
C O M P A R I S O N  OF A G G R E G A T E  V E R S U S  UNIT-LEVEL MODELS FOR 
S M A L L - A R E A  E S T I M A T I O N  

E r i c  V .  S l u d ,  C e n s u s  B u r e a u  & U n i v .  o f  M a r y l a n d  
M a t h e m a t i c s  D e p a r t m e n t ,  U n i v e r s i t y  of  M a r y l a n d ,  Col lege  P a r k  M D  20742 

K e y  words :  EBLUP, generalized linear model, 
mean-squared error, mixed effects, simulation. 

A b s t r a c t .  This paper compares two methods of 
small-area estimation in a setting imitating the Cen- 
sus Bureau's county-level estimation of child poverty 
rates within the SAIPE (Small-Area Income and 
Poverty Estimates) program. The first method es- 
timates a transformed Fay-Herriot (1979) regres- 
sion model for log-rates of child poverty by county 
in terms of several county-level predictors, discard- 
ing data from sampled counties with 0 counts of 
child poor. The second method uses likelihood- 
based parameter estimates within a mixed-effect 
logistic regression model for poverty of individual 
CPS-sampled children. The Empirical BLUP small- 
area estimators from the Fay-Herriot model are com- 
pared, via simulation, with the analogous EBLUP 
estimators for the unit-level logistic model. 

This paper reports on research undertaken by the au- 
thor. Results and conclusions expressed have not 
been endorsed by the Census Bureau. 

1. I N T R O D U C T I O N  

As summarized by Bell (1997, 1998) and Citro and 
Kalton (1999), the Small Area Income and Poverty 
Estimates (SAIPE) program at the Census Bureau is 
congressionally mandated to estimate poverty rates 
among children at the state, county, and ultimately 
school district level. At the county level, which is 
all we consider here, the current methods rely on a 
mixed-effects linear model in terms of Census, Cur- 
rent Population Survey (CPS), and I.RS predictor 
variables, for the logarithm of the observed number 
(of poor children) in counties for which CPS sam- 
ples were taken and in which the sample contained 
a nonzero number of poor children. Sampled coun- 
ties without poor children aged 5-17 in-sample are 
dropped fiom the analysis, a bothersome aspect of 
the current method highlighted in NAS reviews. It is 
desirable instead to model the essential discreteness 
of the response-counts by unit-level models. 

The existing SAIPE methodology for small-area 
estimation is based upon the classic linear model 
of Fay & Herriot (1979) using aggregate-level data. 

Previous applications of unit-level generalized linear 
models in small area estimation include Malec et 
al. (1993) and Ghosh et al. (1998). R. Folsom and 
co-authors at Research Triangle Institute have used 
such methods for several years in connection with 
the National Household Survey on Drug Abuse. The 
primary approach to parameter estimation in these 
previous works is Gibbs sampling. A still-useful gen- 
eral review of small-area estimation methods is the 
paper of Ghosh & Rao (1994). 

In this paper, we first present a model which can 
be used to simulate the county-level SAIPE data. 
We then describe two different small-domain work- 
ing models for analyzing such data: (i) a mixed- 
effect linear-model fit to the logarithms of sam- 
pled counts, with zero-counts discarded, and (ii) a 
mixed-effect unit-level logistic regression model with 
county-level random effect, estimated by numerical 
maximization of the accurately approximated log- 
likelihood (Slud 2000). Both models are slightly mis- 
specified: the quality of estimates they produce are 
compared here via simulation. A fuller discussion of 
the models and simulations presented can be found 
in the SAIPE technical report Slud (1999). 

A c k n o w l e d g m e n t .  This work was supported by 
the Census Bureau's SAIPE program. I am grateful 
to Bill Bell for guidance and insights throughout. 

2. A G G R E G A T E  VS. U N I T  MODELS 

Suppose that for each county (PSU) in the nation, 
i = 1 , . . . , m ,  there is a population (e.g., the set of 
children 5-17) of size Ni which can be assumed 
known, a response variable }}0 which is a count of 
population members in a desired response-category 
(e.g., poor child aged 5-17); and a vector Xi of 
explanatory variables such as "log of IRS poverty- 
rate", rate-variables related to Food Stamps and IRS 
exemptions, etc. The count 1~ ° is not observable, 
but the corresponding count yO is for a random 
sample si of size ni taken from each sampled PSU 
(i E s). For man5; PSU's, ni = 0 ; and for many 
sampled PSU's, the observed count yO will turn out 
to be 0. Assume that the PSU sizes Ni are always 
much larger than the sample size n i .  For simplicity, 
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assume that  samples are drawn at random within 
each PSU. The parameters  to be est imated are the 
ratios toi = Yi°/N/  for entire PSU's.  

