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1. Introduction 

Rolling sample surveys, such as the American 
Community Survey (ACS), are designed to give reliable 
multi-year estimates for small domains. The ACS collects 
the basic population and housing data using monthly 
rolling samples throughout the decade to update the 
information traditionally available from the census long 
form. The basic ACS estimates will be the annual 
averages of data obtained every month. As in the case of 
decennial census, this survey will sample small 
government units at a higher rate than other areas. This 
will update the long form data on characteristics of areas 
smaller than states. With the ACS providing the detailed 
annual information, the census long form will phase out 
after the 2000 census, the 2010 census concentrating 
mainly on the basic count of population. 

these averages, taking into account the effects of 
characteristics such as jumps and spikes in the time series. 
Accompanying examples illustrate the general principles 
under different assumptions regarding the underlying 
variables. 

Section 2. analyzes properties of estimates from series of 
data observed at a small number of equal time intervals. 
An example of such a series is the number of persons 
above poverty level in a geographic region or within a 
socio-economic subdomain in the region. Section 3. 
applies simulated time series to compare moving averages 
with the corresponding single year census estimates 
within the averaging period. This section summarizes 
the conclusion that these averages generally result in 
better estimates of the true population values than the 
single point estimates. 

The ACS will produce reliable annual estimates of 
characteristics of interest for areas with population of 
about 250,000 or more. The smaller areas would require 
cumulation of multi-year data to result in adequate sample 
size. The objective would then be to arrive at a fairly 
reasonable and simple method of cumulating three or five 
years' annual estimates of desired characteristics for small 
areas. An analogue to the census long form annual 
estimate would be a simple average of the ACS annual 
estimates. 

This raises questions about what length of average is best 
for various applications, and about how using the 
multi-year averages differs from using single-year 
snapshots. Keeping the sampling error close to that of the 
census long form, would suggest cumulation of three 
years of data for medium-sized areas, with population 
between about 50,000 and 250,000, and cumulation of 
five years of data for smaller areas. 

This paper develops methods for comparing moving 
averages with single-year estimates, with varying 
assumptions pertaining to the underlying series of data. 
The results provide evidence regarding the properties of 
regularly updated rolling averages when the goal is to 
compare the current characteristics of the various 
subdomains. 

In addition to providing a broadly applicable model 
incorporating the use of multi-year averages, the paper 
contains concise general formulas showing the effect of 

, A General Theory to Measure the Effect of Jumps 
and Spikes in the Series 

2.1 Notation 

The value of a population characteristic given by the 
census taken at a specific time point may be considered as 
an estimate of the unknown values at future time periods. 
An alternative is to estimate these values by a function of 
a set of observed values within a suitable time period. 

This section provides a comparison of the census 
estimates with the moving average estimates based on 
their mean square errors. The analysis takes into account 
the non-stationary nature of the underlying series 
characterized by an occasional spike or a permanent jump 
in data observed over time. 

{ Yt } = { Yt'  t=  1, ..., T } is a series of a characteristic 
of population in a given domain. The moving average 
A (Yt) of 2n+ 1, Y variables in the interval [t-n, t+n] is 
given by 2n 

A ( Yt)  - (Zn  + l ) - l  ~-,  Yt-,,.~ , 
i=0 

t = n + l ,  ..., T - n - 1 .  

The mean square error of an estimate ~t (Yt) ' used to 
estimate Yt+k, k ~- n + 1, is given by 
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M [ y ( % ) ]  
T-k 

:(T-;9-k) -I E (~(Yt) - Yt+k )2" 
t=n+l  

2.2 A Comparison of Mean Square Errors 

Theorem" 

Let the time series { Yt' t = 1, ..., T } be of the form 

lit - bt + a t  + X ,  f o r t < S ,  and 

Yt - la + a t  + X t  + ~ for t >- S , 

where a is a linear trend factor, {X  t } are independently 
distributed random variables each with mean 0 and 
variance 02 , and { is the size of a downward or an 
upward jump in the series occurring at time S. Let 
A (Y,) be the moving average of the (2n+l), Y 
variables in the interval [t-n, t+n]. Then the expected 
value of the difference 6 in mean square errors for 
estimating Yt+k for lag k, k _ n + 1, by Yt ,  as compared 
to that for the estimate A (Y t )  , for equally likely 
integers S over the interval [ 1, T], is positive and is given 
by 

2 n ( n + l )  E ( 6 ) -  2n 02 + ~2, 
2n + 1 3 T ( 2 n + l )  

where 

6 - M [ Y , ]  - M[A(Yt) ]. 
Proof." 

