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Abstract :  First, we consider two Bayesian hier- 
archical models for binary nonresponse data which 
are clustered within a number of areas. While the 
first model assumes that the nonresponse mechanism 
is ignorable, the second assumes it to be nonignor- 
able. Then, we introduce our best model through a 
continuous model expansion on an odds ratio (odds 
of success among respondents versus odds of success 
among all individuals) for each area. When the odds 
ratio is one, we have the ignorable model, otherwise 
the model is nonignorable. One important feature is 
that uncertainty about ignorability is incorporated 
by "centering" on the ignorable model. Thus, pos- 
terior inference about the odds ratio permits us to 
make a decision about ignorability. Our methodol- 
ogy is used to analyze data from the National Health 
Interview Survey (NHIS), a household survey, in 
which the areas are states. The complexity of the 
posterior distributions of the parameters forces us 
to implement the methodology using Markov chain 
Monte Carlo methods. We found that there are dif- 
ferences among the three models for estimating the 
proportion of households with a characteristic (doc- 
tot visit in the NHIS) and the response probability. 
The expansion model provides evidence that nonre- 
sponse for most of'the areas is informative. 

1. I N T R O D U C T I O N  

We consider the problem of Bayesian modeling of 
nonignorable nonresponse (Rubin 1987) for binary 
data from a number of similar areas some of which 
may be small relative to the others, and we attempt 
to solve this problem using multi-stage hierarchical 
Bayesian modeling. Stasny (1991) described a Bayes 
empirical Bayes approach for two selection models 
and Nandram and Choi (2000) discussed how to use 
Markov chain Monte Carlo methods to provide a full 
Bayesian analysis. 

We wish to make two important contributions. 
First, for these two models we address the issue of 

whether to use a discrete model expansion or a con- 
tinuous model expansion for expressing uncertainty 
about ignorability in nonresponse. Second, the key 
point in this paper is to show how to incorporate 
uncertainty about ignorability using a single model 
in which the degree of ignorability varies from one 
area to the other. 

Forster and Smith (1998) use a pattern mix- 
ture specification for multinomial-Dirichlet graphi- 
cal models. One drawback of their method is that 
the prior density of the parameter which controls 
the extent of ignorability is the same as the pos- 
terior density of that parameter. Based on the 
marginal likelihood, they found that an ignorable 
model was more supported by the data than a non- 
ignorable model. Then, they resorted to express un- 
certainty about ignorability by "centering" a nonig- 
norable model on an ignorable one. 

We use the NHIS data from the 1995 household 
survey to illustrate our method. In the NHIS the 
secondary sampling units are segments, and on av- 
erage each segment includes about 4-12 households, 
and all the sample households in the segment are 
interviewed for core questions. We use the number 
of doctor visits by an entire household in the past 
year. We use the nine states with 8-12% nonrespon- 
dents (zip codes are shown in Table 1). We note 
that Colorado (CO), District of Columbia (DC) and 
Delaware (DE) are the three states different from 
the others: DC and DE have the least data and the 
highest proportions of nonrespondents, DE has the 
largest proportion of households with doctor visits, 
and CO has the smallest proportion of households 
with doctor visits. 

The Bayesian method is discussed as a possible al- 
ternative to ratio estimation. In Section 2 we show 
that one cannot express uncertainty about ignorabil- 
ity by using a probabilistic mixture of an ignorable 
and a nonignorable model. In Section 3 we introduce 
a parameter which centers the nonignorable model 
on the ignorable model. An empirical study used 
to compare inference from the ignorable, nonignor- 
able and expansion model is described in Section 4. 
Finally, Section 5 has concluding remarks. 
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2. I G N O R A B L E  A N D  N O N I G N O R A B L E  
M O D E L S  

Let yi j  a n d  r i j  be the characteristic and response 
variables for the j t h  household in the i th area, i = 
1 , . . . ,  g, j = 1 , . . . ,  hi .  Also let A i j  denote the event 
that  household j in area i has at least one doctor 
visit. Then if A i j  occurs, Yij = 1; otherwise yi j  = O. 
Let Ai* j denote the event that  household j in area i is 
a respondent. Then if Ai* j occurs, rij - 1; otherwise 
ri j  = 0. The ignorable nonresponse model is given 
by 

