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1. INTRODUCTION 
Regression imputation, that includes ratio imputation as 
a special case, is a frequent method to reduce 
nonresponse bias in surveys. In practice, the generalized 
least squares method is often used to estimate imputation 
model parameters without weighting by the design 
weights. However, if a probabilistic response mechanism 
is assumed and if the response probabilities are known, or 
can at least be well estimated, using the design weights 
and the nonresponse adjustement factors lead, for large 
samples, to approximately unbiased estimates of the 
population parameters justified by the imputation model. 
In fact, if the response probabilities are known, we may 
view the response mechanism as a second phase of 
selection (Sarndal, Swensson and Wretman, 1992, p. 558) 
and use the two-phase sampling theory to estimate 
population parameters justified by the imputation model. 

The focus of this paper is only on a response mechanism 
that depends on the variable being imputed, referred to as 
a nonignorable response mechanism. Such a response 
mechanism can lead to severe bias in the estimates of the 
imputation model parameters when the standard 
generalized least squares method is used. This kind of 
response mechanism is often dealt with by simultaneously 
modeling and estimating the response probabilities and 
the variable of interest (Greenlees, Reece and Zieschang, 
1982; Beaumont, 1999, 2000 among others). However, 
none of these papers addressed the issue of variance 
estimation, except the former which gave a partial 
solution to the problem. Although some methods for 
variance estimation in the presence of imputation are now 
well known (see Lee, Rancourt and Sfirndal, 2001 for a 
review), they usually do not apply or are more difficult to 
apply in the case of nonignorable nonresponse. The goal 
of this paper is thus to propose a practical variance 
estimation approach when response probabilities are 
estimated and when there is nonignorable nonresponse. 

In section 2, regression imputation is reviewed 
emphasizing the case where response probabilities are not 
assumed to be uniform. The imputation strategy 
proposed in Beaumont (1999, 2000) is also developped in 
greater detail. In section 3, estimation of the population 
mean as well as variance estimation are discussed. In 

section 4, the estimation method in the presence of 
nonignorable nonresponse, developped in Beaumont 
(1999, 2000), is described. The variance estimation 
approach proposed in this paper is evaluated through a 
simulation study using data from the Survey of Labour 
and Income Dynamics (SLID) of Statistics Canada. The 
results are presented in section 5. Finally, a brief 
conclusion is provided in the last section. 

2. REGRESSION IMPUTATION 
In the following, the objective is to estimate the mean of 
variable y for a given population U. A sample s is 
selected from the population and the variable y is only 
observed for part of s. The sample of respondents is 
denoted by r and the sample of nonrespondents is denoted 
by o. It is also assumed that there is a vector of auxiliary 
variables, x, observed for all units in the sample s and 
correlated with y. 

The estimator of the population mean, f" = F,k~ U y~ I N ,  

where N is the population size, can be obtained by 
imputing missing values: 

fz[ _ - ~--,I, es w k Y.k , (2.1) 

kss Wk 

where w k = l /n  k is the sampling weight for unit k 
corresponding to the inverse of the selection probability 

• • 

nk' Y.k = Yk' for k c r, Y.k = Yk, for k co ,  and Yk is the 
imputed value for the nonresponding unit k. In the case 
of complete response, equation (2.1) yields the usual 
estimator: 

?,  = ~k~, wkYk 
• (2.2) 

~k~s W k 

Regression imputed values are justified by the following 
model: 

/ 

Yk = Xt, P + Sk , (2.3) 

where p is an unknown vector of parameters, s k are 
mutually independent random errors, with zero mean and 

• 2 I ,  variance a x k X, X is a vector of known constants and ~2 
is an unknown parameter. The method of generalized 
least squares is often used to estimate p. It consists of 
solving the following system of equations: 

Zkcr  Wk / Xk 
( Y k  - X k  [ I )  ~ - 0 , I 

Pk Xk~,  
(2.4) 
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where Pk are the true response probabilities assumed to 
be greater than zero and known for all units in the sample 
s. In practice, these response probabilities have to be 
estimated but, for now, they will be assumed to be 
known. The solution of (2.4) yields: 

B * Z k e r  Wk / = ~ X k X k / 
PkXk~" (2.5) 

X Z k ~ r  Wk ~ X k Y  k • / 
P~Xk~. 