2.1. Transformed Aggregate Models 

The transformed PSU- and sample- aggregated 
counts are often assumed to follow a linear regression 
model a T r a n s f o r m e d  Fay-Herriot (1979) 
M o d e l  with PSU or cluster random effect fol- 
lowing a normal sampling distribution: 

Y ° / X ~  - h(~o + ~ X i  + U~), U~ ~ H ( O , ~ )  (1) 

The unknown coefficients are a scalar intercept 70 
and a vector 71 of the same dimension as X/; 
and h is one of a few possible known (exp, logistic, 
or identity) functions. The cluster random effect 
Ui is shared by all individuals within the PSU. The 
unobservable total  y/0 and the sampled count yO 
(for i E s) are connected through the model 

_ ( y o  _ + - + ( 2 )  

on the measurement  scale defined by h -1, where 

ei ~ .A/'(O , ve /n i )  

Either cr 2 or v~ is assumed known, as in Fay 
& Herriot (1979) for the case h(x)  = x, and the 
unknown parameters  (70, ~1 and cr 2 or v~) are 
est imated by maximum likelihood (ML). 

We imitate the SAIPE county-level analysis de- 
scribed in Bell (1997) by analyzing data  assuming 
(1)-(2) with h(x) =_ exp(x), using only sampled 
PSU's  in which y0 > 0. Early SAIPE models t reated 
the sampling-error variance term ve as essentially 
known through generalized variance-function esti- 
mation. ML estimates obtained with ve known and 
cr unknown are labelled l inf i tA.  However, the PSU 
variance is currently est imated from Census data  in 
the 'bivariate '  model of Bell (1997, 1998), motivat-  
ing a second method of analysis, labelled l in f i tB ,  in 
which cr 2 but not v~ is taken as known. 

In l i n f i tA  analyses, v~ is set equal within simu- 
lations to the est imated variance of 

In l in f i tB  analyses within simulations, the quanti ty 
cr 2 is set equal to the residual mean-squared error 
in regressing log(0i) on 1, Xi  across PSU's i. 

2.2. Unit-level Models 

A model resembling (1)-(2), but with ve depend- 
ing upon i and t0i, arises from a unit-level model 

y/0 ~ Binom(N/,  7ri), yO ..~ Binom(ni,  7ri) (3) 

in which y/0 is the sum of Ni independent indica- 
tors Y/j, j - 1 , . . . ,  Ni, with identical expectations 

7ci - P(y/ j  - 1) - h(7o + ~'1Xi + Ui) (4) 

and yO is the sum of yij for the ni sampled units 
j E s/. A natural  model of this sort is a mixed-effect 
logistic regression, with h(x)  = eX/(1 + e*). 

In the limit of large ni and Ni, the Central 
Limit Theorem yields (for fixed covariates Xi  and 
PSU random effects U~), that  y°/n~ ~ A/'(7c~, ~ri(1- 
7c/)/ni), for 7c/ as in (4). Moreover, when ni << Ni, 
the order of magni tude  of Oi - 7ri = Yi ° /N i  - 7ri is 
much smaller than the order 1 / x / ~  of yO/ni, so 
tha t  y ° / n i  ~ Af(v~/, tg/(1 - v~i)/ni). Then the Delta 
Method shows under model (3)-(4) that  

h-1 (y°/n i )  - - h - l ( t o i )  n t- ei 

with the distribution of ei conditional on Xi and 
Ui given approximately by 

ei ,~ A/( O, {(h-1)'(toi)} 2 ~)i(1 - toi)/n,i ) (5) 