Yij I p~ ~ Bernoulli (pi), r i j  l Tri i ~  Bernoulli (Tri), 

i i d  
Pi I#11,T11 ~ ' ~  Beta (#11711, ( 1 -  #11)Tii), (1) 

l i d  
7ri 1~12, T12 ~'~ Beta (#12T12, (1 - #12)712). (2) 

The assumptions in (1) and (2) express similarity 
among areas. The nonignorable nonresponse model 
is given by 

Yij l Pi i ~  Bernoulli (Pi),  

l i d  
ri j  l Yij -- 8 -- 1, 7rib ,'0 Bernoulli (Tris), s - 1,2, 

l i d  
P i  I # 2 1 , 7 " 2 1  ~'~ Beta (#21T21, (1 - #21)7"21), 

• i i d  
7riB I ~2,s+l ,  T2,s+I 

Beta (#2,s+1T2,s+1, (1 -- #2,s+l)T2,s+l), S = 1, 2. 

Again we express similarity among the areas. This 
similarity helps when the weakly identified param- 
eters like the ~ril and 7ri2 are estimated. Note that  
we can obtain the ignorable model from the nonig- 
norable one by taking 7ri1 = 7ri2. 

While Stasny (1991) assumed that  the hyperpa- 
rameters are fixed but unknown (estimated by a 
maximum likelihood procedure), we include uncer- 
tainty in the estimation of these hyperparameters by 
assuming 

#rs  "~ Beta (1, 1) and T r s  F (n(0) /2(0)) \'1~'8 ' 7"8 

where for the ignorable model r = 1, s = 1, 2 and 
for the nonignorable model r = 2, s = 1, 2, 3. In 
our case the @o) and u (°) ~s are to be specified (see 
Nandram and Choi, 2000). 

The ignorable model is a complete Bayesian spec- 
ification in which the probability for a household re- 
sponse does not depend on its characteristic, but the 
nonignorable model has the specification in which 
the probability for a household response does depend 

on its characteristic. This is the selection model, 
and there is a bivariate probability mass function on 
(y i j ,  r i j ) .  It is convenient to order the labels so that  
the respondents are first and the nonrespondents are 
second. 

The parameters of interest are (pi,  5i) where for 
the ignorable model ~ - ~i and for the nonignorable 
model 5i - 7ri2pi + 7ril (1- -p i ) .  That  is, 5i - P r ( r i j  = 
1), the probability household j responds in area i. 

ni 7"i 
We also let ri - ~ r i j  and yi - yij. 

j--1 j--1 
n i  

We note that  zi - E yij is a latent variable, 
j = r i + l  

the unknown number of households with the charac- 
teristic for the nonrespondents. (We introduce the zi 
into our procedure because they simplify the compu- 
tations and, if interest is on the finite population pro- 
portion, we need to understand their distributions.) 
Then, the number of households without the char- 
acteristic is ni  - ri - zi  among the nonrespondents. 
Note that  we can draw a tree diagram which shows 
the bivariate probability mass function of (y i j ,  r i j ) ,  

and that  7ril, 7ri2 and pi are on the path of the tree 
containing the observed data. Thus, the selection 
model automatically incorporates the prior and pos- 
terior properties of the Zi. 

The ignorable model is fitted by a direct applica- 
tion of the algorithm of Nandram (1998). For our 
Metropolis-Hastings algorithms on either the ignor- 
able model or the nonignorable model, there was 
convergence after 1000 iterations, and taking every 
tenth iterate, provides 1000 iterates which they used 
for obtain estimate of (pi,  1ri, 5i). 

The marginal likelihood is a natural  method to 
compare the ignorable and the nonignorable models 
because the ratio of the marginal likelihoods is the 
Bayes factor (e.g., Kass and Raftery, 1995) which 
measures the evidence provided by the data  for one 
model relative to the other. Note that  one of the 
objectives is to find the posterior probability that  
the ignorable model holds given some prior belief 
about its plausibility. 

For either model we use importance sampling to 
compute the marginal likelihood. The logarti thm of 
the marginal likelihood for the ignorable (noignor- 
able) model is -62.821 (-74.203) with a numerical 
s tandard error of 0.007 (0.045) giving a Bayes fac- 
tor of 11.383 with a numerical s tandard error of 
0.046. Assuming equal prior probabilities on the two 
models, the posterior probability that  the ignorable 
model holds is approximately 1. Thus, one should 
not express uncertainty about ignorability by a mix- 
ture of the ignorable model and nonignorable model 
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(discrete model expansion). For the NHIS data the 
ignorable model is simply dominant. Thus, Bayesian 
model averaging (Hoeting, Madigan, Raftery, and 
Volinsky, 1999) is not appropriate. However, for the 
NHIS data one should not discard the nonignorable 
model because the ignorable model does not con- 
tain a component to represent an informative miss- 
ing data mechanism (see Forster and Smith 1998 for 
a similar result). 

