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1. Introduct ion 
Price index chaining is estimating long-term 
price changes as products of shorter-term changes 
("links"). For example, suppose the price of a 
widget moves as shown below for time periods 1 
through 4: 

[ Time: 1 2 3 4 
[price:  1.00 1.10 0:55 1.10 

A direct measure the change between periods 1 and 
4 is 

1.10 
I 1 , 4 -  1.00 = 1.10. 

The corresponding chained measure is 

I~,4 -- I1,212,313,4 

_ / 1"10 /0.55 \ 1--..~) ) ( 1 . 1 0  -- ~ )  -1 .10 .  

In practice, the intermediate links It--l,t m a y  be 
est imated changes for a category of items; in this 
case, we generally have I1,4 ~ I~,4. 

For practical reasons, index chaining is widely 
used by government statistical agencies in comput- 
ing price indexes. Both the universe of available 
goods and the sample of items used for index com- 
putation are in constant flux; new products are 
introduced daily, and the sample is routinely ro- 
tated to keep pace. Short-term changes may there- 
fore be measured more accurately than long-term 
changes" the samples for two consecutive months, 
for instance, contain many more comparable items 
than the samples for two months one year apart. 
Chained index estimators, however, are subject to 
systematic biases relative to their direct counter- 
parts. The magnitude and direction of the "chain 
drift" depend on the index aggregation formula, the 
economic behavior of the purchasing population, 
and the properties of the sample survey data used 
in estimation. 

The theory of index chaining originated with 
Divisia (1925), who used integral calculus to for- 
mulate a chained index with arbitrarily short links. 
Richter (1966) presented invariance axioms for a 
variety of index numbers, including price indexes. 
While the Divisia index satisfied his axioms, it 
lacked independence of the "path"-- the series of in- 
termediate links. More recently Forsyth (1978) and 
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Forsyth & Fowler (1981) expanded this idea, con- 
cluding that the choice of chaining interval (or link 
length) came down to a choice between "transitiv- 
ity and representativity," direct indexes providing 
the former and chained indexes more of the latter. 

In this paper, we examine the discrepancies 
("drift factors") between the chained and direct 
versions of the geometric mean and Tbrnqvist index 
formulas (defined below). After briefly introducing 
the index formulas, we analyze the drift factors in 
terms of (1) assumptions about the population's 
economic behavior and (2) statistical correlations 
between components of the index estimators. We 
then use our analytical results, together with an 
empirical investigation, to examine the magnitude 
of and reasons for the chain drift in some price index 
estimators. Finally, we relate our research to the 
"transitivity vs. representativity" trade-off identi- 
fled by Forsyth & Fowler, noting in particular the 
impact of the survey data to be used in estimating 
the chosen index formula. 

2. Introduction to Price Indexes 
A consumer price index (CPI) is a measure of 
change in the value of a monetary unit. In esti- 
mating a CPI, government statistical agencies gen- 
erally adopt one of two approaches: (a) the fixed 
market basket (or Laspeyres-type) approach, or (b) 
the cost of living index (COLI) approach. 

For approach (a), we simply select a collection 
of consumer goods and services (in fixed quantities) 
and track the total price of this "market basket" 
across time. The fixed market basket idea underlies 
the Laspeyres index 

N 
E L 1  qi,toPi,t : E Wi,to ~ , (2.1) 

