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1. Introduction 
Consider the following sampling problem. Sample 

units are to be selected simultaneously for two designs, 
denoted as D I and D 2, with generally different 
stratifications. Typically, the universes for the two 
designs are identical, although this is not assumed. The 
selection of sample units for each design is to be 
without replacement, with probability proportional to a 
measure of size (pps) that is generally different for the 
two designs. We wish to maximize the overlap of the 
sample units, that is to select units so that: 

There are a predetermined number of units, n i l  , 

selected from D I stratum i and a predetermined 

number of units, n j2, selected from D 2 stratum j; 
that is, the sample size for each stratum and design 
combination is fixed. (I. 1) 
Each unit in the universe is selected into each 
sample with its assigned probability. (1.2) 
The expected number of units in common to the 
two samples is maximized. (I.3) 

In this article we demonstrate how a variation of the 
two-dimension controlled selection procedure of 
Causey, Cox, and Ernst (1985) can be used to obtain 
samples that satisfy these conditions and, with a slight 
modification, the conditions for the analogous problem 
of minimizing the overlap of the sample units. 

Many procedures have been developed for 
maximizing and minimizing the overlap of sample units 
since Keyfitz's ( 1951 ) pioneering work. Ernst (1999) 
discusses the various overlap procedures. The majority 
of these procedures have been developed for the 
following somewhat different application. Units are 
selected pps, without replacement for a survey with a 
stratified design. Later a new sample is to be selected 
using a new a size measure and a different stratification. 
To reduce costs it may be desirable to maximize the 
expected number of units common to the two samples 
while preserving prespecified selection probabilities in 
the new design. Minimization of overlap, in contrast, 
is typically employed as a method of reducing 
respondent burden. 

In the redesign illustration just described, unlike 
the case for the present problem, the two samples must 
be selected sequentially, since the designs are for 
different points in time. Various procedures for overlap 
maximization and minimization of two samples when 

the samples are selected sequentially have been 
developed, but most have one or more of the following 
drawbacks: applicable to only one sample unit per 
stratum designs; requires that the stratifications for the 
two designs overlapped are identical; fails to generally 
attain the optimal overlap. The overlap procedure of 
Causey, Cox, and Ernst (1985), which formulates the 
problem as a transportation problem, has none of these 
drawbacks, but the size of the transportation problems 
are commonly so large that it is operationally infeasible 
to implement. 

In contrast to the redesign illustration, there are 
other applications for which samples are selected at the 
same point in time for two or more surveys. Some 
overlap procedures have been developed specifically to 
be used for simultaneous selection and generally 
produce a better overlap than procedures developed for 
sequential selection or are computationally more 
efficient. 

Ernst (1996, 1998) developed optimal, 
simultaneous procedures for two different situations. 
Ernst (1996) is only applicable to one unit per stratum 
designs, but the designs may have different 
stratifications. In Ernst (1998) there are no restrictions 
on the number of sample units per stratum, but the 
stratifications must be identical. Both procedures are 
applicable to both the maximization and minimization 
problems, but are restricted to the overlap of two 
designs. These two procedures employ the algorithm in 
Causey, Cox, and Ernst (1985) for solving the two- 
dimensional version of the controlled selection problem 
developed by Goodman and Kish (1950). This 
algorithm involves solving a sequence of transportation 
problems. 

The procedure presented in this paper combines the 
features of the Ernst (1996) and Ernst (1998) 
procedures; that is, the procedure is an optimal, 
simultaneous procedure that has no restrictions on the 
number of units per stratum and is applicable when the 
two designs have different stratifications. The solution, 
although borrowing ideas from both of the earlier 
papers, is mostly a generalization of the Ernst (1996) 
procedure. However, it is substantially more complex 
than that procedure. In order to understand the need for 
this extra complexity, we present in Section 2 an outline 
of the direct generalization of the Ernst (1996) 
procedure for the maximization problem to other than 
one unit per stratum designs and demonstrate why this 
direct generalization can result in three problems that 
prevent it from producing a solution without 
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modifications. In Section 3 we present the main 
procedure for the maximization problem and explain 
how the modifications of the Ernst (1996) procedure 
overcome the three problems of Section 2; the proof of 
some of the claims in Section 3 are deferred to the 
Appendix, Section 6. Like both the Ernst (1996) and 
(1998) procedures, this new procedure requires the 
solution of a sequence of transportation problems. In 
Section 4 we show how to modify the procedure to 
solve the minimization problem. In Section 5 we report 
the results of a simulation study that illustrates a 
potential application of the new procedure. Also 
included in this section is a discussion of operational 
upper limits on the size of the universe to which this 
procedure can be applied. 