Thus, for the NHIS data one must be careful not 
to select the ignorable model since it is believed that  
there are many other models. One needs to "search" 
for an appropriate model. A sensible strategy is to 
embed the ignorable model in a larger model through 
a continuous model expansion (Draper, 1995). 

3. M O D E L  W I T H  U N C E R T A I N T Y  
A B O U T  I G N O R A B I L I T Y  

We expand the ignorable model to incorporate 
uncertainty about ignorability by using a centering 
parameter 7/ for area i. The key idea is to take 
lri2 - 7i7ril in the nonignorable model. We will 
cM1 this model the expansion model, and later the 
gamma model. 

3.1 E x p a n s i o n  M o d e l  

The expansion model for nonignorable nonre- 
sponseis,  j = l , . . . , n i ,  i = l , . . . , g ,  

Yij ] Pi lid Ber (Pi), rij  ] Tri,Yij -- 0 lid Ber (~ri), 

rij I Jri, "Ti, Yij -- 1 i~ Ber (Q'iTi'i), 0 ( "/i~ri < 1. 

Here 7/ is the ratio of the odds of success among 
respondents to the odds of success among all house- 
holds for the i th area. Thus, if the odds ratio is one, 
there is no difference between respondents and non- 
respondents and if the odds ratio is smaller (larger) 
than one, there is a smaller (larger) proportion of 
successes among the respondents than the respon- 
dents. The parameter 7/describes the extent of non- 
ignorability of the response mechanism for area i. It 
is through the 7/ that we incorporate uncertainty 
about ignorability. 

Now the parameters of interest are (pi,Si, T i) 
where 5i = 7ri {TiPi + (1 - pi ) ), is the probability 
that  a household in the population responds in area 
i. These parameters are expected to vary across the 
areas, but we might believe they share an effect (i.e., 
they come from the same stochastic process). With a 
belief that  all the areas are similar we take (Pi, 5i, 7i) 
to have a common distribution. 

For the pi,we take 

lid (1 - -  ~ I ) T 1 ) ,  i - 1 g Pi I #1, T1 "~  Beta (#171, , . . . ,  

independent of (7ci,7i) which, in turn, are jointly 
independent over i with 

, ( a  lri [ #2, ~-2 ~" Beta (#2v2 - #2 , 

7i l u i ~  F(v,u), 0 < T i < l / ~ r i ,  0 < ~i < 1. 

Therefore, the joint prior density p(~i,% I 
#2, T2, u) for (~vi, 7i) is given by, 

v 7r~ t2r~'-I (1 - 7ri) (1-tt2)T~'-I 

( 3 )  

where B(u,v)  is the beta  function, Ii(#2, T2,u) is 

~ 0 1 L  I { T ' ~ l e x p ( - - ¢ i / T r i ) )  v f l (Tr i ,¢ i  ] t ] , #2 ,T2)  dTri d¢i 

and fl (~i, ¢i } v, #2, ~'2) is 

( 1  - 

• ( 1  - ' 

0 < ~i, ¢i < 1, u > 0. The ignorable model is 
a special case of the expansion model with 7/ = 1. 
Also note that  if the 7/ were not bounded above, 
E(Ti l u) = 1 and Var(Ti l u) = 1/u (i.e., we 
have at tempted to center the expansion model on 
the ignorable model). 

The hyperparameters are in turn specified to be 
independent with proper prior densities 

lid 
#1, #2 "~ Beta( l ,  1) 

and 
rl ~V(V{°), v}°)), r2~P(v~°), u~ °) ) 

_ 1, 2 , a  to  sp ci  d. 
Letting ~ -  (pl,#2,T1,T2,U), then the joint prior 
for 0 is p(gt) = p(#l)P(#2)p(7"l)P(T2)p(v) where 
P(#I),  P(#2), p(T1), p(T2)and p(u) are the corre- 
sponding prior densities. 