Lto,t - -  E N = I  qi,toPi,to i=1 Pi,to 

where, for each item i in the population of N goods 
and services, Pi,j a n d  qi,j represent the price and 
quantity purchased, respectively, in time period j 
and wi,j = qi,jPi,j/ ~ k  qk,jPk,j. Replacing qi,t,, in 
formula 2.1 with q~,B, where B is a "base period" 
prior to to, yields the Modified Laspeyres index, 
which, until recent years, served as the target pop- 
ulation index for the U.S. CPI. In practice, data on 
quantities purchased are not available; estimated 
expenditure shares wi,j may be computed, but 
these generally become available only on a lagged 
basis. Hence the use of a Modified Laspeyres index, 
rather than a pure Laspeyres, was due primarily to 
data availability issues. 
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In the COLI approach to index calculation, we 
seek to estimate the change in the cost of a fixed 
level of consumer satisfaction or "utility," rather 
than the change in the cost of a fixed collection of 
goods and services. Motivated by economic util- 
ity theory, this approach allows for the possibility 
that ,  as relative prices change, consumers may re- 
vise their market  baskets to obtain a constant level 
of utility across time. That  is, they need not main- 
tain a fixed market  basket in order to maintain a 
fixed level of satisfaction, since alternative bundles 
may provide equal satisfaction. In economic terms, 
this phenomenon is called substitution; the elas- 
ticity of substitution (which we denote by ~]) is a 
measure of the extent to which consumers adjust 
their purchases in response to price change while 
maintaining a fixed level of utility. 

The fixed market basket assumption is equiv- 
alent to setting ~ = 0, while setting ~] = 1 implies 
the assumption that  consumers substitute towards 
lower priced goods in such a way that  the propor- 
tion of their total  expenditures for each item (or 
item category) remains constant across time. Un- 
der the latter assumption, the geometric mean (or 
Jevons) index, defined as 

l - I  , (2.2) 
i = 1  Pi,t,, 

where wi,t~, is as for equation 2.1, is thought to ac- 
curately reflect changes in the true cost of living. 

The U.S. CPI is often used as an inflator to 
convert monetary figures to constant dollars, and 
the fixed-basket approach is deemed inconsistent 
with this usage. In the past several years, the Bu- 
reau of Labor Statistics (BLS) has therefore made 
a series of changes to the CPI in an effort to convert 
it from a fixed market basket index to a COLI. De- 
velopments in price index theory, along with tech- 
nological advances (e.g., the use of electronic scan- 
ners) that  have enlarged the pool of available price 
data, have made a COLI seem a more feasible tar- 
get than it formerly was. Economic theory suggests 
that  some population index formulas provide esti- 
mates of the true change in the cost of living, ac- 
counting for substitution, regardless of the value of 
)]. One such "superlative" index (see, for example, 
Diewert 1987) is the TSrnqvist index, given by 

uN ( Pi,____~t ) (w~, (2.3) 

i = 1  \Pi,t,, 

Unlike the Laspeyres and geometric mean indexes, 
formula 2.3 involves expenditure shares (wi,j) from 
both periods to and t. By using this additional data 
(which, in practice, is often unavailable), we may 

correctly account for consumer substi tution behav- 
ior, avoiding the uncertainty associated with an as- 
sumed elasticity. (For more on COLI estimation, 
see Shapiro and Wilcox 1997 or Dorfman, Leaver, 
and Lent 1999.) 

3 . E s t i m a t i n g  I n d e x e s  f r o m  S a m p l e  D a t a  
Statistical agencies often compute price index es- 
t imates through a series of aggregation stages. In 
the first stage of aggregation, similar goods and set- 
vices bought by consumers living in particular geo- 
graphic areas are grouped to together to form item 
strata. Examples of item stra ta  include uncooked 
ground beef in Philadelphia and breakfast cereal in 
Atlanta. For each item stratum, a sample of items 
is selected from representative outlets; an expen- 
dure weight WiB may be est imated for each sample 
item i in some base period B. Field economists then 
track the prices of the sample items across time. 
Monthly sample price data  and base period expen- 
diture data  may then be aggregated within each 
item strata  using an estimator of a particular index 
formula. For item s t ra tum i, formula 2.2 may be 
estimated as 

A 

B 

Pi,to,t- H k=l \Pk,i,t,, 

where n is the sample size, and pk,i,j is the price of 
the k th sample item in s t ra tum i at time j. Note 
that,  under the assumption of unitary elasticity, 
wk,i,B (based on expenditure data  for period B) 
may be considered an estimator of wk,i,to. 