Let 

6t - ( Yt+k - Yt )2 - ( Y t + k  -A(Yt)) 2, 

and 
~, - (Xt+ , - A ( X , ) ) ,  

qt - Yt+k - X t.  

The interval [ 1, T] may be expressed as the union of the 
following four disjoint sets as" 

[ 1, T] - B,JC~D,~E  
with 2n 

B : t l , t - n - l ] ,  C - ~_, C i, 
i=0 

D -  [t+n+l, t+k], and E -  [t+k+l, T], 

where the set C i contains the single time point {t-n+i}, 
i - 0 ,  ..., 2n. 

Let P(A) be the probability of S being in set A and let 
~tA be the corresponding difference in the mean square 
errors conditional on this event. We then have, 

E(6,)  - 
2n 

+ ] ~  E(6tc)P(C,) 
i=0 

+ E ( 6 , D ) P ( D  ) + E ( 6 t E ) P ( E  ) 

E [ ( a k + q , )  2 

_ (ak+~t)2  ] t - n - 1  
T 

n 

+ ] ~  E [ ( a k + r l t )  2 
i=0 

i~ )2 1 
- (a k ] 

2n+l -T 
2n 

+ ~ E[(ak+~]t+~) 2 

i=n+l  

i~ )2 1 
- (ak+~t+ . ] 

2n+l -T 
+ E [ ( a k + r l t + ~ )  2 

k - n  - (ak+~+¢)  2] 
T 

+E[ (ak+r l , )  2 

_ ( a k + ~ , ) 2  ] r - k - t .  
T 

Since 

E(% t) - O, E(n t) - O, 
E ( ~2 2n+2 02 

t) - Var (~t) : 2n+l ' 

E(~ 2 t) - Var ( I]t) - 202 

a n d  

the expression f o r E ( 6 t )  simplifies to 

2n a2 
E ( 5 t) = 2n+l 

+ -- [ (a2k 2 - ( ak+~i ~ ) 2] 
T ': 2n+l 

I 2~ i ~ 2 
+ -- z_J [ (ak+~) 2 - ( a k + ~ )  ] 

T i=n+1 2n+l 
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2 n  02 (2 = -- i 2 

2 n + l  T ( 2 n + l )  2 i=1 

2 ak ~ 2~ 1 
i + --(n{2+2akn{) 

T ( 2n+l ) i:I T 

__~2n 02 + 2 n (n+l) ~2 

2n+l 3T 2n+l 

The result follows since 

E ( 6 )  - E [ E ( 6 / t ) ]  
T-k 

= ( T - k - n ) - l E [  ~ E ( 6 t ) ]  
t=n+l 

: E ( 6 , ) .  

Corollary 1" 

Let the series { Yt, t = 1, ..., T } be of the form 
m 

Y t -  a t  + E c x ~ X g t f o r t < S ,  and 
j= l  
m 

- E + ~ f o r t  >- S Yt a t + C~j Xj t 
j-1 

where {X.t, j = 1, ..., m } are independently distributed 

random variables with means ~1, "", ~tm and variances 

2 2 
o1, ..., om. Then the expected value of difference 6 

between the mean square errors 

M[A (Yt)] is given by 

2 n  
E ( 6 )  - 

2 n + 1  

where 

Proof'. 