Then, letting Z = {z : zi = 0 , . . . , n i -  
ri, i = 1 , . . . , g} ,  the likelihood function is propor- 
tional to f(y,  r ] p, 7, ~r) where f(y,  r I P, 7, 7r) = 

E f ( y , r , z  I p ,7 ,~)  and f ( y , r , z  I P, 7 , ~ ) i s  
Z: ZEZ 

-- ( )(  )(  ) given by, K i -  ni ri n i -  ri 
ri Yi zi ' 

g 

i--1 

x ((1 - 7i~ri)pi) z' ((1 - 7ri)(1 - p i ) ) n ' - r ' - z ' ) .  

By Bayes' theorem the joint posterior density of 
the parameters follow easily. But it is convenient 
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to make the transformation ¢/ - -f/ri , for i - 
1 , . . .  ,t~ with lri, pi and zi untransformed. Now let 
A~ - Y i T Z i W ~ l T 1 ,  B i  -- n i - Y i - Z i T ( 1 - l t l ) T 1 ,  Ci  - 
ri - Yi + #272 and Di - n i  - ri  - zi  + (1 - / t2 )T2 .  
Then, the joint posterior density of all the parame- 
ters (~, z, p, 7r, ¢), given y~ and r, f (~, p, ~, ¢, z [ y, r), 
is we have proportional to 

'{( ) p(a)  n ni -- ri pA , - i  (1 -- pi) Bi-1 

i=1 Zi B (#1T1, (1 - ~tl)7"1 ) 

× u¢~,+~-1 (1 - ¢/)z, 

71" C'-1 (1 - 7ri) Di-1  { ~ 7 1 e x p ( - ¢ , / ~ / ) }  ~ 

0 < ¢i, 7ri < 1. We use this posterior density to 
make inference about pi, 6i and ~'i. 

3.2 Computat ion  for Expansion Model  

Because the posterior density is not accessible di- 
rectly, we use M CMC methods to obtain samples 
which permit an inference. 

For the NHIS data we take 7} 0) - 2.52, u} °) = 

0.05, r]~ °) - 2.49, u~0) _ 0.18, ~7~ °) - u~o) _ .001 and 

for the NCS data ~7~ °) - 2.77, u~ °) - 0.05, ~o) = 

2.98, u~ °) - 0.05, r/~ °) - u~ °) = .001. We obtained 
these values by setting all of them equal .001, ran 
the algorithm, and then fit gamma densities to the 
random iterates for. u, T1 and T2. We also found that 
posterior inference about (pi, 7i, 5/) was unchanged 
with these new values. This ensures posterior pro- 
priety and stability. 

We marginalize out the parameters (/9/, 7ri, ¢i), i - 
1, . . . , t~ from the joint posterior density to obtain 
the posterior density f(gt, z I y,r) .  Then, we ob- 
tain samples from f(f~, z ly,  r)-using a Metropolis- 
Hastings algorithm and a-sample importance re- 
sampling (SIR) algorithm (e.g., Smith and Gelfand 
1992). 

First, we define 

A(a,z I 

": Zi g ( C t l ~ l l  7 ( ' i  - ¢tl)7"1) 

{ B ( C / , D i )  } 
× B (#'Z~'iT-~I"-- ;2)T2) ' u B (yi + u, z~ + 1) }. 

Then the marginal density f ( ~ ,  z ly ,  r) is propor- 
tional to 

i--1 

' ( 4 )  

where 

/0 /o 1 [z i (~ t2 ,T2,  1]) -- { T r T 1 e x p ( - - ¢ i / T r i ) }  v f2 ( . )d~r idCi ,  

Ii(#2, ~'2, u) is given in (3) and f2(.) =f2(~i, ¢i I 
u, #2, T2, Zi, Yi, ri) is 

cyiWu--1 (1 - ¢,)~' "~T Ci-1 (1 - 7ri) Di-1  

B(yi  + u, zi + 1) B(Ci,  Di) " 

Observe that Rz, (#2, T2, u) is the ratio of the ex- 
pectations of {lr~-lexp(-¢i/Tri)} v over f2(Tri,¢i I 
u, #2, v2, zi, Yi, ri) and fi (Tri, ¢ i  I //, ~2,7"2) in the nu- 
merator and denominator respectively. 