Due to space limitations, the complete paper is not 
presented here. Omissions include all of Sections 4-6, 
the list of references, and most of the tables and figures. 
The complete paper is available from the authors. 
2. Problems with Directly Generalizing the Erns t  
(1996) Procedure 

In this section we will" introduce some notation; 
reformulate (!.2) and (I.3) in terms of the notation; 
illustrate by means of an example the direct 
generalization of Ernst (1996) to cases where at least 
one of the designs is not one unit per stratum" and use 
this example to demonstrate the three problems with 
this direct generalization that require the modifications 
presented in the next section. 

Let M , N  denote the number of D ! and D 2 strata, 

respectively. If the universes for the two designs are 
not identical then we artificially create identical 
universes as followso If a unit is in D I only, arbitrarily 

assign it to some D 2 stratum and set its D 2 selection 

probability to 0. Units in D 2 only are treated 

analogously. 

For i -  1 ..... M, j -  ! ..... N, let O i l ,  O j 2  denote the 

set of units in D i stratum i and D 2 stratum j, 
s 

respectively; let Dij = Dil r'~Dj2 and let tij denote the 

number of units in D/jo We denote the set of all units 

in the two designs by the set of ordered triples 

T = { ( i , j , k ) ' i = l  ..... M, j = l  ..... N, k = l  ..... tij]. Let 

zrijkl,trijk2 denote the Dt,D 2 selection probability, 

respectively, for (i, j ,k  )~ T. Let 

Kijk3 -"  m i n { n ' i # ,  ! , l[ijk2 } ,  If ijko t = I[~iko t -- If ijk3, f f  = 1 , 2 ,  

3 
• ~ " and tr/jk4 = i -  trOt, a (2.1) 

o t = l  

Let S I, S2denote the random sets consisting of the 

sample units for D I, D 2, respectively. Let 

SI,S2,S3,S 4 be the random sets denoting the set of 

units, respectively" in SI but not in S 2, in S 2 but not in 

S¿, in both samples, and in neither sample. 

In terms of our notation (I.2) and (I.3) are 
equivalent to, respectively, 

Pr((i, j , k )~  S u ) = ~i jko t ,  (i, j , k )~  T, ~ = 1,2 (2.2) 

Pr((i,j,k)~ S~) is maximal for each (i, j , k )~  T (2.3) 

To establish (2.2) and (2.3) it is sufficient to show that 
Pr((i,j,k)~ S'# =n'ijk,a), ( i , j , k )~  T,  13 = 1,2,3 (2.4) 

since (2.1) and (2.4) imply (2.2), while (2.4) with 
13 = 3, together with fact that Pr((i, j ,k)  ~ S~) < trijk3, 

( i , j , k )¢  T, for any selection procedure satisfying 

(2.2), imply (2.3). 
We use the following example to illustrate the 

direct generalization of the Ernst (1996) procedure and 
to explain the three reasons that this generalization does 
not work without modifications unless both designs are 
one unit per stratum. In this example: M = 3, N = 2" 

nil = 1, n y 2 = 2  for all i,j; the two designs have the 

same eight units, with tll = t22 = 2, t o = ! for all other 

i,]; and the selection probabilities for the eight units are 
given in Table I at the end of the paper. 

In general we begin the direct generalization of the 
Ernst (1996) procedure by constructing an 
(M + 2 ) × ( N  + 2) array, A =(aij), of expected values. 

