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1 Introduction 

In our development of the plans for the 1998 
Dress Rehearsal Long-Form Generalized Variance, 
we looked to employ a new outlier detection method- 
ology that  could automate  the adhoc process used in 
1990. The generalized variance program generates a 
group design effect for 60 different data  i tem groups 
by calculating a weighted average of the design effect 
for each data  i tem contained in tha t  group over each 
Final Weighting Area (FWA) in the Dress Rehearsal. 
In 1990, the process of identifying outliers was done 
using a combination of graphs and studying the rel- 
ative absolute deviation. It was desired tha t  for the 
1998 Dress Rehearsal plans a more automated and 
objective means could be used. 

In this summary, we present two major  approaches 
to this problem. The first major approach examines 
the data  to determine extreme values using differ- 
ent estimators of scale and then down weights acc- 
cordingly. Some general background for comparing 
different estimators is given before a comparison of 
four leading candidates for detecting extreme values 
is presented. The second major approach examines 
the influence of each of the observations and applies 
a down weighting based on the influence of the ob- 
servation rather than its raw value. Each of these 
methods is tested on a dataset obtained from the 
1998 American Community Survey. We conclude 
with a few remarks about our study. 

2 Background and Description of 
1990 Methodology  

The long form contains a number of housing and 
population questions which are summarized for pub- 
lic release. Each estimate released to the public must 

1This paper reports the results of research and analysis 
undertaken by Census Bureau staff. It has undergone a Cen- 
sus Bureau review more limited in scope than that given to 
official Census Bureau publications. This report is released to 
inform interested parties of ongoing research and to encourage 
discussion of work in progress. 

have a corresponding est imate for the standard er- 
ror (SE). Since the summary  tables released con- 
tain a large number of estimates, SEs are published 
using the generalized variance method of multiply- 
ing the SE obtained if a simple random sample was 
used by an appropriate design effect which accounts 
for the cluster sampling effects (by household) and 
the intra-cluster association. Users are given tables 
and the formulas used to produce the tables in order 
to make the necessary calculations. Design factors 
are published for 60 different groups of housing and 
population characteristics and users must select the 
appropriate group design effect for their particular 
estimate. For example, a user estimating the SE for 
the number of children under 17 in poverty would 
use the group design effect for poverty in their cal- 
culation. 

In 1990, the method for detecting extreme values 
centered around calculating the relative absolute de- 
viation of the Actual SE from the Predicted SE us- 
ing the group design effect for each observation. The 
relative absolute deviation (RAD) was defined as 

R A D -  IActual S E -  Predicted SE I × 100% 
Predicted SE 

Observations for which the RAD was greater than 40 
percent were flagged. Next they looked at a graph of 
Predicted SE vs Actual SE and used the graph to 
determine which of the flagged observations would 
be designated as an extreme observation. Extreme 
observations were removed from the group design 
effect calculation. 

3 Detect ing Extreme Values 

Four methods for detecting extreme values were ap- 
plied and evaluated in our work. Each of these was 
based on a different estimator of scale taken and/or  
adapted from Rousseeuw & Croux (1993). To place 
these estimators in context, we first review some 
properties of estimators of scale. 

3.1 P r o p e r t i e s  of  E s t i m a t o r s  of  Scale  

The topic of theoretical properties of estimators can 
be found in many standard textbooks on robust 
statistics including Huber (1981), among others. We 
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concentrate here on four main properties which we 
found useful for studying estimators of scale. 

3.1.1 Breakdown Point 

The first property to be defined is the breakdown 
point. We define the (explosion) breakdown point as 
the minimum percentage of the data which, when re- 
placed by some arbitrary values, makes the estimate 
equal to infinity. Some examples for estimators of 
scale include the standard deviation and the average 
absolute deviation, which have a breakdown point 
of zero-percent. This contrasts to the interquartile 
range which has a breakdown point of 25%. For lo- 
cation estimators, the mean has the same breakdown 
point as the standard deviation and the median has 
a breakdown point of 50%. We would expect that  
estimators with higher breakdown points would be 
less affected by high-valued outliers since it takes a 
greater portion of the data to significantly affect the 
value of the estimator. For example, the standard 
deviation can be greatly increased by the presence of 
one extreme value whereas the inter-quartile range 
(with a higher breakdown point) is insensitive to the 
presence of outliers until they affect the first or third 
quartiles (which is why its breakdown point is 25%). 
The maximum breakdown point possible for an es- 
t imator is 50% so this gives a mark to measure all 
esimators of scale against. 