Samples from fa (~, z I Y, r) can be obtained by us- 
ing the algorithm of Nandram (1998). We can obtain 
an observation u from the conditional posterior den- 
sity p(u l Y, r) c(p(u)  H e i=1 { ~ B(yi  + u, zi + 1)}. 
These samples are converted to samples from 
f (~, z ly ,  r) using the SIR algorithm. 

N N 

Once zi, i - 1 , . . .  ,t~ are obtained, we can draw 
pi, ~ri and ¢i from 

ind 
Pi ] Yi, ri, zi ~ Beta(Ai ,  Bi) 

and g(Tri, ¢i I ~ , y i , r i , z i )  which is is proportional to 

{7~i-l e x p ( - - ¢ i / T r i )  }V ffa(7Ti, ¢i  I ~-~, y i ,  r i ,  z i ,  l]), 

for 0 _~ 7ri, ¢i _~ 1, where 

& Y , + V - I ( 1  _ 0 i ) z i + 1 - 1  
ga (Tri, ¢i I ~t, Yi, ri, zi, u) - Ti 

B (yi + u, zi + l ) 

71" C i - 1  (1 - 7ri) D i -1  
x 

B(Ci ,  Di) 

It is straightforward to draw samples pi from above 
relation, but it is more difficult to draw samples 7ri 
and ¢i from equation g(Tri, ¢i ] ~t, yi, ri, zi). 

We finally obtain a sample (~}h),o~h),7~h)) by 
taking -(h) }h) ~h) .y/ -- 7r ¢ , h -  1, . . . ,M. Inference can 
now be made in the standard way. We drew 11,000 
iterates, used a "burn in" of 1000, picked every tenth 
thereafter to obtain 1000 iterates. We used the trace 
plots and the autocorrelations to confirm that the 
quality of the sample is good (Cowles and Carlin 
1996). 

We have computed the logarithm of the marginal 
likelihood for the expansion model. As compared 
with the values in Section 2 the logarithm of the 
marginal likelihood is -53.202 with a numerical stan- 
dard error of 0.332. We are pleased that the expan- 
sion model dominates the ignorable and the nonig- 
norable models individually. 
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4. A N  E M P I R I C A L  S T U D Y  

We apply our method to the data from the NHIS 
for the nine states to compare the three models and 
to study the effects of the centering parameters 7i 
on ignorability and on inference about Pi and 5i. 

First, using the iterates from the Metropolis- 
Hastings sampler we drew the posterior densities of 
the 7i represented by the histograms (not shown) 
which are all unimodal, and mostly skewed to the 
left. This is expected since the ~'i are bounded above 
by 7r~ -1 and the lri are close to unity. For the NHIS 
data the left tails are very thin, and the posterior 
probabilities to the left of 1 are all small. 

Table 1' Posterior mean (PM) and standard devi- 
ation (PSD), numerical standard error (NSE), 95% 
credible interval for -/ and p - Pr(~/ <_ 1 I y , r )  
for NHIS data of nine states with nonresponse rates 
8 -  12%. 

State PM PSD NSE Interval p 

CO 1.104 .066 .015 (0.906, 1.184) .074 
DC 1.115 .060 .014 (0.981, 1.221).036 
DE 1.114 .073 .012 (0.935, 1.229) .072 
FL 1.111 .040 .008 (0.986, 1.152) .031 
LA 1.105 .040 .008 (1.008, 1.164) .022 
MD 1.119 .044 .009 (1.004, 1.178) .022 
NY 1.109 .043 .009 (0.985, 1.150) .030 
SC 1.105 .042 .009 (0.990, 1.172) .027 
WV 1.109 .047 .008 (0.995, 1.188) .029 

We consider the posterior densities of the 7i even 
further by looking at the posterior mean (PM), stan- 
dard deviation (PSD) and 95% credible interval. We 
also present the numerical standard error (NSE) for 
the Monte Carlo computation. (We use the batch 
means method with batch length of 25 for the 1000 
"good" iterates.) We present these quantities for the 
NHIS data in Table 1. The NSE indicates reason- 
able Monte Carlo error, but the NSEs for Colorado, 
District of Columbia and Delaware are a bit larger 
than the others reflecting the small sample sizes for 
these states. Except for LA and MD all the credible 
intervals contain 1: and so one might consider the 
nonresponse mechanism for each state to be ignor- 
able. 