The error-term ei arising here from the unit-level 
model (3)-(4) has the same form as in the aggregate 
model (1)-(2) ezcept that  the analog of ve in the 
lat ter  is now PSU-dependent .  Only in the very spe- 
cial case where h(x) c~ sin2(x/2) does it turn out 
that  ei in (5) has (conditional) variance not depend- 
ing on 0i. For example, when h(x) = e x / (1  + e "~) 
is the logistic (distribution) function, (5) yields con- 
ditional variance for ei equal to { 0 i ( 1 - t o i ) n i }  -~ 

The method of est imation used in the simula- 
tions below, labelled g lmf i t ,  is Maximum Likelihood 
(ML) based on the assumption of logistic h. An- 
other est imation method,  discussed in Slud (1998, 
1999), is ML within a variance-stabilized mixed non- 
linear regression model. However, tha t  method is 
not t reated here because it yields biased parameter  
estimates unless the sample-sizes ni are very large. 

An aggregated model (1)-(2) is likely to be well 
approximated by a unit-level Binomial model ( 3 )  
(4) only if the h functions for the two models 
match. Ext ra  regression terms beyond the linear 
terms specified for these models do help in mitigat-  
ing the effects of misspecifying h. For this reason, 
we consider the effect in our simulations of incorpo- 
rating a quadrat ic  explanatory variable. 

3. EBLUP SMALL-AREA ESTIMATORS 

The fractions Oi - Yi° /Ni ,  are to be est imated 
based on covariates Xi which are constant over the 
i ' th  PSU. The parameters  (7o, ")/1) and cr 2 or ve 
in model (1)-(2) are first est imated,  either within a 
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mixed linear regression with h ( x )  = e x or via ML 
for (3)-(4) with logistic h. These estimators are 
substi tuted into modified 'EBLUP'  small-area esti- 
mators (see Ghosh and Rao, 1994). There are two 
separate cases: first, where the estimator of param- 
eter 0~ in PSU i is based on no sampled data 
in the PSU, but only on the predictor X i  and the 
estimators (%, ~ )  along with 52 or ~ ;  and 
second, where Oi is estimated in terms of the pa- 
rameters, predictor and observed sample of size ni 
(with yO responses) in the i ' th  PSU (for i ~ s). 
In both cases, sampling variability of the fixed-effect 
coefficient estimators (%, ~1) should be taken into 
account, since the estimators are based on nonlinear 
functions of observed response rates. 

For simplicity of notation from now on, define 
! , , !  

r~i - 70 + 7~Xi , ~i - ~o + 7 1 X i  

3.1. Modified E B L  UP 's 

The small-area estimator for 0i should, if we 
knew the coefficients (70, 71) in model (1)-(2) or 
(3)-(4) exactly, be based on the random quantity 
~i + Ui and the conditional distribution of the PSU 
random effect Ui given the observed data. Recall 
that  the conditional expectation for tgi = Yi ° /N i  
given Xi, Ui is always 7ri = h(~h + Ui). By 
analogy with BLUP's,  our principle of estimation of 
d~ is to estimate the conditional expectation 

z(o~ I(%, ~1, ~ ) ,  yo) _ z(~-~ I(~0, ~1, ~2), y0) _ 

z ( z ( ~  I (y~, k c ~)) I(%, +1, a~), yo) (6) 
The estimators defined via (6) are approximately un- 
biased. For l inf i tB analyses, &2 in (6) is replaced 
by ~)e- However, for simplicity we continue to write 
formulas in terms of &2 When there is no sample 
in a PSU, the expectation is conditioned given only 
the parameter estimators (%, ~/1, d 2, 9e). 

Estimators based on (6) explicitly require some 
approximation to the joint distribution of Ui and 
(%, ~1, 52, ~ ) ,  and we assume ( A s s u m p t i o n  A) 
that  Ui is approximately conditionally independent 
given y0 of the estimators (%, ~1, 52, ~?~) and of 
(y~, k ¢ i), with conditional variance cr 2 for all i; 
and that  the parameter estimators are jointly nor- 
mally distributed, given each yi, with means equal 
to the true values under model (1)-(2) or (3)-(4). 