3.1.2 Influence Function 

A second measure is given by the influence function 
(or influence curve) and the gross-error sensitivity. 
The influence function for a distribution function F 
and a functional T is defined as 

I F ( x , T , F )  - lim T((1 - s)F + sS~) - T(F) 
s--+O 8 

where 5~ denotes the pointmass observation 1 at x. 
This function can be interpreted as a type of deriva- 
tive which measures the change in the estimate due 
to a small increase of data at a position x. While 
one can directly compare influence functions of dif- 
ferent estimators, it is often sufficient to look at the 
maximum of the influence function over the dataset 
(or the infimum if applying to a theoretical infinite 
set). This provides a one-number comparison called 
the gross-error sensitivity defined as 

7* (T, F)  = max l iE(x, T, F)[ 
x 

Thus we see that an estimator with a higher gross- 
error sensitivity will be more greatly affected by the 
presence of outliers than one with a lower gross-error 
sensitivity. 

3.1.3 Efficiency 

A third property is the variance or efficiency of the 
estimator. One can measure the efficiency of an esti- 
mator of scale, for example, by comparing the vari- 
ance of the estimator to that  of the standard devi- 
ation over a G aussian distribution. Low efficiency 
implies high variance for the estimator and thus it is 
desirable to have an estimator with high efficiency. 
By definition, the standard deviation is 100% effi- 
cient. 

3.1.4 Relation to Symmetry 

The last property is the appropriateness of some 
estimators for symmetric versus asymmetric data. 
The classic examples are for location estimators, the 
mean versus the median, and for scale estimators, 
the standard deviation versus the use of quartiles. 
We will see that  in the application of estimators of 
scale to outlier detection, the use of a particular lo- 
cation estimator or the use of no location estimator 
can be very important  since outliers may not be sit- 
uated at equal distances from the location estimator 
if the data are asymmetric. 

3.2 F o u r  E s t i m a t o r s  of  Scale 

At the base of each outlier detection method is a dif- 
ferent estimator of scale. As stated earlier, methods 
such as standard-deviation or the average absolute 
deviation are subject to instability because of their 
low breakdown point. All four of these estimators 
are based instead on either the median or an order 
statistic. 

3.2.1 Median Absolute Deviation 

The first estimator of scale is the median absolute 
deviation (MADn). It is equivalent to the average 
absolute deviation except using the median rather 
than the mean. In symbols it is defined 

M A D r ~ -  1.4826 b,~ wmed x i -  wmed xj 
i - - 1 , . . . , n  j - - 1  . . . . .  n 

where b,~ is a finite population correction parame- 
ter, wmed is the weighted median, and the coef- 
ficient 1.4826 is for consistency with the standard 
deviation over normal distributions. The weighted 
median is calculated by first sorting the observations 
and then finding the observation where the sum of 
the weights below the observation is equal to the 
sum of the weights above the observation. The use 
of the median in place of the average improves the 
estimator in several ways. The breakdown point 
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of the MAD,~ is 50%, the maximum possible, im- 
proved from 0% for the average absolute deviation 
or the standard deviation. It also has a bounded 
influence function which yields a finite value for the 
gross-error sensitivity. In fact, it can be shown that  
the MAD,~ has the best gross-error sensitivity for 
symmetric data  but it does not fare as well for non- 
symmetric data. The Gaussian efficiency, however, 
is fairly low at 37% compared to the median's loca- 
tion estimator efficiency of 64%. 

Technically, the MAD,` is also easy to calculate 
with computation times on the same order as the 
number of observations and the storage required is 
also on the same order as the number of observa- 
tions. Overall, this means that  for symmetric data 
it is very hard to beat the MAD,~ on all counts ex- 
cept for its efficiency. 