F o r i = l  .... M, j = l  ..... N, the expected number of units 

• o in D i j n S  3 is aij the expected number of units in 

Dil r'~S~ is ai(N+l)" and the expected number of units 

in Dj2 nS~  is a(M +l)j- Then, in order to satisfy (2.4), 

we must have 
tij N tij 

- Z Z  ' 
aij = , ¢ / i ( N + I )  - -  / l ' / j k l  

k=l j=ak=l 

M tij EZ"  a(M+l))-- trijk2, i = l  .... M, j = l  ..... N 
i = l k = l  

Furthermore, a (M+l) (u+l )=0  and the remaining cells 

are marginais. (We refer to an array, such as A, in 
which the final row and final column are marginal 
values as a tabular array.) 
presented below 

.6 .4 0 

.4 .6 0 

A =.2  06 .2 

.8 .4 0 

2 2 .2 

I 

I 

1.2 

4.2 

A for the example is 

(2.5) 

The next step in the procedure is to obtain a 
solution to the controlled selection problem 
corresponding to A using the procedure of Causey, 
Cox, and Ernst (1985). A controlled rounding of a real- 
valued, tabular array A is an integer-valued, tabular 
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array M with the same dimensions as A that rounds 
every element aq of A that is not an integer to either 

the next integer above or the next integer below aij and 

leaves integer elements of A unchanged. For example, 
the three arrays M l, M 2, M 3 below are all controlled 

roundings of A. Cox and Ernst (1982) demonstrated 
that a controlled rounding of a tabular array always 
exists and can be obtained by modeling the controlled 
rounding problem as a transportation problem. A set, 

M I = (mij I ), M 2 = (mij 2 ) ..... M t = (mij ¢ ), of controlled 

roundings of A, and associated probabilities, pj .... Pt,  

satisfying 
¢ 

~,,mij, ,p, , =ai j ,  i = i ..... M + 2, j = I ..... N + 2 (2.6) 
u = l  

is known as a solution to the controlled selection 
problem A. For example, the arrays 

0 I 0 ! I 0 0 I 0 I 0 

I 0 0 I 0 i 0 I 1 0 0 

M I = I 0 0 I M 2 = 0  I 0 I M 3 = 0  0 I 

0 I 0 I I 0 0 I 1 1 0 

2 2 0 4  2 2 0 4  2 2 ! 

with associated ~robabilities .2,.6,.2, respectively, is a 
solution to (2. I ). 

A single array M u is selected from among 

Mi ..... Mt  using the associated probabilities. Then for 

i = i  .... M ,  j = l  ..... N :  toO, , is the number of units in 

Dij to be selected to be in S 3 , with the selection among 
P 

these tij units proportional to zrijk3 mi(N+l) u is the 

number of units in Dii to be selected to be in S~, with 
l . 

the selection with probability proportional to trijkl and 

m~M+l)j,, is the number of units in Dj2 to be selected 

to be in S-~, with the selection with probability 

proportional to n'Ok z. For this example, three problems 

arise in the selection process because the D 2 

stratification is not ! unit per stratum and hence the first 
two column totals are not I. 

To illustrate the first problem for this example, 
assume that Mi has been selected. Then (I,2,1)~ S~ 

since ml21 = 1, but (I,2,1)~ S 2 also because ml24 = I, 

a contradiction° 
To illustrate the second problem, again assume that 

M t has been selected. Then (1,1,1)~ S~ since 
e 

roll j = 0 ,  while ( I , I , I )~S  2 either since mr4 I = 0 .  

Consequently, (I,! , i)~ S 2 if Mj is selected and (2.2) 

cannot be satisfied since trill2 = I. 

To illustrate the third problem, assume that M 2 

has been selected. Then one of the units (I,1,1),(1,1,2) 

would be selected to be in S 3 since mj J2 = I, while one 

of the two units would be selected to be in S 2 since 

ml42 = I. The Ernst (1996) procedure selects the units 

corresponding to each cell independently. This will not 
work here since a unit could be selected to be in both 

e i 

S 3 and S 2. 

3. The Main  P rocedure  
We divide this section into three subsections as 

follows. 
In Section 3.1, given a set of probabilities 

t 

7rijkO, (i, j , k ) e  T, fl = 1,2,3,4, we construct an array A 

of expected values. This is analogous to the array A of 
Section 2, but more complex in order to avoid problems 
I and 2 of Section 2. We also obtain a controlled 
rounding M of A, which determines the actual number 

t p 

of sample units to be in Sj, S~, S 3, S 4 by type of unit. 

In Section 3.2 we describe how to select a single 
sample for the two designs given M. By a sample, we 
mean the following. Each unit in T must be in exactly 

p t p 

one of the four sets S i , S ~ , S  3,S 4. A sample simply 

specifies to which one of these four sets each unit in T 
belongs. The approach of associating a single sample 
with each controlled rounding M differs from the 
approach in Ernst (1996) where, as described in Section 
2 of the current paper, each controlled rounding is used 
together with a probability mechanism to select a 
sample. The approach is different here to avoid the 
third problem of Section 2. 

