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1. Introduction: Measurement errors in 
variables, their effect on regression results and how 
to allow for it. 

It has been shown that taking account of measurement 
error in the analysis of educational effects can change 
results, for example reversing conclusions (Goldstein, 
1979) or creating apparent effects where none exist 
(Hutchison, 1999a, 1999b). Fuller (1987) gives a 
comprehensive account of methods for dealing with 
errors of measurement in OLS regression models. 
Methods for allowing for measurement error in 
multilevel data have been described in Goldstein 
(1995). This paper describes a new method of allowing 
for error in multilevel regression by using bootstrapping 
procedures. We illustrate this method on a simple two 
level model with two independent variables. 

A two-level linear model for Yu and true or 'latent' 

values x u , z  u , where i,j refers to the i 'h level-1 unit 

within the j,h level-2 unit is given by 

Y~ : flo + fl~xu + fl2z,j + uj + e 0. (1.1). 

C o v ( u j . , u j )  = Cov (e j , e i . j )  = C o v ( u j , e ~ )  = 0, i ' ¢  i , j ' ¢  j 

E(uj) = g(eu) = 0 ; var(uj) = o '~;var(e j )=0 -2 . 

z o. is considered to be measured without error in this 

example. 
The 'true' or latent values x o and y/j in (1.1) are 

observed with measurement error mu,r/u giving 

observed values X j and Y0 where 

X u = x o + m o 

Yij "~ Y ij -4-~70. - -~IXo .  "~ ~ 2 Z ij "~ U j -4-e u + 77o (1.2) 

C o v ( m  u ,mi.j ) ---- C o v ( m  o ,flu ) = 0 

E ( m , j )  = E(r/u ) = E(xu) = E ( y u ) = 0  ; 

var(m u) = a~ ; var(r/0 ) = O'2 

mo,~?u are independent of x u , z  u , Yo 

These are standard assumptions in this type of work, as 
defined by Goldstein, (1995): for examples of other 
assumptions, see Fuller (1987). Theory has been 
developed in this area mainly for the situation where 
errors are normally distributed, but also for multinomial 

misclassification (Fuller, 1987; Goldstein, 1995). More 
general models have not been widely considered, 
though Woodhouse (1998) has looked at the effect of 
errors in variables on slopes. 

2. The use of the bootstrap to correct for 
biases 

There are two main uses for bootstrapping techniques, 
estimation of sampling distributions and standard 
errors, and correction of biases. We discuss the use of 
the bootstrap for sampling distributions and standard 
errors in a later section. Bootstrapping techniques can 
be used to correct for biases in estimation techniques, 
using an iterative procedure. We illustrate on model 
1.1, 1.2 above. 

Stage 1 
Regress Y on observed X = ( X , Z )  

Y0 = (~l, Y21), observed coefficient. 

and find 

Stage 2 

Simulate I y, using fl0=(/~10,]~ll)=Y0, and an 

estimated value of x = (~,2) to be determined. 

Add measurement error to ~ to give__X. 

Regress simulated I~ on ~ and find ~b,  observed 

coefficient. 
Do this a large number B of times, and find ?'1 the 

mean ofthe ~b 

Estimate bias /)1 by/~1 = (~7 - ~7 0). 

Estimate ]~l as /~o-/~l 

Stage 3 

Repeat stage 2, starting at /~1 • 

Keep iterating until process converges. 
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3. Example: Correcting for Measurement 
Error: Hierarchical Model with Two Predictor 
Variables: Simulated data 

We consider two predictor variables, one of which is 
subject to measurement error. So we have the 
variable x~, measured with error by Xj 

X j = x,~. + m,j 

and the variable Z u = z u , assumed measured without 

error. The variables x , z  are correlated with 

correlation/9. 

The aim is, given the observed Variance-covariance 
matrix C, to produce two variables, $,z which have the 

error-corrected Variance-covariance matrix c. All that 
is required is to generate a pair of variables that provide 
the appropriate V-C matrix. The variables individually 
do not need to be only linear transformations of the 
corresponding observed variables. 