M [ Y  t ] and 

0 2 

2 n ( n + l )  ~2, 
3 T  ( 2 n  + 1) 

0 2  - Z G 2 0 2  " 

j-1 

The theorem applies with 

m 

x, - Z x, - , .  
j= l  

and 
j= l  

V a r  ( X t  ) - 0 2 "  

Corollary 2: 

Let {Yt_n,i, i = 0, ..., 2n } be the sample statistics 
corresponding to the census variables { Y t - n + i  } and let 
a(Yt) be the resulting moving average. Then the 
expected value of the difference d in the mean square 
errors for estimating Yt+' for lag k, k ~ n + 1, by Yt as 
compared to that by a (Yt~ is given by 

2 
E ( d )  - (1 - c ) 0  2 

2 n + l  

2 n ( n + l )  ;-2 
+ ~ 

3 T  ( 2 n  + 1) 

where 

d - M[Yt]  - M [ a ( Y t )  ]. 
and 

C 2 - gar(Yt_n+i)/o 2, i = 0, ...,2n. 

Proof: 

Let 

4 -a (Y t ) )  2, 

lpt - (Xt+ k - a ( X  t ) ) ,  
we have, 

E( ~t) - O, and 
2 

gar(~ t  ) _ o2[1  _ c 
2 n + l  

Since 

Var('qt)- Var(~t)  - 0 2 [ 1 - 
2 c 

], 
2n+1 

the corollary follows by replacing ~t by ill t in the proof 
of the theorem. 

Example" 

Let { Y1, "", Y10}be a series of annual numbers of 
persons with income above a certain level L, in a domain 
of population, for a ten year period, with 
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a. A general average la of numbers of persons with 
income greater than L, subject to a positive linear 
trend of five percent per year. 

b. A spike in the curve represented by a random 
variable )(st given by 

X st = +3 with probability •025 
=-3 with probability .025 
= 0 with probability .950 

A jump of size plus or minus 3.5 with probability of 
occurrence equal to.  1 in each of the ten years, 
and 

d. White noise consisting of unit normal variates { et }" 

A spike represents a sudden temporary change in the 
characteristics of the area, while a jump represents a 
sudden permanent change such as closing of a large 
factory or a military base. 

Given {Y,t' "'" Ys}' the expected value of the 
difference 0 in the mean square errors of estimating each 
of }16, "", Ylo by Y3 as compared to that by the 
moving average 

1 5 

O i=1 
is calculated by applying Corollary 1. with the following 
parameters: 

a=.05, n=2, ( -  + or -3.5 

and 

This gives 

- + e  x, x ,  t, 

o 2 - V a r ( X , ) -  1.45 

4 )2 ~ 5  ):2 E((5)  - -~ ( 1.45 + (3.5 

= 2.662 

3. An Example of Evaluation of Multi-Year Averaging 
of Data 

3.1 Analysis of Simulated Time Series for Small Areas 

The first full test of ACS occurred in 1996, and the actual 
multi-year data for all areas will not be available for some 
time. Testing the appropriateness of the proposed 
estimates on other surveys may not be suitable because of 
the differences in measurement errors among the various 
surveys. 

An alternative testing procedure to avoid the above 
limitations involves simulating time series of annual 
estimates for a hypothetical small area using known time 
series models to generate the true population values• The 
three year or five year averages will then provide 
analogues to one year census estimates for comparison 
with the true population values. 

The multiyear averages based on fresh data are clearly 
different from the traditional time series projections 
which would require many years of observed ACS data. 
While the latter projections have their own optimality 
properties under assumed models, our present objective 
is to assess measurement errors of multiyear average 
estimates derived from fairly fresh data as compared to 
the single year estimates of characteristics of interest. 

An appropriate model for simulation is that of general 
autoregressive integrated moving average (ARIMA) time 
series ( Anderson (1971), Box and Jenkins (1976), 
Dickey and Fuller (1979), Fuller (1976), Harvey ( 1981 ), 
Kendall (1976), and Priestley (1981)). Two examples of 
particular interest from this general class are the second 
order autoregressive (AR(2)) process given at time t by 

Yt  + °~l~t-1 + °~2Yt-2  - e t 

where e t is normally distributed with mean 0 and 
variance o 2, and is independent of Yt-1 and Yt-2; and 
an integrated moving average (IMA(1,1)) process, given 
by 

Yt  - Y t -1  + e t  - n e t - 1  

where { e t} are independent and identically distributed 
random variables each with mean 0 and variance 02 . 