3.2.2 S,` (unweighted and weighted) 

S~ was designed to improve over MAD,` for asym- 
metric data. The problem MAD,., has for asym- 
metric data is that  it counts observations equally 
for values which are a fixed distance above or below 
the median. For asymmetric data, however, outliers 
may not lie symmetrically about the median. Sn 
thus has no location estimator in its definition in or- 
der to avoid biasing itself against asymmetric data. 
Its definition is given by 

S,~ = 1.1926 c,` lomed lomed Ixi - xjl 
i=1 ..... n j¢i 

where Cn is a finite population correction parame- 
ter and the coefficient 1.1926 is for consistency with 
the standard deviation over a Gaussian distribution. 
Note that  the inner low median excludes j equal to 
i. 

S,` has a 50% breakdown point like MAD,` and 
also has a bounded influence function. We already 
stated that  MADn has the best gross-error sensitiv- 
ity for symmetric data but Sn performs better than 
MADn for asymmetric data. The improvements for 
asymmetric data do not prevent Sn from performing 
well for symmetric data with S~ only slightly behind 
MADn. One final improvement over MADn is that  
the Gaussian efficiency for S,` is 58% compared to 
the 37% efficiency of MAD,~. So S,` has made sig- 
nificant improvements on two major grounds. The 
improvements do not come for free as S~ requires 
more computation time than MAD,~. With careful 
programming however, the calculation of S~ takes 
only on the order of n log n time (n=number  of ob- 
servations) as compared to order n time for MAD,~. 
The amount of storage is comparable to MAD,,  at 
order n size. 

A weighted version of S,` was proposed using the 
following definition, 

Sn (weighted) = 1.1926 cn wlomed wlomed Ixi - xjl 
i=1 ..... n j:/:i 

where wlomed is the weighted low median. It is the 
weighted equivalent of the low median and is calcu- 
lated in a manner similar to the weighted median. 

3.2.3 Q,` 

Qn is one more at tempt  to improve upon both 
MADn and Sn. There is still room for improve- 
ment in the Gaussian efficiency compared to S~. So 
Q,` replaces the double median of S,` with an ap- 
proximate first quartile calculation. In symbols it is 
defined as 

Q,` - 2.2219 d,` {Ixi - xjl"  i < J}(k), 

where (k) is the k th order statistic, h is defined as 
h - [2J + 1, d,` is a finite population parameter 
and the coefficient 2.2219 is for consistency with the 
standard deviation over a Gaussian distribution. 

Q,` keeps the advantages of S,` with a 50% break- 
down point, a bounded influence function, and im- 
proved performance for asymmetric distributions. 
The key improvement for Q~ is the increasing of the 
Gaussian asymptotic efficiency to 827o which is the 
best of the four estimators. This benefit is not real- 
ized, however, until n is larger than approximately 
50. Its gross-error sensitivity is larger than S,` by a 
small amount. Q~ also takes an equivalent amount 
of processing time and storage space as Sn. 

Since the main advantage of Q,`, efficiency, does 
not appear until n is greater than 50 it is recom- 
mended that  Sn is used for smaller datasets. In ad- 
dition, S,`'s lower gross-error sensitivity may make 
it better for detecting outliers since Q~ offers no off- 
setting advantages for this size dataset. For datasets 
larger than 50, Q,`'s greater efficiency can offset its 
higher gross-error sensitivity and make it the prime 
choice. 

3.3 A p p l i c a t i o n  to Out l i er  D e t e c t i o n  

The application of each Of these estimators of scale 
to outlier detection involves a standardization of ob- 
servation values. These standardized values are then 
compared to a fixed value. Since the estimators of 
scale were normed to the standard deviation for a 
normal distribution, a value of 2.5 or 3.0 may be 
used in order to determine outliers. It is our inten- 
tion, however, to empircally determine the best com- 
parison value by evaluating which value produces the 
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best results based on a number of criteria. It is ex- 
pected that this value will fall between 2.5 and 3.5. 
The four test statistics using MADe, Qn, and Sn 
(unweighted and weighted) respectively are 

1 [x~-wmedj x~l 
• ' M A D n  

2. lomedj~ I x i - x 1 [  
Q~ 

3. lomedj~i I x i - x j l  
S~ 

wlomed~i I x l - x ~ l  
4 .  S ~ ( w e i g h t e d )  ' 

We note that  given the similarity of Sn to Q~, we 
are able to use the same numerator for both test 
statistics. 