It should also be noted that the design weights are 
included in equations (2.4) and (2.5). Whether they 
should be included or not is far from obvious (Deville 
and Sfirndal, 1994). However, if the response mechanism 
is viewed as a second phase of selection, the two-phase 
sampling theory can be used to justify that B * is a 
design-response consistent estimator of 

, )1 
1 / 

B = ~,kev X k X k 
Xk~. 

1 
x ~--,ke u ~ X k Y  k , / 

Xk ~k 

which is in turn model unbiased for Ii. In fact, B is the 
vector of parameters that we would have obtained, had 
the entire population been observed. Moreover, we will 
see in the next section that the two-phase sampling theory 
can also be used to estimate the population mean as well 
as the variance of the population mean estimator. If 
either the design weights or the response probabilities are 
not taken into account to estimate 11, then we can no 
longer rely on the two-phase sampling theory and 
variance estimation becomes more complex. It is for this 
reason that we have chosen to include the design weights 
(as well as the response probabilities) in equations (2.4) 
and (2.5). 

Once the vector of unknown parameters has been 
estimated, missing values are imputed. If the response 
mechanism is assumed to be uniform, which is a frequent 
assumption in practice, imputed values can be obtained by 
the predicted values (y[  = x~B *). However, for other 
response mechanisms, this can lead to biased estimates of 
the population mean, especially when the nonresponse is 
nonignorable. For example, when nonresponse depends 
on the variable being imputed, it can be easily shown that 
the conditional model expectation of Yk given that k ~ o 
is different from the model expectation of Yk (Beaumont, 
2000). 

Beaumont (1999, 2000) developped an imputation 
strategy for a nonignorable response mechanism which 

could be applied more generally to all cases where the 
nonresponse is not assumed to be uniform and response 
probabilities are known or can at least be well estimated. 

, 

The strategy consists of finding the imputed values Yk 
for the nonresponding units such that 

~--~k~s Wk 
( Y . k  - x / k B * )  

/ 
Xk~. 

is minimized subject to the constraints 

X k 
- x' 8 - o . 

I 
Xk~. 

The rationale behind this imputation strategy is that the 
preceding constraints would have been respected, had the 
variable y been observed for all units in the sample s and 
had this variable been modeled using (2.3). Using 
Lagrange multipliers and some algebra, it can be shown 
that 

* / , , )  
Yk = Xk (B + A , (2.6) 

where 

I)  -I 
X k X k 

A* = - Z k ~ o  Wk / 
Xk~. 

/ , 

X E k ¢ r  Wk (Yk - X k B  ) 
X k 

/ 
Xk~. 

(2.7) 

The preceding equation can be viewed as a correction to B * 
(and thus to the imputed values) to take into account that 
the relationship between the variable of interest y and the 
auxiliary variables x may be different when only 
nonresponding units are considered as opposed to all 
units in the sample. It is interesting to note, from 
equations (2.4) and (2.5), that the second sum in (2.7) is 
zero when uniform nonresponse (equal response 
probabilities for all units) is assumed. Thus, the 
correction (2.7) vanishes for that type of nonresponse and 
the missing values can simply be imputed by the predicted 
values. Note that this correction also vanishes when there 
is no nonresponse since in that case nonresponse can be 
viewed as uniform with all response probabilities equal to 
one. 

3. E S T I M A T I O N  
Since the model error variance is a linear combination of 

2 / the auxiliary variables (Vm(e k) = ¢ x k ~.) and using a 
proof similar to S~irndal, Swensson and Wretman (1992, 
p.231), it is easy to show that 

] . 