We perform simulation on the AR (2) model along with 
an alternative process containing contamination of 
occasional random spikes separate from the 
autocorrelated components, and consider both the three 
and five year averages• 

3.2 Assumptions 

The Y series of true population values is assumed to 
follow the AR (2) process and is given at time t by 

Yt  + °~lr t-1 + ~ 2 Y t - 2  - e t. 
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The Z series is def'med as 

gt  + tx1Zt-1 + lx2at-2 : e t + ~'t + et 

where e t has a normal distribution with mean 0 and 
variance o 2, and is independent of Zt_ 1 and Zt_ 2 . . To 
generate a fairly general pattern of spikes, the variable 6 t 
is taken as the product of three independent random 
variables given by 

: v , v , w , ,  

and 
77=t 

1;=1 
U t assumes values 1 and-1 each with probability .5, 

V t is a Bernoulli random variable with probability of 

success equal to .05, and W t has a Poisson distribution 

with mean 3. Similarly, g~: assumes values 1 and -1 

each with probability .5, V~ is a Bernoulli random 

variable with probability of success equal to .05, and 

tV has a Poisson distribution with mean 3. and each 

of the six random variables are independent of each 

other. 

3.3 Mean Square Error Comparisons 

Let A 3 (Yt )  and A s (II,) respectively denote the 
simple average of the Y values for the three and five year 
periods (t-l, t+l) and (t-2, t+2). The root mean square 
errors for estimating Y +. for lag k, by Y as compared '(y) to A3 (Yt) and A5 are given by 

R 1 ((Z1, 0~2, O, Y:, k, 1) 

t= n 1 ~ ( y ,  _ 

v/(n-m+i) ,:m 
Yt+ k )2 

R3(O~l, o~2, o,  Y, k, 3) 

t= n 
1 ~ ( A 3 ( Y ,  ) _ y,  k)2 

t + 

v/(n-m+l) t=m 

Rs((zl,  (Z2, (J, Y~ k~ 5)  

_- 1 ~ (As(Yt) - Yt+ k) 2 
v/(n-m+l t-m 

where m and n are respectively the starting and ending 
points of the time series selected to measure the mean 
square errors. R i(o~l, ~2, o ,  Z ,  k,  i) , i = 1, 3, 5 ; 
for the Z-series are similarly defined. 

3.4 Numerical Values 

The following table shows the percent reduction in the 
average root mean square errors obtained by taking three 
or five year averages as compared with the single point 
estimates. These reductions are given for i -3,  5, 

A - - M I ( U ,  k, 1)-M~(U, k, i) 

u,k,~ .01 m~ ( U, k, 1 ) 
where, for j = 1, 3, 5, 

Mj(u, k, j) 
_ 1 ~ R . ( o ~ I  ' a2, o, U, k, j ) '  

N 

where U represents either the Y or the Z series, and the 
summation ranges over all possible permutations 
of(o~l,  o:2, o )  , N being the number of such 
permutations. 

Thus, the table entries are the Au ,  k, i values for the Y 
and Z series with elements of the vector (O~l, ¢~2, o)  
ranging from (. 1,. 1,. 1) to (.9, .9, .9), for the simulated 
time series of three hundred terms, for lag k = 3, 4, and 5. 

Depending on the lag period k, five year averages 
generally result in a larger reduction in the mean square 
errors than the three year averages. Larger averages 
smooth noise and spikes, smaller lag periods are better for 
trends and jumps. 

Table 
Percent Reduction in Root Mean Square Errors  

LAG / 3 4 5 

Five Year Averages, 

Y -  Series 40.30 49.10 25.56 

Z -  Series 26.94 30.55 21.76 
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Three Year Averages 

Y - Series 33.86 29.42 35.59 

Z - Series 23.04 21.79 24.58 
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(This paper reports the general results of research 
undertaken by Census Bureau staff. The views expressed 
are attributable to the authors and do not necessarily 
reflect those of the Census Bureau.) 
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