 

However, since the imputation variance is 
estimated by the difference of two variance estimates, it 
can be negative. In this case, it would be more sensible 

to insert zero for VB.IM in the above derivations. 
Consequently, we recommend using the following 
variance estimator: 

~(c) VSSB - fvoB if VSS B - rOB > 0 
SSB = 

1 - f  

= r O B  otherwise. 

o r  

1,(c) , , , 
SSB = VSSB - fv~3B if VSS B - rOB > 0 

= (1-  f)v~3 B otherwise. 

Note that the latter formula is in the same form as for 
the corrected jackknife formula. We used this formula 
in the simulation. 

The above discussion is readily applicable for a 
stratified simple random sampling design if imputation 
is carried out stratum by stratum. Note that resampling 
variance estimation methods such as the jackknife and 
the bootstrap are not directly applicable for the case of 
census and in the discussion in this section, we tacitly 
assume that the sampling fraction is less than 1. 

3. Simulation Study 
In order to evaluate the approach described in 

section 2, a Monte Carlo simulation study was 
undertaken. For the simulation study, two finite 
populations of size N = 300 were generated. The first 
population was generated by sampling from a normal 
distribution, and the second population was generated 
by sampling from a lognormal distribution. In the first 
population, the variable y has a population mean of 99.2 
and population standard deviation of 19.1. In the 
second population, the population mean and standard 
deviation ofy  are 113.2 and 182.4, respectively. 

Next, for each iteration of the simulation, a 
simple random sample was selected. Different 
combinations of the sampling fractions for SRSWOR 
and item response rates with the uniform response 
mechanism. The sampling fractions considered in this 
simulation were 1/3, 2/3, and 1, and the item 
nonresponse rates were '4, ½, and ¾. For item 
nonrespondents, y was imputed using a single-cell 
random hot-deck. The completed dataset (i.e., the full 
dataset containing the actual values of y for item 
respondents and the imputed values of y for item 
nonrespondents) was used to obtain an estimate of the 
overall mean of y, and the approach described in section 
2 was used to obtain estimates of the variance of the 

/ \ 

mean using the fpc-corrected ACI, jackknife Iv(ca)l, 
f 

\ 
I ( C )  

/ variance estimators. and bootstrap ~Vss B 
For each combination of sampling fraction and 

item nonresponse rate, this process was repeated for 
1,000 iterations. For each of the fpc-corrected variance 
estimators, the mean variance estimate was computed 
and compared to the Monte Carlo variance in the 
estimates across the 1,000 iterations. Additionally, the 
confidence interval coverage rates were computed for 
nominal 95 percent confidence intervals. 

Table 1 gives a comparison of the mean 
uncorrected variance estimates to the Monte Carlo 
variance. The results are very similar across the three 
methods. The ratios in this table demonstrate that using 
variance estimates for imputed data without corrections 
for without-replacement finite population sampling may 
result in substantial overestimation of the variance. 

In table 2, the mean fpc-corrected variance 
estimates are compared to the Monte Carlo variance. 
Again, the ratios are close to 1 for most of the cases and 
very similar across the three methods studied. This 
table demonstrates substantial reduction in the bias of 
the imputation variance estimates when the fpc 
correction described in Section 2 is applied. 

Tables 3 and 4 give the confidence interval 
coverage rates for nominal 95 percent confidence 
intervals constructed using the uncorrected and fpc- 
corrected variance estimates, respectively. As depicted 
in table 3, confidence intervals based on the 
uncorrected variance estimates tend to have coverage 
rates that are higher than the nominal rate, due to the 
overestimation of the variance. For the case of 
sampling from the normal population, Table 4 
demonstrates that when the fpc-corrected variance 
estimators are used, the confidence intervals tend to 
have coverage rates that are much closer to the nominal 
rate. This pattern in the confidence interval coverage 
rates is not clear for the simulations involving the 
population generated by sampling from the lognormal 
distribution. However, we believe that this is not 
indicative of a problem with the fpc-corrected variance 
estimators, but rather due to the failure of asymptotic 
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results with small sample sizes from such a skewed 
distribution. 

4. Summary and Conclusions 
In the case of finite population sampling, variance 

estimators that have been developed for imputed data 
must be adapted to account for the fact that the sample 
was drawn without-replacement from a finite 
population if that is the case. When the variance 
estimator contains separate terms for the sampling error 
and imputation error variance components, the 
adaptation may involve simply applying the fpc to the 
estimate of the sampling error component. However, 
when these components are not explicitly estimated, 
this approach is not feasible and other alternatives must 
be explored. 

We have described and evaluated three fpc- 
corrected variance estimators for imputed data in the 
context of simple random sampling with single-cell hot- 
deck imputation (with direct extensions to stratified 
random sampling). The first, based on the all-cases 
imputation approach, involves adapting a variance 
estimator that contains separate terms for the sampling 
and imputation error variance components, as described 
above. The other two approaches involve using 
different jackknife and bootstrap variance estimators to 
estimate variances that reflect the imputation error 
component and variances that do not reflect the 
imputation error component; estimating the sampling 
error component by subtraction; and applying the fpc to 
only the sampling error component. Simulation results 
demonstrate substantial improvement in the variance 
estimates (compared with variance estimates that do not 
reflect the fpc) and in confidence interval coverage 
rates. 
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Table 1. Comparison of uncorrected variance estimates from simulation study to Monte Carlo variance 

Population 
distribution 

Normal 

Lognormal 

Sampling 

fraction 
(percent) 