~k~,wk(Y'k - X k B  ) = O. (3.1) 
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Consequently, the estimator of the population mean (2.1) 
with the imputed values given in (2.6) can be expressed 
as: 

/ 
- * E k e s  Wk Xk 
YI = B *  (3.2) 

E k e s  W k 

Using the same argument as in (3.1), it can also be shown 
that 

Z k e r  Wk / (Yk - Xk B *) = 0 . 
Pk 

Adding the preceding equation to the numerator of (3.2) 
leads to the following alternative form for f'I*" 

! 
- ,  1 / ~  wk 

= [ ~ Y k  + 
YI ~V~kes W k ker Pc 

I Wk I 
L k e s  Wk Xk 2..,ker - -  Xk 

Pk 

It is very interesting to note that the part between brackets 
is exactly of the form of the Generalized REGression 
(GREG) estimator of a population total under two-phase 
sampling with auxiliary information available at the first 
phase level only. Here, the first and the second phase 
correspond to the sampling mechanism and to the 
response mechanism respectively. The two-phase 
sampling theory can thus be borrowed to estimate the 
variance of YI • In fact, we can express the variance of 

f'l* as: 

f ' *  
V(f ' /*) = Vp[Eq( f ' l * ] s ) ]  + Ep [Vq (  I I S)] (3 .4)  

where the subscript p represents the sampling mechanism 
and the subscript q represents the response mechanism. 
It can easily be shown that, at least for large samples, 
Eq(f'l* [ s) ~ f ' * ,  where f'* is defined in (2.2). The first 
term of the right side of (3.4) can be referred to as the 
sampling variance, Vsam = Vp(f" *), and the second term 
can be referred to as the imputation variance, Vimp. 

The sampling variance component of (3.4) can be 
estimated through the Taylor linearization technique 
described in S~.rndal, Swensson and Wretman (1992, p. 
175): 

gsam * 
E k e s  Wk 2Ikl 

%- ? *) (Yl- ?*) 
7I k 1171 

where rt~ is the joint selection probability of units k and 

1. The preceding estimator cannot be used in the presence 
of nonresponse since it depends on unobserved values of 
the variable y. Therefore, we must estimate the unknown 
quantities which leads to the following estimator: 

• ( 112 
Vsaml Ekes Wk 

E k e r  E l e r  (Tgkl - 7[k gl) 
7tkl P kl 

(Yk- ~"I *) (Yl-  ~'I *) 

/1;k gl 

where Pk~ is the joint response probability of units k and 
I. To simplify, it will be assumed in the following that 
units in the sample respond independently of each other 
and thus, P~t = Pc Pt, for k ,  l, and p~ = p~. 

The sampling variance could also be estimated by adding 
a residual to the imputed values, as in Greenlees, Reece 
and Zieschang (1982), to take into account that the 
imputed values are less variable than the true values. 
Then, standard variance estimation techniques built for 
the case of complete response could be used with the 
imputed values replacing the true values. Although this 
method can be useful to estimate the sampling variance, 
it is important to note that it does not estimate the 
imputation variance (S~rndal, 1992). 

An estimator forVq(f'l* I s ) is required to estimate the 
imputation variance component of (3.4). The Taylor 
linearization technique yields: 

* = E k ~ r  Wk Vimp ~:es  w k 

(1 -p,)  
× 

2 
Pk 

(Yk -Xk/~)2 " 

The variance of f'i* is thus estimated by: 

• • , 

V 1 (f"l*) - Vsam I + Vimp (3.5) 

However, the following alternative estimator has been 
empirically found to be slightly more stable: 

_ V;(f"l*) . (3.6) 
V;(ff'l*) = Eker Wk / Pl, 

One reason justifying estimator (3.6) over (3.5) happens 
when one or more response probabilities (or estimated 
response probabilities) is very small. In that case, (3.5) 
may become very large. In (3.6), however, the large 
component in the numerator, V~(f'[), will be 
compensated to some extent by the large component in 
the denominator, F,~crW k / p~. We can also justify (3.6) 
by using similar arguments to those making (2.2) 
preferred over f" ** = ~ e w ~  y~ / N as a population mean 
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estimator (see Sarndal, Swensson and Wretman, 1992, p. 
183). 

It may also happen that some auxiliary variables are 
available at the population level, a case which has not 
been discussed in this paper. However, if the population 
mean estimator as well as its variance estimator are 
available for the case of complete response then not much 
complexity is added in the presence of imputation and we 
can still rely on the two-phase sampling theory. For a 
more thorough discussion of two-phase sampling, the 
reader is referred to Hidiroglou and Sfirndal (1998). 