We apply Assumption A separately for the two 
models we compare. In the Fay-Herriot (1979) 
model (1)-(2), with h(x )  - e ~ and yi - log(y° /n~) ,  

the conditional law £ ( U i [ y i )  of Ui given yi is 

( , ~v ~ + - ~ / ~  (~ , -  ~o - ~lX~), ~ + ~ / ~  

By Assumption A, conditionally given Yi and the 
parameter  estimators, the law of ~i + Ui is 

O-2Ve 
(y~-  ~) ~ (7) 

. ~  ~]i + (7 2 + r e ~ h i  ' n i  -t- Ve 

The conditional law given only yO but not  the pa- 
rameter estimators is obtained from the normal dis- 
tribution (7) by replacing ~)i with r/i within the 
mean, and increasing the variance by 

'> 1 ' 1 < -  (x~) s, (x~) 
where E~ denotes the large-sample covariance ma- 
trix for the fixed-effect estimators %, ~1. In the 
linear model for log-counts, the conditional law of 
~)~ + U~ given the parameter estimators is 

t~-,(7]i -[- Ui I@0, @1, (~2) ,~ ./V'(7]i ' (72) (8) 

In the model (3)-(4), by Assumption A the condi- 
tional density of Ui at u, given (%, ~1, 52) and 
yO _ m, is approximately proportional to 

e "~(~+' ) -~: / (2" : )  (1 + ew+~L) -~i (9) 

and 7)i is approximately independent of Ui with 

2 
~]i ,~ A/'(•i, a i ) (10) 

Expectations in this model are given in terms of 

. em(x+bz)  
A(x, m, n, b) - (1 + ex+bz) ~ ¢(z) dz (11) 

where ¢(.) denotes the standard normal density. 

3.2. N o n - s a m p l e d  P S U ' s  

For non-sampled PSU's, the estimator would be 

d~ - ~ ( h(~0 + v'~x~ + u~)1%, ~1, ~ ) 

where the estimated expectation E will have esti- 
mators (%, ~/1, &2) substituted and will be bias- 
corrected if possible. In the model (1)-(2) with 
h(x )  - e ;r, we obtain via Assumption A and (8), 
after substituting parameter estimators, that  

~)i -- e x p ( %  + 71 ^ ' X i  + (&2 _ ai^2)/2) (12) 

where the bias-correction term 

.̂) 1 , 1 

~ -  (x~) ~ (x~) 
is defined in terms of 'a  consistent estimator Ev, 
produced by each estimation-method, for the covari- 
ance matrix of estimators for fixed-effect coefficients. 
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The corresponding bias-corrected small-area estima- 
tor for the model (3)-(4), conditional on parameter  
estimates, is given in the notation (11) by 

/ 

A(r~i, 1, 1, ,V/~ 2 - a i ) (13) ~ 2 

where 62 _ aî 2 is replaced by 0 if it is negative. 

3.3. Sampled PSU's  

The small-area estimator for a sampled PSU i 
makes direct use of (6), Assumption A, and the con- 
ditional distributions of subsection 3.1. First, in the 
Fay-Herriot model (1)--(2) with h(x) = e ~, we find 
the expectation of the exponential of a variable with 
the distribution (7), with substituted parameter  es- 
t imators and corrected for bias, as 

( 0i -- exp rli + (~2 + Ve/ni (Yi - f]i) (14) 

1 [  3"2re (5i Ve/ni) 2 ) 
+ + - + 

In the mixed unit-level regression model (3)-(4) with 
h(x) = e~/(1 + eX), we obtain for (6) via the ap- 
proximation of Assumption A 

/ / / e Y ° ( ~ + ~ z ) O ( z ) d z  
+ (1 + 

which is equal by definition to 

A ( ~ ,  y ° + 1, r~,i + 1, ~ ) / A ( ~ ,  y °, n~, &) 

Since there is no simple bias-correction for this ratio, 
the small-area estimator for the unit-level model is 

- + yo ) 

_- A( ~ i ,  yO + 1, ni + 1, 6) (15) 

4. S I M U L A T I O N  S T U D Y  D E S I G N  

We now describe a simulation study designed to 
compare small-area estimates (without PSU or unit- 
level weighting) based upon the SAIPE aggregated 
mixed-effect log-linear models for county log child- 
poverty rates, omitting sampled counties with zero 
counts of poor school-age children, versus estimates 
from unit-level mixed logistic models. 