33 
33 
33 
67 
67 
67 
100 
100 
100 
33 
33 
33 
67 
67 
67 
100 
100 
100 

Item 
Ratio of mean uncorrected variance estimate to 

Monte Carlo variance 

nonresponse 
rate (percent) ACI 

Rao-Shao 
jackknife 

1.30 
1.17 
1.19 
1.70 
1.33 
1.16 
2.84 
1.86 
1.30 
1.29 
1.05 
1.03 
1.76 
1.42 
1.23 
2.83 
1.72 
1.30 

25 
50 
75 
25 
50 
75 
25 
50 
75 
25 
50 
75 
25 
50 
75* 
25 
50 
75 

1.29 
1.14 
1.08 
1.70 
1.32 
1.12 
2.84 
1.85 
1.28 
1.29 
1.03 
0.92 
1.76 
1.43 
1.12 
2.81 
1.71 
1.28 

Shao-Sitter 
bootstrap 

1.29 
1.16 
1.16 
1.69 
1.32 
1.14 
2.83 
1.86 
1.29 
1.29 
1.03 
1.00 
1.76 
1.40 
1.22 
2.82 
1.71 
1.28 

*Results for this combination of parameters are based on 700 iterations (rather than 1,000). 

Table 2. Comparison of fpc-corrected variance estimates from simulation study to Monte Carlo variance 

Population 
distribution 

Normal 

Lognormal 

Sampling 
fraction 

(percent) 

Ratio of mean fpc-corrected variance estimate to 
Monte Carlo variance 

33 
33 
33 
67 
67 
67 
100 
100 
100 
33 
33 
33 
67 
67 
67 
100 
100 
100 

Item 
nonresponse 
rate (percent) 

25 
50 
75 
25 
50 
75 
25 
50 
75 
25 
50 
75 
25 
50 
75* 
25 
50 
75 

fpc-corrected 
ACI 
1.02 
O.98 
1.00 
0.98 
0.97 
0.96 
1.05 
1.12 
1.02 
1.02 
0.89 
0.85 
1.02 
1.05 
0.95 
1.03 
1.03 
1.01 

*Results for this combination of parameters are based on 700 iterations (rather than 1,000 

fpc-corrected 
Rao-Shao 
jackknife 

• . 

1.03 
1.02 
1.11 
0.99 
0.98 
1.00 
1.05 
1.12 
1.03 
1.02 
0.91 
0.96 
1.02 
1.05 
1.06 
1.05 
1.04 
1.03 

fpc-corrected 
Shao-Sitter 
bootstrap 

1.02 
1.00 
1.08 
0.98 
0.97 
0.98 
1.04 
1.12 
1.02 
1.02 
0.89 
0.93 
1.02 
1.02 
1.05 
1.05 
1.04 
1.02 
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Table 3. Confidence interval coverage rates (nominal 95% confidence intervals) from simulation study based on 
uncorrected variance estimates 

Population 
distribution 

Normal 

Lognormal 

Sampling 
fraction 

(percent) 

33 
33 
33 
67 
67 
67 
100 
100 
100 
33 
33 
33 
67 
67 
67 
100 
100 
100 

Item 
nonresponse 
rate (percent) 

Confidence interval coverage rate (nominal 95% 
confidence interval) 

ACI 

97.7 
95.7 
92.7 
98.9 
97.1 
94.5 
100.0 

Rao-Shao 
jackknife 

97.5 
96.9 
96.3 
98.9 
97.3 
96.4 
100.0 

25 
50 
75 
25 
50 
75 
25 
50 
75 
25 
50 
75 
25 
50 
75* 
25 
50 
75 

99.2 
97.5 
93.4 
89.1 
84.6 
97.4 
95.1 
90.9 
99.6 
97.2 
92.8 

98.9 
95.5 
92.7 
88.9 
80.9 
97.4 
95.0 
86.7 
99.6 
97.7 
91.8 

*Results for this combination of parameters are based on 700 iterations (rather than 1,000 

Shao-Sitter 
bootstrap 

98.3 
98.4 
97.3 
99.7 
98.6 
97.5 
100.0 
100.0 
99.1 
93.6 
90.3 
86.0 
98.9 
96.9 
91.1 
99.7 
98.5 
93.9 

Table 4. Confidence interval coverage rates (nominal 95% confidence intervals) from simulation study based on 
fpc-corrected variance estimates 

Population 
distribution 

Normal 

Lognormal 

Sampling 
fraction 

(percent) 

33 
33 
33 
67 
67 
67 
100 
100 
100 
33 
33 
33 
67 
67 
67 
100 
100 
100 

Item 
nonresponse 
rate (percent) 

25 
50 
75 
25 
50 
75 
25 
50 
75 
25 
50 
75 
25 
50 
75* 
25 
50 
75 

Confidence interval coverage rate (nominal 95% 
confidence interval) 

fpc-corrected fpc-corrected 
fpc-corrected Rao-Shao Shao-Sitter 

ACI jackknife bootstrap 

95.7 
93.5 
91.3 
95.2 
93.6 
92.8 
95.7 
96.1 
92.3 
90.4 
86.4 
78.4 
92.7 
90.6 
82.7 
93.7 
91.9 
86.1 

*Results for this combination of parameters are based on 700 iterations (rather than 1,000 

95.7 
95.2 
96.0 
95.4 
94.2 
95.2 
95.8 
97.0 
95.4 
91.2 
87.6 
84.0 
93.0 
92.8 
88.7 
93.6 
94.3 
91.0 

97.1 
97.9 
97.1 
97.6 
96.9 
96.7 
98.6 
98.3 
96.9 
91.7 
88.9 
85.6 
96.6 
94.0 
89.3 
96.7 
96.2 
92.0 
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