The first stage of aggregation results in a col- 
lection of sub-indexes Pi,to,t. These sub-indexes are 
further aggregated to form higher level indexes. 
The higher-level aggregation may involve expen- 
diture information collected from a separate sur- 
vey, such as the U.S. Consumer Expenditure Sur- 
vey (CEX, a household survey). For example, we 
may apply a TSrnqvist formula at the upper level: 

Tto,t -- H . ( P i t )  (w~'t°+w~'t)/2 

where the weights Wi,to and ~i,t are est imated from 
household survey data. 

4. C h a i n  Dri f t  Fac tors  for G e o m e t r i c  M e a n  
I n d e x e s  
We define the drift factor of a chained index as 
the ratio of the chained index to the direct index. 
Here we examine the drift factors for the geometric 
mean and TSrnqvist index formulas and offer pos- 
sible economic interpretations of the factors. (For 
an investigation of the Laspeyres drift factor, see 
Szulc 1983.) We consider only index formulas used 
to perform upper-level aggregation. 
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N o t a t i o n :  Let i index the set of item strata,  and 
let w~,j  denote the expenditure share weight of item 
s t ra tum i in month  j. Let Pi , j  denote the sub-index 
for the i th  i tem s t ra tum,  measuring change from 
the base period B (implied) to month j. In general, 
the index est imator Ij, ,J2 indicates price change be- 
tween month  j l  and j2. 

C o m p u t a t i o n  o f  D r i f t  F a c t o r s  

We define the binary geometric mean index mea- 
suring change from month  to to month  t as 

~ o 

we define the corresponding monthly chained geo- 
metric mean as 

t 

) , t  - -  

j = t o - F 1  " , 1 

W i , j  - -  1 

Thus 

G I to,t 

t 

i j = t o + l  , 1 

W i , j  - -  1 

where 

k , G  - -  II tp,,  
j = t ( ~ + l  

wi,.7 -- wi , . i  - i 

is the geometric mean's  "drift factor" for the i th 

i tem/area .  To see the direction of the bias, we may 
write 

G '  - Gt, ,  ,,<,,~ , ( p , , , ) ~ , , . ~ - ,  " 
j : t o + l  E i  

Empirical evidence suggests that ,  for the "average" 
U.S. consumer, 0 < ~ < 1; that  is, some substitu- 
tion occurs, but not enough to render item expen- 
diture shares constant.  When we have r] < 1, and 
the prices and weights follow consistent trends, we 
expect 

ri. ,t.Pi,j > I-I. \Pi, jJ , (4.1) 
• #, $ 

for j = to + 1, ..., t -  1, because the index on the 
r ight-hand side is based on outdated  weights. Thus 
we expect an upward chain drift for the geometric 
mean. 

Similarly, we may calculate the drift factors 
f i , T  for the chained TSrnqvist index. We define 

the binary and monthly chained TSrnqvist indexes, 
respectively, as 

I I  >-2-,. 
(,,,.,.,,.o +,..,, <)/2 

and 

t 

,<,,, 1-I 1-I 
j = t o + l  i 

(w,~,.~_ 1 +w,z,.¢)/2 

Then, by algebraic manipulat ion similar to tha t  
which we used to obtain f ~ , a ,  we have 

t 

<o,, : I I  I I  p,j_, 
i j = t o + l  

where the factor f i , T  is defined as 

(wi,:i l +Wi,j ) /2 

{[QPit)w,x,:i_w,i,:i_i(Pito)Wi,..i+l_w.x,:#l } j--t(,--t- 1 ~ ~ , P]J 
Note that  

{ ( )  t - 1  P i  to w ,i , .,i + l - w ,z , j 

fi,T-- fi,c" H p~ y 
j = t o + l  

Again, we write the bias factor in terms of indexes 
to identify the direction of the bias: 

1/2 

T' = Tto ~ I ~ ( P " '  
t(),t ,t Pit w.z,..i-I 

j = t o + l H i  ( ~ )  

• \ P . i , t o  

Given that  elasticity is less than one and the prices 
and weights follow consistent trends, we expect 
both inequality 4.1 and 

I I  < I I  
• , / ,  

for j = to + 1,..., t -  1. So the direction of the chain 
drift for the TSrnqvist index is indeterminate.  