A basic data set of 5000 cases of 200 level 2 units with 
25 level 1 units in each, was then created, according to 
the model 

Yu = fl~Xu + fl2zu + uj + % " fl~ : r2 = 1 

E(y,j) = E(xo. ) = E(z,j) = E(u,) : E ( % ) = 0  

C(x,,,u, ) = C(x,,.,e,, ) = C( z,j,uo ) = C(z,j, % ) = 0, 

V [  u ] = , v [  ] = a . 

x , z  are correlated P x~ 

We added measurement error m u to x o to give Xj .  

y u , X u , z u  form the basic data set under investigation in 

each set of analyses. 

Analyses are carried out for ratio cry. / 2 2 (ty w + o" b ) 0.10, 

0.20, 0,30 where cr 2 2 w,O'b are within- and between-level 

2 variances for x , z ,  and values of x-reliability from 

1.0 to 0.65 and values of Px:-0.10, 0.40, 0,80 

We carry out the procedure separately on Level 1 and 
Level 2. 

Level 1 variance. 

2 2 We estimate o'~,o" z ,o '~  at level 1. The program 

MLWiN (Rasbash et al, 2000)  was used for this. 

Since we are not looking at level-2 error, only the level 

1 VC matrix C = [ o-~_ 
L 

The matrix ~ = [  AO'~O.a~. 

ax~]ax2 needs to be corrected. 

o'~1 where p~ is the level-1 

reliability is taken as the target for the simulation. 

The command MRAN in MLWiN is now used on 
matrix b~to create the level-1 part (~,~)of the 

simulation data set. The resultant data is only equal to 
the required quantity in expectation and is subject to 
sampling fluctuation. The variables are transformed to 
make it precisely equal. This is done multiplying the 

data (~,~) by /~/~-~, where L is the Choleski 

decomposition of V [ X , Z ] ,  and M is the Choleski 

decomposition of V [ p ~ X , Z ] .  Variables will be Y,Z. 

^ 

Similarly we created the Level-2 data, 2 , Z .  

Add x ,x  and Z , Z  to form the total 

Measurement error was added to ~ give Jf, Z .  

The bootstrap procedure as in section 2 was used to 
estimate fl~, f12. In each set of analyses, a large number 

of cases were simulated according to the given model. 
Sets of analyses using 2000 replications were carried 
out. Ten iterations were used to investigate the 
convergence of the procedure. 

Figure 3.1 shows one example of the convergence of 
the process for a correlation p ( x , z ) =  0.8. The true 

value for both x -  and z -  coefficients is 1.0. It can be 
seen that at the first iteration, the coefficient of x is 
below the 'true' value, and that of z is above. From 
about iteration 4, values stabilise to values slightly 
below 1 .0 . .  However, one would not expect the 
process to converge precisely to this value because of 
the random quantities introduced in generating the 
original data. 
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c) We have been working with up to 2000 
replications within each iteration. 

This suggests a total of 2000 resamples 
each including * 5 iterations 
each including *2000 replications 

20 000 000 bootstrap analysis (per 
problem). 

Impractical at this stage for real analyses! 

Can this be improved? 

Within each Resample the 
Replications have different aims. 

Iterations and the 

The iterations reduce the (expected) bias in the 
estimate. Graphs so far with constructed data have 
shown that the bias is effectively removed in four 
iterations for the simple model considered here and that 
the variation remaining is in the nature of oscillation 
rather than bias-correction 
The replications reduce the variance. Graphs 
comparing 500 and 2000 replications show that there is 
less variation in the latter. 

If we have a large number of equivalent resamples, then 
this should provide a large set of estimates (with a 
number of replications giving rise to variation within 
each). If we know when the iterations have converged, 
then we can focus attention on the replications within 
each converged analysis. This is a multilevel structure 
(replications within iterations within resample). We 
could view it in this way, as a three-level structure. 
However, in the middle level, the iterations are not 
exchangeable if the procedure has not converged. 
Consequently we would prefer to focus on a single 
iteration at or beyond the convergence stage. This 
would give us a two level model (replications within 
converged-iteration-within-resample). It should be 
possible to feed these results into a multilevel model. 

In fact we shouldn't need a very large number of 
replications within each, since the multilevel structure 
may mean that we can handle a degree of variation. 
This would have the drawback that we wouldn't 
necessarily know that the iterations have converged. It 
would be necessary to have some kind of prior idea of 
the total number of iterations under a wide range of 
resamples. Alternatively one could run a larger number 
of iterations than strictly necessary, and examine the 
convergence behaviour. 