4 S t u d y i n g  I n f l u e n c e  R a t h e r  T h a n  

R a w  D a t a  

Another method which was explored was making the 
influence a single observation has on the group de- 
sign effect the object of study rather than the raw 
data values. This has the advantage that  it includes 
the weight of an observation as well as its depar- 
ture from the group design effect in a single num- 
ber. Extreme observations with little weight are 
thus treated less harshly than extreme observations 
of higher weight. Belin, Schenker, and Zaslavsky 
(1999) outline a method they employed using the 
1990 PES data and compared their method to other 
standard practices being used to deal with influen- 
tial observations. 

Their method as applied to our situation involves 
five basic steps: 

1. Compute the influence for each observation on 
the group design factor. 

2. Calculate the location/scale estimates for the 
values of the influence function. 

3. Calculate the down weights using the location 
and scale estimates found in (2). 

(a) Match a t-distribution to the values of the 
influence function using a QQ-plot in order 
to obtain a degrees of freedom estimate u. 

(b) Standardize the observations using the lo- 
cation/scale estimates found in (2) creat- 
ing a new set of observations zi. 

(c) Calculate the down-weighting factors us- 
ing the following formula 

2 1) wgti = (1 + z i /u) ( -  

4. Multiply the original weights of the raw data by 
the weights found in (3c). 

5. Use the weights calculated in (4) to calculate a 
new group design effect. 

This method was applied to our situation of calcu- 
lating the group design factors. To calculate the 
influence for an observation we begin with the equa- 
tion for the group design effect, DFg, modified to 
contain an inclusion parameter, It, which is equal to 
one if the observation is included and zero otherwise. 

DFg - ~t~z  Estt OFt It 
Eta1 Estt It 

where Estt is the estimated count of the t th data 
item and DFt is the design effect of the t th data item. 
We note that if all the It's are equal to I then we have 
just the standard equation for the weighted average. 
We next differentiate the above with respect to Ik to 
approximate the influence that  the inclusion of the 
k th data item has on the group design effect. 

Infl(k) - ODF9 = Estk (DFk - 0 5 )  
OIk ~tn=l Est th  

Using the fact that the It's are equal to one, 

00  5 _ Estk (DFk - 0 5 )  
- - E t. 

We note that the RAD definition given in Sec- 
tion 2 can be simplified using two definitions" 
Actual SE - DFt(SRS SE), Predicted SE = 
DFo(SRS SE) where SRS SE is the SE obtained if 
one assumed a simple random sample. This trans- 
forms the RAD definition as applied to our case to 

R A D ( D F t ) -  IDFt - D F g I ×  100% 
DF, 

Thus the influence of a data point is directly pro- 
portional to the weighted value of the RAD (using 
the estimates as weights) which was studied in 1990. 
This made this approach look promising. The results 
of both major approaches (extreme value detection 
on raw values and studying of influence values) on 
an actual dataset are discussed in the next section. 

A p p l i c a t i o n  o f  t h e  M e t h o d o l o g i e s  

t o  a S a m p l e  D a t a s e t  

The data set comes from the 1998 American Com- 
munity Survey Generalized Variances which utilizes 
the same methodology as the 1990 Census Long 
Form Generalized Variances. The data set includes 
item, state, county, tract, data group, data item, 
replicate SE, SRS SE, and the data item/tract-level 
design effect. The total data came from 9 sites. 
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5.1 A p p l i c a t i o n  of R A D ,  M A D n ,  Sn, and  Qn 

Each of the four outlier detection schemes were ap- 
plied to the design factors. Since the group design 
effect is a weighted average, an at tempt was made 
to create programs to calculate a weighted version of 
each of the three estimators of scale. This was done 
for both MADn and St, but was not done for Q~ 
due to some programming difficulties. In our final 
comparison we look at a weighted MAD~ and S,~ 
and also at a unweighted (normal) Qn and S,~. 