We note the following about  the drift factors f i , T ,  

as compared to the fi ,a of the geometric mean: 
1. The drift factor in each (multiplicative) term 

of fi,T contains two price relatives which, if 
prices and shares are steadily increasing or de- 
creasing, should neutralize each other. 

1/2 
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2. The two products of price relatives in f i ,T  are 
raised to the 1/2 power; thus if their product 
is close to 1, f i ,T  will be even closer to 1. 

5. Effec t  of C o r r e l a t i o n s  on  C h a i n  Dr i f t  
Following Forsyth and Fowler (1981), we may 
also examine the drift in the geometric mean and 
TSrnqvist indexes in terms of the covariances be- 
tween the ratio of sub-indexes r i ; j , , j ,  = Pi , j~ /Pi , j ,  
and the expenditure weights wi, j .  Here the wi,j  
represent expenditure shares for the m item strata. 
We denote the usual covariance between two vec- 
tors x and y of order rn by 

c ( x y )  1 '~2~ 1 (~-~~ 
, ~ ~ XkYk 7~ ?T~ 2 

k--1 \ k = l  

Writing r j l , j ~  - -  { r l ; j i , j ,2 ,  ..., rm;j  

{ w l , j , . . . ,  w,~,j  }, we have 
,j~} and wj = 

t,,,t - m c (ln r j_ l , j ,  Wj_l) 
in Gto, t  j=to+ 1 

- m c  (ln rt,,,t , wto) 
t 

= ?Tt E c ( 1 n r j - - l , j ' W j - - 1 )  

j= t0  + 1 

t 

= m E c ( l n r j _ l , j , W j _ l  -- w t ( ) ) .  

j = t o + l  

When both prices and weights follow smooth and 
consistent trends with elasticity is less than 1, 
ln r j_ l , j  and W j _  1 - -Wt ( )  will be positively corre- 
lated (i.e., expenditure shares will rise for those 
item stra ta  whose prices are rising more quickly). 
In this case, we will have 

c ( l n r j _ l , j , W j _ l  -- w t , , )  > O, 

for all j,  giving a positive drift factor. When prices 
"bounce" from period to period, however, we may 
have 

c ( l n r j _ l , j , W j _ l )  < c ( l n r j _ l , j , w t ( , )  < O. 

This occurs because, at the population level, 

ri;j-- 1,j --  Pi , j  / P i , j -  1, 

while 
P i , j -  l Q i ; j -1  

w i , j _  1 -~ E i  P i , j -  1 Qi;j- 1 

where Qi, j  represents quantities of items purchased 
in i tem s t ra tum i in time period j. Note that  Pi; j -1  

appears in the numerator of wi ; j -1  and in the de- 
nominator of r i ; j - l , j .  Given r/ < 1 (i.e., insuffi- 
cient substitution to render expenditure shares con- 
stant), this may result in a relatively strong nega- 
tive correlation between r j - l , j  and wj -1  (stronger 
than any negative correlation between r j - l , j  and 
wt0). In this case, the geometric mean index will 
display a downward chain drift. In practice, how- 
ever, r j - l , j  and wto may be est imated using data  
from different surveys--perhaps even from different 
time per iods--and the negative correlation between 
the estimators may be quite weak. 

A similar development for the T6rnqvist index 
yields 

to,t Wj--1  Jr- W j  
in  ~ - -  77"t E C l n  r j _ l , j ,  2 

' j = t o  + 1 

Wt ° -~- W t ) 
- m c  in rto,t, 2 

t ?~ 

j= t ( )+2  

c (in r j _  1,j ,  w j _  1 -- wt, ,  ) 

?Tt 
t - 1  

E 
j = t o + l  

c (ln r j - l , j ,  w t  -- W j ) .  