4. NONIGNORABLE NONRESPONSE 
In this section, the case where the response probabilities 
depend on the variable being imputed, which is a 
nonignorable response mechanism, is considered. Such 
a response mechanism is often dealt with by 
simultaneously modeling and estimating the response 
probabilities and the variable of interest y. The response 
probability for unit k can be modeled by some function 
Pk(Yk,Zk;¢~), where z k is a vector of auxiliary variables 
known for all units in the sample and a is a vector of 
unknown parameters. The unknown vectors of 
parameters ~ and p can be estimated using the maximum 
likelihood method or the robust estimation method 
described in Beaumont (1999, 2000). 

The maximum likelihood method requires that model 
(2.3) be appropriate and that errors be normally 
distributed. According to two simulation studies 
(Beaumont, 1999, 2000), when one or both assumptions 
is violated, it is preferable to use the more robust 
estimation method described below. 

If the response probabilities were known and greater than 
zero for all units in the sample, we could use estimating 
equations (2.4) to estimate p. On the other hand, if the 
conditional distribution of y~ given x k were known, we 
could estimate a by solving estimating equations 
resulting from the maximum likelihood method (given 
that the sampling mechanism is ignorable; otherwise the 
pseudo-maximum likelihood method may be preferable). 
We obtain estimates for ~ and p by solving 
simultaneously both systems of estimating equations. 
However, this requires to work out the unknown 
expectation E m[pk(yk,zk;~) [ x k] which can be 
approximated by pk(Em[Y~ [ x k],z k;~) ,  where the 
subscript /7z indicates that expectations are evaluated 
under the model (2.3). This method is considered robust 
to a departure from the normality assumption because, as 
opposed to the maximum likelihood method, it does not 
require to specify the distribution of the variable y. It has 
also been empirically shown to be robust to a departure, 

from the assumed model (2.3). 

An interesting property of the robust estimation method 
described above is that estimates of the unknown 
parameters a and p can be obtained by using the 
following algorithm: 

. 

3. 

. 

5. 

. 

Set initial values for the response probabilities 
(or for the vector of parameters a).  For 
example set p (0) = 1 for all responding units; k 
Set j = 1, wherej indicates the iteration number; 
Solve (2.4) with current values of the response 
probabilities, p~- l ) ,  using a weighted linear 
regression procedure to obtain p~); 
Impute missing values by y ~  = x~ p(l~, for k c o; 
Solve the maximum likelihood equations to 
obtain new response probabilities pO~; k 
Stop if convergence is reached, otherwise set 
j = j + 1 and return to step 3. 

In practice, this algorithm has been found to always find 
the solution when it exists. However, it should be noted 
that in our simulation study (see section 5), there were no 
solution for 17 out of the 5000 samples. For these 
samples, the algorithm alternated between two sets of 
values. When this happened, we chose randomly one of 
the two sets of values as the final solution. This situation 
tends to occur when the response probabilities are 
modeled by forming categories, especially if the number 
of categories is high and the number of respondents is 
small within each category. The algorithm usually 
converged in four to eight iterations in our simulation 
study. In two previous simulation studies, the response 
probabilities were rather modeled through a continuous 
function of an auxiliary variable and the algorithm always 
found the solution, although it took many iterations to 
reach convergence in few cases. 

Once the algorithm has converged, we can use the theory 
of sections 2 and 3 to estimate the population mean as 
well as the variance of this estimate. However, in the 
preceding two sections, we have assumed that the 
response probabilities were known, which is not the case 
in this section. So, the response probability model should 
be appropriate and the estimated response probabilities 
should not be too much unstable in order to be able to use 
the two-phase sampling theory. Note that the variability 
of the estimated response probabilities is not taken into 
account in variance estimation. However, we will see in 
the next section that, for a relatively small sample size, 
this does not seem to be a too serious problem. 

5. SIMULATION STUDY 
In order to evaluate the approach proposed in this paper, 

583 



we performed a simulation study. We used the data from 
the 1997 Survey of Labour and Income Dynamics (SLID) 
of Statistics Canada to obtain a population. We selected 
all the people in the province of Alberta who are between 
the ages of 20 to 40 years old inclusively, who did not 
have a missing value for the variable wages-and-salaries 
(our variable of interest y) and who also did not have a 
missing value for the previous year wages-and-salaries 
(our auxiliary variable x). This resulted in a population of 
654 people. 