From the original set of data, we selected only 
those tracts which had non-zero estimates for that  
data item and whose design effects were defined. 
This dataset contained a total of 803,444 data item 
/ tract combinations for the nine sites. Each of the 
four methods for determining extreme (raw) values 
were employed using cutoff values ranging from 2.5 
to 3.5 by 0.1 increments. The recalculated group de- 
sign effects were compared by average RAD value, 
weighted average RAD value using the old weights 
and the recalculated weights, and also by the me- 
dian RAD value. The cutoff for each method which 
produced the best results was then kept. 

5.1.1 Differences in number of outliers 

• For our data we used the following cutoffs for 
MADr~, Q,~, Sn, and weighted S,~: 3.2, 3.0, 3.0, 
and 3.1. This resulted in 7406, 55967, 51799, 
and 15053 observations being identified to be 
down weighted respectively. 

• Using a cutoff value of 40%, RAD would iden- 
tify 205,043 extreme values which would need 
graphical followup. Using a weaker cutoff value 
of 60%, RAD would identify 57,707 extreme ob- 
servations requiring followup. 

In most cases the data was not symmetric for 
each group. Typically, the data was skewed 
right with a longer tail towards higher values. 
This resulted in Qn and both versions of S~ 
identifying extreme values mainly in the tail 
whereas MAD,~ and RAD identified extreme 
values symmetrically about the group design ef- 
fect. 

5.1.2 Computation Time 

There were some significant differences in the com- 
putation time for the various outlier detection meth- 
ods. Using all sites in one file, all four methods were 
run simultaneously on a Compaq Alpha. The times 
were 20 min, 30.8 min, 30.4 min, and 57.9 min for 

the weighted MADn, unweighted Qn, unweighted 
Sr,, and weighted Sn programs respectively. 

The times are consistent with the speed of the al- 
gorithms published in the original paper by Croux 
and Rousseeuw (1992). The most noteworthy result 
is the increase in time from the unweighted to the 
weighted version of Sn. This is mainly due to the 
more costly algorithm for performing the weighted 
high median used in calculating the weighted S~ ver- 
sus the more efficient algorithm for Sn that Croux 
and Rousseeuw give in their paper. This makes the 
weighted S~ rather costly for computation require- 
ments. 

5.2 A p p l i c a t i o n  of In f luen t i a l  O b s e r v a t i o n  
M e t h o d  

Using the formula derived in the previous section, 
the influence of each observation on the group de- 
sign effect was calculated. We calculated the mean 
and standard deviation of the values of the influence 
function and plotted those on a QQ-plot of standard- 
ized values versus quantiles of the t-distribution for 
n = 0, 1, 2, 4 , . . . ,  32 degrees of freedom as well as 
standardized values versus quantiles of the normal 
distribution. From these plots we determined that 
the best fit came from a t-distribution with n = 2 
degrees of freedom. This was then plugged into the 
equation for the weight modifier and used to down 
weight all the  observations. A new group design ef- 
fect was calculated using the new weights. 

R e c a l c u l a t i o n  o f  G r o u p  D e s i g n  E f -  

f e c t s  

We had five different methods of identifying/dealing 
with either extreme values or influential observa- 
tions: MADn, Qn, Sr~ unweighted, Sn weighted, 
and the influential observation method. The last 
method, which is based on a smooth down weight- 
ing of influential observations, has a method of down 
weighting that is built-in. The other methodolo- 
gies simply identify the extreme values. What  is 
done with those observations is a separate decision. 
Clearly, one faces three Choices: eliminate the ob- 
servations (set weights equal to zero), ignore the in- 
formation and include them fully, or somewhere in 
between the two. We elected to down weight those 
observations identified by raising the weights to the 
0.707 power (square root of one-half). This allows 
those observations to have an impact on the recalcu- 
lation of the group design effect but their effect will 
be much smaller than before down weighting. 
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There were three primary items on which we com- 
pared these five different methods. The first item 
was how the new methods compared to the proce- 
dure in 1990. The second item was how the weighted 
average and the median of the RAD values compared 
between the methods. The last item is that  of aes- 
thetics. 