6. Empir ica l  Resu l t s  from C P I  D a t a  
The analyses presented in Sections 4 and 5 hold 
both at the population level and in the practical 
case in which the index components (wi,j and P~,j) 
are sample-based estimators. In this section, we 
present results of an empirical analysis, based on 
upper-level aggregation data  (subindexes and item 
s t ra tum weights) for the U.S. CPI. The expendi- 
ture share weights are based on CEX data, while 
the prices used to compute the subindexes are from 
the CPI monthly survey of retail and service out- 
lets. The subindexes themselves were computed 
by a chained modified Laspeyres formula.* The 
data suggest that,  at the item s t ra tum level, we 
have 7] < 1, i.e., substitution across i tem s t ra ta  is 
insufficient to render s t ra tum expenditure shares 
constant across time. While both surveys are con- 
ducted monthly, the CEX employs a quarterly sam- 
ple design, and monthly estimates computed from 
CEX data are subject to high sampling variabil- 
ity as well as potential deficiencies in coverage. In 
our analysis, we test several methods of smooth- 
ing the monthly weights, and we note the effect 
of the smoothing for various index formulas. Intu- 
itively, we expect weight smoothing to (1) weaken 
the negative correlations between the weights and 

*Some of the  subindexes are believed to be subjec t  to an 
upward  "formula bias," as discussed by Reinsdor f  1998. 
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subindexes, and (2) reduce the effect of "price 
bouncing" on the estimates, rendering them more 
reflective of long-term trends. A stronger smooth- 
ing algorithm (e.g., a simple 13-month moving av- 
erage) should have a more pronouced effect than a 
weaker algorithm (e.g., a weighted moving average 
which assigns greater weight to the central month). 

Tables l a, 2a, and 3a below give values of 
monthly-chained long-term Laspeyres, geometric 
mean, and TSrnqvist estimators, where the base 
month is June 1987 (i.e., the index for June 1987 
is set to 100). The annual estimates are measures 
of June-to-June price change. Tables lb, 2b, and 
3b give differences between these monthly-chained 
indexes and comparable annually-chained indexes. 
In each case, an upward chain drift in the Laspeyres 
index is expected based on previous research (see, 
for example, Szulc 1983); we only compare the mag- 
nitude of the drift for the alternative weight esti- 
mation schemes. 

For Tables la  and lb, the CEX weights are 
"pure" monthly weights, i.e., computed using ex- 
penditure data for each specific reference month. 
As Table lb indicates, chaining monthly with these 
weights creates an upward drift for the Laspeyres 
index and a downward drift for the geometric mean. 
The T6rnqvist shows no discernible drift in either 
direction. Further investigation of the correlations 
between weights and price relatives reveals that, in 
this case, 

c (ln r j_  m,j, Wj--1) < C (in r j_ 1,j, wto) < 0, 

accounting for the downward drift in the geomet- 
ric mean index. Since this drift increases the dif- 
ferences between the geometric mean index val- 
ues and those of the "superlative" T6rnqvist index, 
the downward chain drift is undesirable. We note 
that  it is a consequence of a relatively "tight" con- 
nection between the expenditure weights and the 
subindexes. 

One way to weaken the negative correlation be- 
tween the rj-l,j  and the wj-1 is to replace the pure 
monthly weights with moving averages of monthly 
expenditure shares. Tables 2a and 2b give val- 
ues computed using 13-month moving averages of 
estimated expenditure shares rather than actual 
monthly weights. With these weights, the down- 
ward chain drift for the geometric mean index dis- 
appears, while the upward drift for the Laspeyres 
index is exacerbated. Interestingly, the TSrnqvist 
index again shows no consistent drift. The simple 
moving average effectively removes the correlation 
between the weights and subindexes. 