The algorithm described in Sections 3.1 and 3.2 
result in a single sample. However, what we need is a 

I 8 I I 

set of samples, Stu, S2u, $3, ,,$4, ,, u = I ..... t', and 

associated probabilities, Pl ..... Pt ,  where: g is the 
g 

number of  samples; Slu is the set of units in the D ! 

sample only for sample u, with analogous definitions 
I I I . 

for S2u, S3u,Snu and Pu is the probability of selecting 

sample Uo Note that for each u, each unit in T is in 
I l I I 

exactly one of Slu, S2u, S3u,S4u. T o  illustrate, for the 

example in Section 2, a possible set of samples is given 
in Table 2 of the full paper. Here e = 4  and the 
probabilities associated with the four samples are 
.4,.2,.2,.2, respectively. The construction of the t o 
samples is described in Section 3.3 and employs a 
recursive procedure that requires the construction of an 
array of expected values Au and a controlled rounding 

M u of A u for each sample u. 

3. !o The Construct ion o f  A 
To construct an array A that overcomes the first 

two problems of Section 2 we begin by partitioning T 
into five different sets, namely: 

Tic ={( i ,  j , k ) : l r i j k2  <~ijkl =!} 

TIs = { ( i, j , k  )" tr (it, 2 < trijt, I < I} 
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T2c = 1(i, j ,k  )" ~ijkl < Jri#2 = I} 

T2s = I (i, j ,k )" 7rijkl < 7rijk2 < !} 

T 3 = {(i, j ,k)" ~ijkl  : l'gijk2 } 

For the example of  Section 2, Tic = O ,  TIs = {(3,1,1)}, 

T:, c = I(I,1,1)1, T2s = 1(I,1,2),(I,2,1)}, 

T-~ = {(2,1,1),(2,2,1),(2,2,2),(3,2,1)}. 

As we will show, the partitioning by the numerical 
subscript overcomes the first problem of Section 2, the 
further partitioning determined by C and S overcomes 
the second problem. We will accomplish this by using 

an expanded tabular array A =(aij) with dimensions 

M * xN *, where M* = 3M + N + 2 and 
N * = M + 3 N + 2 ,  instead of the array (2.5) of 
dimensions (M + 2) x (N + 2) described in Section 2. 

The expanded A contains five subarrays corresponding 
to the five sets in the partition. The subarray 

corresponding to Tic is denoted by A Ic with 

analogous notation for the other four subarrays. Each 
subarray corresponds to the internal elements in (2.5), 
except that each subarray is restricted to the units in the 
corresponding subset. Furthermore, instead of 
dimensions (M + I ) x ( N  + I), A j c , A I s  have 

dimensions M x ( N + I ) "  A 2 c , A 2 s  have dimensions 

( M + i ) x N "  and A3 has dimensions M x N .  This is 
t • 

because units in Tic,Tjs cannot be in S 2 units in 

T2c,T2s cannot be in S~" and units in T 3 cannot be in 

either S~ or S~. These five subarrays allows us to 

separately control the number of units selected of  each 
of these five types, which is the key to overcoming the 
first two problems of Section 2. 

We proceed to define these five subarrays. A for 
the example is presented at the end of this subsection, 
with the boundaries of the five subarrays indicated by 
broken lines. In this figure, the first row and first 
column are not elements of A, but instead list the row 
and column numbers, respectively, of A, with those 
row and columns consisting entirely of zeros omitted to 
conserve space. (As a result, the broken line below row 
7, across the first three columns is omitted.) Let 