In comparing the results to the 1990 methodol- 
ogy (or at least part of it), Qn agrees most closely 
on identifying observations with RAD values which 
would have been candidates for outliers using the 
1990 method. Both MADn and Sn frequently do 
not identify observations as outliers which have RAD 
values of 80 percent or more. This is a real issue since 
that  means the published SE will disagree with the 
actual SE by that  same amount. So on this compar- 
ison, Qn is better than MAD,, or Sn for our data. 
It does not make sense to compare the influential 
methodology to the 1990 results in this setting. 

Q,~ had the lowest weighted average of the RAD 
values and the lowest median RAD values of all the 
methods used including the influential observation 
methodology. This suggests again that  Q,~ is the 
best methodology using our criteria. 

Aesthetically, the influential observation method- 
ology is the best because of the continuous down 
weighting scheme it employs. With the 1990 
method, MAD,,, Q,~, or S,~, there is always the is- 
sue of how to choose the cutoff for determining out- 
liers. Since the influential observation methodology 
applies a smooth down weighting there is no magical 
cutoff value. This removes the issue of one observa- 
tion just below the cutoff being treated differently 
than an observation which is just higher. 

7 C o n c l u s i o n s  

For our situation, it appears that  Sn and Qn are the 
most effective for detecting extreme values given the 
asymmetric nature of the data. They also performed 
the best in comparison to the 1990 method by more 
consistently identifying observations with high RAD 
values. Their performance did vary from site to site, 
however. 

One result of our research was that  the most aes- 
thetic solution did not give the most pragmatic solu- 
tions. The influential observation methodology ap- 
peared to give a very reasonable approach but in 
comparing median and weighted average RAD val- 
ues for groups it did poorer than both Sn and Q,~. 
One possible explanation for this is that  this method 
might have a tendency to reinforce the original group 
design effect. This makes the down weighting less 

effective and the result is a less representative recal- 
culated group design effect. 

We plan at this time to test all five methods again 
on the Census 2000 Dress Rehearsal data when it is 
available. Because the Dress Rehearsal data is col- 
lected and tabulated slightly differently, it is possible 
that  a different methodology may be more suited to 
the long form data than the ACS data. These re- 
sults will then be used to determine which method 
is used for the Census 2000 operation. 

7.1 I t e m s  for f u r t h e r  r e s e a r c h  

In this paper we presented just a few ways to com- 
pare the different methodologies in identifying ex- 
treme values or influential observations. More work 
needs to be done on this to not only allow bet- 
ter comparison of methodologies but also to provide 
tools for assessing the quality of the implementation 
of our outlier methodology in production. A number 
of graphical comparisons have been made but those 
must be reviewed to determine which graphs truly 
help and which do not. 

Another area for research is using other estimators 
of location to determine the group design effect. We 
know that the mean and hence the weighted mean 
are easily influenced by extreme/influential values 
and thus it may be worthwhile to investigate more 
robust estimators of location. 

Finally, whatever additional methods we may find 
for comparing the quality of our outlier methodology 
needs to be quantifiable so that  an objective means 
can be used to compare both across methodologies 
and within methodologies. This allows us to not 
only decide on the best method but also on how to 
best employ that method. 

R e f e r e n c e s  

Belin, T. A., Schenker, N., and Zaslavsky, A. M. 
(1999), "Down Weighting Influential Clusters in 
Surveys, with Applications to the 1990 Post- 
Enumeration Survey." Draft manuscript. 

Croux, C., and Rousseeuw, P. J. (1992), "Time- 
efficient algorithms for two highly robust esti- 
mators of scale," in Computational Statistics, 
Volume 1, eds. Y. Dodge and J. Whittaker, 
Heidelberg: Physica-Verlag, 411-428. 

Huber, P. J. (1981), Robust Statistics, New York: 
Wiley. 

Rousseeuw, P. J., and Croux, C. (1993), "Alter- 
natives to the Median Absolute Deviation," 
JASA, 88, 1273-1283. 

526 