A positive correlation between weights and 
subindexes, however, is favorable for the chained 
geometric mean, since it brings it closer to the 

superlative TSrnqvist. For Tables 3a and 3b, we 
smoothed the monthly expenditure shares using a 
weighted moving average rather than a simple mov- 
ing average. The weights for the various months 
in the moving average were determined by a dis- 
cretized Epanichnekov density (described in the 
Appendix) with a = b = 6 and d = 1. This weight- 
ing method assigns more weight to the "target" 
month, i.e., the month in the center of the mov- 
ing average; thus it is less drastic in its smoothing 
than the simple moving average. The empirical re- 
sults show that the positive correlation between the 
weights and the subindexes creates a slight upward 
drift in the monthly chained geometric mean; in- 
deed the values in the second and third columns 
of Table 3a are nearly identical. For the geometric 
mean indexes, the Epanichnekov weights appear to 
assign sufficient weight to the data from the tar- 
get month, while effectively neutralizing the nega- 
tive correlation between weights and subindexes--a 
good "representativity vs. transitivity" balance. 

T a b l e  l a  

Monthly-chained Indexes, June 1987 = 100 
Pure Monthly Weights 

A 

Year L in . 

88 104.45886 
89 110.44233 
90 116.98616 
91 123.01300 
92 127.81897 
93 132.43455 
94 136.62502 
95 141.56401 

A 

CF 

103.50361 

A 

103.72109 
108.38743 109.05211 
112.40391 I13.39736 
116.79749 118.45881 
119.47612 121.46332 
122.60377 124.74208 
125. 40653 127.70174 
128.79049 131.10i51 

T a b l e  l b  

Differences Between Monthly-chained and 
Annually-chained Indexes 

Year 

88 
89 
90 
91 
92 
93 
94 
95 

Pure Monthly Weights 

L F - L  ? 

0.74534 
1.45315 

A 

G F - c~ 
A A 

T F - T ?  

0.14887 0.19399 
, 

0.10760 0.63569 
3.21092 -0.35100 0.34308 
4.12270 -0.64732 0164133 
5.36603 -1.14196 0.43952 
6.32071 -1.31495 0.36622 
7.05079 -1.62927 0.21879 

. , ,  

7.90717 -1.93506 -0.01858 
_ 

T a b l e  2 a  

Monthly-chained Indexes, June 1987 -- 100 
13-Month Moving Average Weights 

A 

Year L ~  

88 
89 

- 90 
91 
92 
93 
94 
95 

A 

G TM 
13 

104.65003 103.63963 
110.63106 108.47516 

113.05507 117.85420 
i24.13384 

143.88275 

A 

103.6549i 
108.53214 
113.12406 
117.8706"] 117.74416 

129.57824 120.98451 121.11773 
134.30384 124.16689 124.32016 
138.70588 127.07846 i27.22922 

130.64277 130.78537 
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Table  2b 
Differences Between Monthly-chained and 

Annually-chained Indexes 
13-Month Moving Average Weights 

A A a 

Year L ~  - Lla 

88 
89 
90 
91 
92 
93 
94 
95 

c?~ - c %  

0.67162 -0.04718 
1.36831 -0.14705 -0.100i0 
3.79342 -0.03352 -0.08025 
5.00448 -0.02584 -0.06499 
6.79891 -0.03892 -0.08445 
7.91178 -0.09041 -0.12274 
9.03963 -0.07608 -0.17206 

"10.25818 -0.07802 -0.21033 

-0.02453 

Table  3a 
Monthly-chained Indexes, June 1987 = 100 

13-Month Weighted Moving Average Weights 

Year 

88 
89 
90 
91 
92 
93 
94 
95 

L ~  G~" 
A 

T~ 

104.64159 103.63711 103.63201 
110.62377 108.47530 108.47751 
117.89582 113.15578 113.14536 
124.20280 117.87946 117.87453 
129.59878 121.15491 121.14383" 
134.31869 124.34287 124.33107 
138.75436 127.27609 127.25665 
143.96570 130.87415 130.83972 

Table  3b 
Differences Between Monthly-chained and 

Annually-chained Indexes 
13-Month Weighted Moving Average Weights 

A A 

Year Lw m - L~ 

88 
89 
90 
91 
92 
93 
94 
95 

i . .  . ~ .  