We began by fixing the numbers ni, a set of 
1488 PSU sample-sizes corresponding to the (non- 
zero) numbers of school-age children sampled by the 
CPS in counties over the 3 years 1992-94. The dis- 
tribution of numbers sampled within PSU's was very 
skewed, ranging from 1 to 2226, as Table 1 shows. 

Table 1: Size-categories of sample in PSU. 

Group Interval of ni # PSU's in Gp. 

[1, 506  
2 [11,25] 448 
3 [26, 75] 398 
4 [76,220] 106 
5 [221,2500] 30 

The total PSU sizes Ni played a direct role only 
in the estimation of Ve, and were fixed at a factor 
of 2000 (roughly the reciprocal sampling fraction of 
the CPS) multiplied by the sample sizes hi. 

Our single predictor variable Xi, resembling the 
IRS-estimated log number of poor children in county 
centered at 0, was simulated once for all simulations 
displayed, as a column of independent 3/(0, 1.69) 
random variables. However, to prevent unrealisti- 
cally large variation in response fractions for PSU's 
with very large samples (those > 220), we fixed Xi 
for these large-sample PSU's to be 0. 

Data  for each simulation iteration were simulated 
according to model (3)-(4) with specified parame- 
ters 3"o, 3'1, c r2 and Ui ~ 2((0, a2); with binary 
response for individual j within PSU i of 

yji ~ Binom (1, 7ri ) , j = 1, . . . , Ni 

where 7ri is as in (4); and with yO - 2 j ~ 1  yij. The 
function h(x) (logistic unless indicated otherwise) 
and parameters (%, 3'1, cr 2) were fixed within each 
simulation. The initial choice of the fixed-effect co- 
efficients was: 3"o = -1 .6 ,  to get the average of Oi 
values around 0.2, and ~1 = 0.9 so that  t~ falls 
in the range (0.05, 0.40) when Ui~= O. 

For each simulation iteration, estimators of 
3"o, ~Yl, a 2 were calculated in the three ways de- 
scribed in Section 2 ( l infi tA,  l inf i tB,  and glmfi t ) ,  
using specially coded Sp lus  functions. The small- 
area estimators 0i were calculated as in Section 3, 
and the linfit  estimated 0i values were replaced by 
1 whenever greater than 1. For each simulation iter- 
ation, and each of the three sets of parameter estima- 
tors, the empirical Mean-Squared Errors (MSE's) for 
small-area estimators were averaged over each PSU 
Group, defined in Table 1 through the numbers ni  

sampled within PSU. 

5. R E S U L T S  O F  S I M U L A T I O N  S T U D Y  

Figures l (a ) - (d)  display the groupwise average 
MSE results of 4 simulation experiments of 100 
iterations each, with parameters shown in the graph 
headings. In all of these simulations, analyses were 
unweighted, and the plotted M S E  numbers are em- 
pirical. Figure l(a) shows the empirical behavior of 
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estimators based on formulas (12) and (13), which 
should be interpreted as estimates of 0~ as though 
no sample were drawn from the i ' th PSU. An anal- 
ogous simulation with c~ = 0.3 in place of 0.2 (re- 
sults not shown), yielded larger MSE's for all meth- 
ods, but the comparison between methods was es- 
sentially the same as in Figure l(a). Figure l(b) 
shows the performance of modified-EBLUP estima- 
tors (14) and (15) for c~ = 0.2, and the simulation 
of Figure l(c) differs from that of l(b) only in hav- 
ing augmented the set of predictor covariates 1, X i  

with X ~ .  