From this population, 5000 samples of size 350 were 
selected using simple random sampling without 
replacement. For each of the selected samples, 
nonresponse was generated, such that each person 
responds independently of one another with the following 
response probability: 

Pk = 5  + (1 - ;5)  
1 + e x p ( - %  - aly~) ' (5.1) 

where 8 =0.2, % =4 and 0t 1 =-0.000125.  These 
parameters have been chosen to ensure that the mean 
overall response rate be approximately 70% and that the 
lowest response probability possible be 20%. The reason 
for the latter restriction is to avoid large nonresponse 
adjustment factors 1/p, which yield very unstable 
variance estimates. Note that this is a nonignorable 
response mechanism, where people with a high value of 
the variable y have less tendency to be respondents than 
those with a low value of that variable. This kind of 
response mechanism may be realistic for such a sensitive 
variable. 

To impute, we assumed a simple linear regression model 
with nonzero intercept and constant variance, which 
seems reasonable with the data at hand. The population 
squared coefficient of correlation between x and y is 
approximately 73%. 

The estimator (3.2) (or equivalently, 3.3) is used to 
estimate the population mean and the estimator (3.6) is 
chosen for variance estimation. To estimate the unknown 
vector of parameters ot (and then the response 
probabilities), we considered 4 assumptions" UNIF, C6X, 
ROB_C6Y and KNOWN. The UNIF assumption 
corresponds to a uniform response mechanism where 
each unit in the sample has the same response probability. 
This assumption is included in the study for evaluation 
purposes and also because uniform nonresponse is 
frequently used in practice. A better alternative to UNIF 
is C6X, which divides the variable x into 6 predetermined 
categories and assumes uniform nonresponse within each 
category. An even better assumption is obtained by 
dividing the variable y into 6 predetermined categories 

and assuming uniform nonresponse within each category. 
This assumption is combined with the robust estimation 
method described in section 4 and will be denoted by 
ROB_C6Y. Note that the assumed response model is still 
not the same as the true response model (5.1), as it is 
most likely the case in practice. However, we will see 
that ROB_C6Y provides a big improvement over the 
simplest assumptions UNIF and C6X. Finally, we have 
also considered the ideal and unrealistic case for which 
the response probabilities are known, denoted by 
KNOWN. 

For each of the 5000 samples of respondents, four 
population mean estimates and four variance estimates 
have been obtained. Now, let us assume that m~ and v~* 
are respectively the population mean estimate and the 
variance estimate for the k th sample of respondents 
resulting from one of the four assumptions considered 
above and that m and v are the true population mean and 
the true variance respectively., Note that the true variance 
has been esfimattxt by: v = ~/}2~,(m~* -rh ,)2 / 4999, where 6/* 
is the average of the 5000 m~* estimates. The relative 
bias in percentage of a population mean estimator can be 
estimated by: 

5000 

~[2 (m~ - m) 

RB* - - k--1 
5000 

1 
x - -  x 100% . 

m 

An estimate of the standard error of this relative bias can 
be given by: 

S E * -  100 Sm" 
m 5-~-0 ' 

2 • 
where s . is the variance of the 5000 m k estimates. 

m 

Finally, an estimate of the relative root mean squared 
error in percentage can be expressed as: 

5000 

X; * (mr, - m) 2 

RRMSE k = 1 x 1 • = ~ x 1 0 0 %  . 

5000 m 

In a similar way, we can also estimate the relative bias, 
the standard error of the relative bias and the relative root 
mean squared error of a variance estimator by replacing 
m~ by v k and m by v in the preceding three equations. 
An estimate of the coverage rate (COVR*) in percentage 
has finally been calculated by taking the proportion of the 
5000 samples of respondents for wrhi~h the true v a l ~ m  
was inside the interval[m; - 1.96~]vk* , mk* + 1.96~/v~* ]. 