c T  - c g  T ~ ' -  T~ 

0.64036 -0.07478 -0.06374 
1.34350 20.16691 -0.17680 
3.82313 0.05559 -0.08813 
5.05632 0.09203 -0.10766 
6.80863 0.12654 -0.10542 
7.90868 0.07726 -0.14103 
9.11015 0.16219 -0.13911 
10.38366 0.21524 -0.13007 

7.  C o n c l u s i o n s  

U n d e r  t h e  a s s u m p t i o n  t h a t  U < 1 (as in t h e  d a t a  we 

a n a l y z e d ) ,  we  m a y  d r a w  seve ra l  conc lu s ions  f r o m  

t h e  r e s u l t s  above .  F i r s t ,  t h e  T S r v q u i s t  i n d e x  ap-  

p e a r s  r e m a r k a b l y  r o b u s t  to  cha in  dr i f t ,  wh i l e  t h e  

L a s p e y r e s  i n d e x  is p r o n e  to  seve re  u p w a r d  dr i f t .  

T h e  case  of  t h e  g e o m e t r i c  m e a n  i n d e x  is m o r e  com-  

plex.  I t  suffers  a d o w n w a r d  cha in  dr i f t  w h e n  t h e  

w e i g h t s  a n d  s u b n d e x e s  a re  n e g a t i v e l y  c o r r e l a t e d  (as 

in T a b l e s  l a  a n d  l b ) .  W h e n  t h e  c o r r e l a t i o n  is effec- 

t ive ly  r e m o v e d ,  t h e r e  is no  n o t i c e a b l e  dr i f t ,  ye t  t h e  

g e o m e t r i c  m e a n  is d o w n w a r d l y  b i a s e d  r e l a t i ve  to  

t h e  T 6 r n q v i s t  (as in T a b l e s  2a  a n d  2b).  I n  th i s  case,  

we  h a v e  n e a r  t r a n s i t i v i t y  w i t h  a lack of r e p r e s e n t a -  

t iv i ty .  T h e  idea l  w e i g h t s  for t h e  g e o m e t r i c  m e a n  

i n d e x  a r e  p o s i t i v e l y  c o r r e l a t e d  w i t h  t h e  s u b i n d e x e s  

(as in T a b l e s  3a  a n d  3b) .  T h e  r e s u l t i n g  u p w a r d  

dr i f t  n e u t r a l i z e s  t h e  d o w n w a r d  b ias  r e l a t i ve  to  t h e  

T 6 r n q v i s t ;  t h a t  is, it  i n c r e a s e s  t h e  r e p r e s e n t a t i v i t y  

of  t h e  g e o m e t r i c  m e a n  indexes .  
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A p p e n d i x :  C o m p u t i n g  S m o o t h e d  W e i g h t s  
The moving average weights used in estimating expenditure 
shares for the indexes in Tables 3a and 3b are based on the 
"discretized Epanichnekov density," which is given by 

f l  (a, b; z) = 
(2b+1)  [ 3 ( a + 1 )  2 - b ( b + l ) ] '  

x = 0, ~ l , . . . , +b ,  where a and b are integers, and b _< a. 
When a = b, we have 

3 [ ( b + l )  2 - z  2] 
f l  (b; x) = 

(b + 1) (2b + 1) (2b + 3) '  

x = 0, +1, ..., +b. (In this case, we suppress the subscript a 
in our notation.) Let Xa,b,m be a random variable following 
a discretized Epanichnekov distribution. Since the densities 
above are symmetric about O, E [Xa,b,m] = 0, and thus 

, X 2 

b ( b + l )  [ ( a + l )  2 -  (3b 2 + 3 b - 1 ) / 5 ]  
. _ _  , _ .  

3(a  + 1) 2 - b ( b +  1) 

When a -- b, 

L jrx , l =b(b+2) (72 
5 

Sett ing a equal to a value strictly greater  than  b results in a 
higher variance (i.e., a "flatter" curve). 

A more general form of the density is given by 

f d ( b ; x ) = c ( a , b , a )  1 -  ~ , 

x = 0, 4-1, ..., +b, where d >__ 0, and c (a, b, d) is a normalizing 
constant that must be computed for the chosen parameters. 
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