We were extremely surprised that the confidence 
intervals hardly provide any evidence of nonignora- 
bility. Thus, we calculated pi - Pr(9'i <_ l l y ,  r) 
which we present in the last column of Table 1. For 
the NHIS all the Pi are smaller than .10 and seven 

of them are smaller than .04. In addition, we looked 
at the box plots of the estimated posterior densities 
of 7i from the iterates for both the NHIS. All the 
boxes are above 1.0, and most of them have medi- 
ans above 1.1. Thus, in all nine states, there are 
substantial evidence for nonignorability contrary to 
the evidence provided by the credible intervals. 

Next, in Table 2 we compare 95% credible inter- 
vals of the Pi and 5i for the ignorable, nonignorable 
and the expansion models. Generally, there are dif- 
ferences among the three models for each data set. 

First, consider the pi for the NHIS data. The 
intervals based on the ignorable model are mostly 
contained by the intervals based on the nonignorable 
model with the lower bounds mostly similar. The in- 
tervals for the expansion model overlap on the left of 
the intervals for the ignorable model, making them 
considerably different. Now consider the 5i. For the 
three models the intervals for FL, LA, NY, SC and 
WV are mostly very similar. There are differences 
for the others notably DC and DE. 

In general, when the nonignorable model is used, 
the pi might be too large. The expansion model (the 
best among the three models) is attractive because 
it fixes this problem. When the 7i are larger than 1, 
the proportion of successes among the respondents 
is larger than that among the nonrespondents. The 
nonignorable model does not have the 7i and so its 
absence makes the proportion of successes among 
the respondents smaller than that among the nonre- 
spondents. 

5. C O N C L U D I N G  R E M A R K S  

We have studied nonignorable nonresponse for in- 
ference about (a) the proportion with a characteris- 
tic and (b) the proportion responding to the survey 
when there are data from similar areas. We have 
shown through a full Bayesian approach that it is 
possible to circumvent some of the issues associated 
with estimability especially for parameters with lit- 
tle relation to the data. This is accomplished by us- 
ing a joint distribution on the success and response 
indicators as well as pooling data across similar ar- 
eas. 

We have argued that one should not incorporate 
uncertainty about ignorability by using a mixture of 
an ignorable model and a nonignorable model (i.e., 
discrete model expansion). Then, in our major con- 
tribution we have shown that it is sensible to include 
uncertainty about ignorability through a parameter 
which centers a nonignorable model on an ignorable 
one (i.e., continuous model expansion). 

There are differences in inference about pi and ~i 
for the three models. We have shown that it is plau- 
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Table 2: 95% credible intervals for pi and 6i from 
the NHIS data by model 

State pi 5i 

a. Ignorable 

CO (.222, .303)(.871, .918) 
CO (.276, .330)(.896, .917) 
DC (.285, .346)(.895, .919) 
DE (.288, .351)(.896, .919) 
FL (.297, .331) (.901, .917) 
LA (.293, .342)(.898, .919) 
MD (.296, .346)(.897, .918) 
NY (.293, .324)(.900, .916) 
SC (.290, .344)(.898, .919) 
WV (.285, .344)(.897, .919) 

b. Nonignorable 

CO (.266, .348)(.874, .919) 
DC (.295, .424)(.802, .931) 
DE (.292, .447)(.846, .944) 
FL (.295, .363)(.901, .925) 
LA (.294, .372)(.890, .936) 
MD (.298, .399)(.877, .923) 
NY (.287, .348)(.899, .922) 
SC (.299, .390)(.889, .936) 
WV (.274, .399)(.856, .939) 

c. Expansion 

CO (.222, .303)(.871, .918) 
DC (.253, .388)(.841, .937) 
DE (.228, .363)(.S2S, .929) 
FL (.273, .317)(.900, .921) 
LA (.261, .337)(.890, .932) 
MD (.274, .342)(.885, .925) 
NY (.267, .311) (.900, .920) 
SC (.268, .343)(.886, .935) 
WV (.246, .348)(.864, .934) 
NOTE: The expansion model is a nonignorable 

model centered on the ignorable model; Pi is the 
proportion of visits and 5i is the proportion of 

respondents in i th state for the population. 

sible that the nonresponse for all the nine states in 
the NHIS data is nonignorable. In addition, the non- 
ignorable model makes the pi too large, but the ex- 
pansion model corrects this problem. The expansion 
model is preferred (supported by the Bayes factor) 
because the parameters ~,i form a useful method to 
study uncertainty about ignorability, and to adjust 
for nonresponse bias. 
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