The MSE's for ~)i in nonsampled PSU's 
(Fig. l(a)) are of the order of 0.001 across the board 
in the g lmf i t  method, but tend to be larger by a fac- 
tor of 2 or more in PSU Groups I to 4 (PSU samples 
of 220 or less) for l inf i tA and linfitB. In Group 5, 
l inf i tA and l inf i tB respectively have MSE's larger 
than glmfi t  by 8% and 17%. The MSE's in sampled 
PSU's (Fig. l(b)) are, for all methods of EBLUP es- 
timation, only slightly better than in non-sampled 
PSU's for PSU Groups 1 and 2: although we used 
formula (15) in estimating PSU response rate for the 
unit-level (nonlinear) models in PSU Groups 1 and 
2, in these groups the glmfi t  MSE entries are essen- 
tially identical in Figures l(a) and l(b). But there 
are clear differences in Groups 3 to 5 for the glmfi t  
MSE's respectively between Figures l(a) and l(b). 
Figure l(b) shows that in Groups 3 and 4, l inf i tB 
has MSE larger than glmfi t  by 100% and 60%, and 
in Group 5 g lmfi t  is only about 10% better than 
l infitB. When the quadratic predictor Xi 2 is used 
in the linear-model fitting (Fig. l(c)), the MSE's 
for l inf i tB (with the properly chosen value for cr 2 
taken as known) improve considerably in Groups 1 
to 4: they are larger than for glmfi t  by a factor of 
only about 1.5 for Groups 2, 3, and 4, and are just 
about the same as for glmfi t  in Group 5. Results 
for l inf i tA are also much improved by the additional 
predictor, but still much worse than linfitB. Again, 
analogous simulations with cr = 0.3 (not shown) 
replacing the value cr = 0.2 in Figures l(b)-(c),  
yielded similar comparisons between methods. 

We consider next the performance of the same 
small-area estimators upon simulated data flom the 
unit-level model with h ( x )  - e x, which is designed 
to show the linfit analysis method in its most fa- 
vorable light, and makes the glmfi t  analysis clearly 
this-specified. Although Figure l(d) displays the re- 
sults only for EBLUP's  (sampled PSU's), the linfit 
small-area estimators show only a very small advan- 
tage in MSE over those based on glmfit .  The largest 
advantage in MSE for linfit versus glmfi t  appears 

in Figure l(d) for Groups 1 and 2: l infi tB has a 
5% advantage over g lmfi t  in Group 1 and 10% in 
Group 2, but none for PSU's with sample-size larger 
than 25. Remarkably, there are no other cases in our 
simulation where either linfit method outperformed 
glmfit ,  even in this setting with h - exp. 

6. C O N C L U S I O N S  

The simulation results presented in the previous 
Section, together with the more complete results in 
Slud (1999), yield the following conclusions contrast- 
ing the small area estimators produced in the SAIPE 
context with the aggregate-level transformed Fay- 
Herriot model (1)-(2) versus those produced with 
the unit-level mixed model (3)-(4). 

(1) glmfi t  gives uniformly smallest MSE. In 
the simulated-data comparisons, the loglinear- 
model linfit methods were implemented with 
cr 2 or Ve accura te ly  k n o w n ,  which might tend 
to under-estimate the MSE's they would pro- 
vide in practice. 

(2) Even in the models with h - exp, where lin- 
fit methods should be at their best, unit-level 
logistic-model analyses are as good. 

(3) Quadratic (and probably also interaction-) co- 
variate terms help when the working model is 
misspecified, a l i t t le with glmfi t  and h0 - exp 
and a lot with linfit and ho - logistic. 

(4) Simulations with multidimensional covariates 
X i  show still greater improvement of glmfi t  
analysis methods over the linfit methods. 

These observations together indicate that the 
glmfit-based small-area estimators using mixed lo- 
gistic models in place of linfit (mixed log-linear ag- 
gregated model) are very promising in the SAIPE 
context as a way to overcome the disadvantage of 
discarding sampled 0-counts, and can help consid- 
erably more than they are likely to hurt due to mis- 
specification of the mixed logistic unit-level model. 
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Figure  1, at right. Plots of groupwise Mean- 
Squared Errors, averaged over PSU Groups defined 
in Table 1 through similar sample sizes, of Small- 
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Area Estimates 0i calculated by three different 
methods, based onsimulated data with cr - 0.2 and 
fixed-effect parameters as displayed in graph head- 
ings: 

(a) MSE's in nonsampled PSU's, for h -  lo9ist; 

(b) MSE's in sampled PSU's, for h -  lo9ist; 

(c) MSE's in sampled PSU's, for h - logist, with 
an extra, quadratic predictor; and 

(d) MSE's in sampled PSU's, for h -  ezp. 
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(b) S A M P L E D ,  h=logist, gam0= -1.6, gaml  = 0.9, sig= 0.2 
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(C) S A M P - Q U ,  h=logist, gain0= -1.6, ga rn l=  0,9, sig= 0.2 
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(d) S A M P L E D ,  h--exp, gam0= -1.9, g a m l =  0.3, sig=0.2 
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