Table 1 shows the results of the Simulation study. It can 
first be observed that ROB C6Y is much better than 
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UNIF or C6X when estimating the population mean in 
terms of RB* and RRMSE*. Indeed, ROB_C6Y is almost 
as good as the ideal case KNOWN even if the response 
probability model is not exactly the same as the true one. 

When estimating variance, we see that even the ideal case 
has a negative bias (and therefore too low COVR*). This 
is not surprising since the Taylor linearization technique 
is well known to underestimate the variance (S~ndal, 
Swensson and Wretman, 1992, p. 176), especially for 
small samples. Note that the RB* of C6X is relatively 
low and positive, which is more difficult to explain. 
Concerning the RRMSE*, the same conclusion as for the 
population mean estimators can be drawn. 

What is more interesting is the analysis of COVR*. A 
huge improvement can be obtained by using ROB_C6Y 
over the more naive assumptions UNIF and C6X, which 
lead to much too low COVR*s. If we could add a 
constant to the ROB_C6Y population mean estimator 
such that it is unbiased, then COVR* would be 91.7%, 
just about 1% below the ideal case. The emphasis should 
thus be put on the bias of the point estimators first when 
choosing an estimation strategy. 

6. CONCLUSION 
For sensitive variables, such as income, assuming a 
nonignorable response mechanism that depends on the 
variable being imputed may be more realistic in some 
practical cases than the usual assumptions of uniform or 
ignorable response mechanism (for example, a response 
mechanism that depends on one or more auxiliary 
variables of the imputation model). If this assumption is 
true, the usual least squares method combined with the 
usual assumptions about the response mechanism will 
lead to bias in point estimates and poor confidence 
intervals. The approach proposed in this paper can thus 
be a useful alternative in this situation to reduce bias and 
obtain better confidence intervals. 

comments. 

REFERENCES 
Beaumont, J.-F. (1999). A robust estimation method in 

the presence of nonignorable nonresponse. 
Proceedings of the Section on Survey Research 
Methods, American Statistical Association (to 
appear). 

Beaumont, J.-F. (2000). An estimation method in the 
presence of nonignorable nonresponse. Survey 
Methodology (to appear). 

Deville, J.-C., and Sarndal, C.-E. (1994). Variance 
estimation for the regression imputed Horvitz- 
Thompson estimator. Journal of Official 
Statistics, 10, 381-394. 

Greenlees, J.S., Reece, W.S., and Zieschang, K.D. 
(1982). Imputation of missing values when the 
probability of response depends on the variable 
being imputed. Journal of the American 
Statistical Association, 77, 251-261. 

Hidiroglou, M.A., and Sirndal, C.-E. (1998). Use of 
auxiliary information for two-phase sampling. 
Survey Methodology, 24, 11-20. 

Lee, H., Rancourt, E., and Sirndal, C.-E. (2001). 
Variance estimation from survey data under 
single value imputation. In Survey 
Nonresponse, Groves, R., Dillman, D., Eltinge, 
J., and Little, R. (editors), Chapter 21, New- 
York, John Wiley & Sons, Inc. (to appear) 

Sirndal, C.'E. (1992). Methods for estimating the 
precision of survey estimates when imputation 
has been used. Survey Methodology, 18, 241- 
252. 

A CKNOWLEDGEMENTS 
I would like to thank Mike Hidiroglou, David Haziza and 
Eric Rancourt of Statistics Canada for their useful 

Sirndal, C.-E., Swensson, B., and Wretman, J.H. (1992). 
Model Assisted Survey Sampling. New-York, 
Springer-Verlag. 

TABLE 1" RESULTS OF THE SIMULATION STUDY 

ASSUMP- 
TIONS 

UNIF 

C6X 

ROB_C6Y 

KNOWN 

POPULATION MEAN 

RB* (%) SE* RRMSE" (%) 

-10.3 0.05 l l .0 

-9.6 0.06 10.4 

-1.5 0.05 4.1 

-0.1 0.05 3.9 

VARIANCE 

RB*(%) SE* RRMSE* (%) 

-56.1 0.08 56.4 

5.7 0.63 44.9 

-19.9 0.39 34.3 

-5.4 0.40 28.9 

COVR* (%) 

7.9 

34.1 

87.3 

92.9 
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