This would potentially give a two-level model for fl~c~, 

the d th replication within the c 'h iteration of the b 'h 
resample. 

flb~d =/3o + fl~c + ebc~ (4.1) 
2 2 V[ebca]=O" e 

sqrt{V[fl~c] } could be taken as an estimate of the 

standard error of the estimate of fl0. A normal 

approximation to confidence intervals could be taken 
from the highest level variation. For a more general 
result, shrunken top-level residuals could be partially 
re-inflated to give the appropriate variance. Then the 
percentiles of these partially reinflated residuals could 
be used to give percentiles of the distributions. 

Example of implementation 
This is the theory. We next describe how this was 
implemented for the whole case resampling. As before, 
we have two predictor variables, one of which is subject 
to measurement error. So we have the variable x/j, 

measured with error by X U 

X j = x j + m j 

and the variable Z/j = z U , assumed measured without 

error. The variables x , z  are correlated with 

correlation p = 0.8 in this example. 

We create a basic data set of 5000 cases, as in Section 3 
above. 2000 replications were carried out in each 
analysis. 

Results of a set of simulations are shown in Table 4.1 

Table 4.1: Results of Bootstrap Estimation of Std 
Error 

Variable Estimate Standard Generating 
Error value 

X 0.99 0.015 1 
Z 0.99 0.011 1 
L-2 Var 4.54 .76 4 
L- 1 Var 25.93 1.08 25 
5000 resamples 

The standard error of the X-coefficient is estimated as 
0.015, and that for the Z-coefficient is rather smaller at 
0.012. This would be expected, since there is no 
measurement error in Z. 

The estimated values of the variance components are 
rather higher than the generating values, especially the 
L-2 var as a proportion of the actual. 
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Fig 3.1: Convergence of  X,Z coefficlents:N=5000;Corr=0.8 
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4 Estimating Standard Errors by the 
bootstrap 

How can the standard error of the result be estimated? 
Remember that the eventual solution is the result of a 
series of iterations, with a large number of bootstrap 
replications at each one. 

a) One obvious possibility could be to use the 
standard deviation of the coefficients in the replications 
at the final iteration. However this would be providing 
the standard error of the ?'-coefficients (i.e. the 

uncorrected regression) rather than the f l -  coefficients 

(i.e. the Corrected regression, which is what we would 
be seeking). 

b) The amount of oscillation between successive 
iterations is another suggestion. This has the same 
problem. 

c) Kuk (1995) produced a formula for the 
standard errors of coefficients under this type of 
approach. This requires a differentiable formula 
connecting fl and ? ,  which would not be available 

readily, since the two are connected by a bootstrap 
procedure. 

Desiderata for an estimate of standard error. 
a) It should not contain anything that is a feature 
of the procedure being used to estimate the coefficients. 
For example, the number of bootstrap replications 
should not affect it. 

b) It should not contain any of the uncertainty in 
estimating the true value of x from X .  It would thus 
be the value of the estimated standard error of the 
coefficients at whatever values are chosen for the 
independent variables. 

Suggested means of proceeding. 
Produce a bootstrap replication of the original sample, 
and carry out the procedure on the resample. 
Replicate many times, i.e. bootstrap the bootstrap. 
There are two types of possibility for the 'outer' 
bootstrap 
a) Whole case resampling 
b) Residuals resampling. This can be either 
parametric or non-parametric (Carpenter et al, 1999; 
Hutchison, 1999a). 

Here we present results using whole case resampling. 
Research continues on residuals resampling 

This means that we have three levels of looping. Some 
kind of convention on nomenclature is obviously 
necessary. 
a) Resamples from the original (actual or 
generated) data set. This is what we have described as 
the 'outer' bootstrap above. The literature suggests that 
it would be necessary to take of the order of 2000 
resamples to get reliable estimates of the percentiles, 
confidence intervals, etc. 
b) Iterations to convergence within each 
resample. Work so far suggests that something like 4-5 
iterations would be required. (This may be larger on 
more complex problems). 
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5. Conclusions 

The results presented in this paper have provided an 
example of a potentially generalisable procedure for 
estimating the sampling behaviour of multilevel 
regression models under measurement error. 

The next steps will aim 
to use residual resampling procedures (model- 
based simulations or non-parametric residuals) 
to consider other error distributions 
to examine more complicated models 
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