T/jlc = {k " ( i , j , k )~  Ttc},  i = I ..... M ,  j = I ..... N ,  with 

analogous definitions for TijJs, Tij2c, Tij2s, Tij 3 . A 3 

occupies the upper left-hand corner of A with its 
elements defined by 

E '  aij = 7rijk3, i = ! ..... M, j = I ..... N (3.1) 
k~ Tij3 

A 2c is located to the right of A3 and A 2s to the right 

of A2c .  Similarly, A~c is located below A3 and Als  

below Aic .  A2c begins in column N + 2 , n o t  N + I ,  

and A ic begins in row M + 2 ,  so that these two 

subarrays do not overlap. Consequently, the cells in the 
first M + ! rows of column N + I of A and the cells in 
the first N +i  columns of row M + I are not in any of 

the five subarrays and we let aiy = 0for  each of these 

cells. An essential reason for the placement of the five 
subarrays as described, which we will discuss further 
later, is to insure that none of the other subarrays have 

cells in the same columns as A 2 c , A 2 s  or the same 

rows as A Ic, A IS • 

The first M rows of A 2 c , A 2 s  are defined as in 

(3.1), except j is replaced by j + N + l  and j + 2 N + i  

for A2c and A2s ,  respectively, on the left-hand side 

of (3.1)only" whi le  Tij 3 is replaced by Tij2c and Tij2s, 

respectively. The cells in the first N columns of 
A jc ,A  Js are defined by making analogous 

substitutions in (3.1). As for row M +! in A2c ,  the 
t 

row to be used in selecting units in S 2 , we let 
M 

E E '  O(M +I)(j+N +1) : ~ijk2' J = ! ..... N (3.2) 
i=l keTij2 C 

while the same formula holds for row M +!  of A2s ,  

except N is replaced by 2N on the left-hand side and C 
is replaced by S on the right-hand side. For column 

N + I of Alc  we analogously have 
N 

E E '  a(i+M+i)tN+l) = R'/jkl, i = I ..... M (3.3) 
j=lk~- Tijl C 

while for column N + ! of A Is we replace M by 2M on 

the left-hand side of (3.3) and C by S on the right-hand 
side. 

We let aij = 0  for the remaining elements in the 

first 3M + ! rows and first 3N +1 columns of A. Cells 
defined to be 0 have no role in the sample selection 
process. We postpone the definition of  the cells that are 
in either the final N internal rows or the final M internal 
columns of A. For the example we have so far defined 
elements that are in both the first 10 rows and first 7 
columns of A. 

Corresponding to A, we obtain a controlled 
rounding of this array, M, which is used to select the 
first sample. We first explain the meaning of those 
elements of A that are within the five subarrays and the 

corresponding elements of M. ai( j+N+i) ,  

i = l  ..... M, j = !  ..... N, the value for cell ( i , j )  of A2c 

is the expected number of units in Di jnT2c  to be 
t 

selected to be in S 3 and mi(j+N+l)  is the actual number 

of  such units to be selected for the first sample. 

Likewi se ,  a(M+IXj+N+I ) is the expected number of 

units in D j2 n T2c to be selected to be in S~ and 
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m(u +~)(j+,v +~) is the actual number of  such units for 

the first sample. The cell values for the other four 
arrays have analogous interpretations. 

We now explain the need for the final N internal 
rows in A. Let 

3M+! 3M+I 

a'./2 = E aij' m'./2 = ~-~miJ' J = I ..... 3N + 1 (3.4) 
i=1 i=! 

m • • • 

aj2 =aj2 +a(j+N+l)2" +a(j+2N+l)2, 
do 0 0 • 

mj2 =mj2 +m(j+N+l)2 +m(j+2N+l) 2, j =  1 ..... N (3.5) 

Then from (3.4), (3.5), and the discussion in the 
previous paragraph, it follows that the three terms in the 

dO 

definition of a j2 are the expected number of  units in 

Dj2 n(T~ UTic u T i s ) ,  Dj2 c~T2c, Dj2 n T 2 s ,  

respectively, to be selected to be in S 2" consequently, 
dO 

a j2 is the expected number of  units in D j2 to be  

selected to be in S 2. From (2.1), (3.1), (3.2), (3.4) it 

follows that for j = 1 ..... N ,  
M M 

• t 

i-I k~ r~j3 ~r~c  ~r~jls i-I k~ rij2c 
M 

a/./+z,v+')2 = Z Ztr/jo,2 (3.6) 
i = I ke Tij2S 

dO 

and, consequently, that a.i2 = n./2 as required by (!. I). 
dO 

Furthermore, since m j2 is the actual number of  units in 

D j2 tO be selected to be in S 2 for the first possible 
dO 

sample and since a j2 =n j2, we must also have 
dO dO 

m./2 = a./2. To force this last relationship to be true for 

any controlled rounding M of A we define elements in 
the last N internal rows of A as follows. For any real 

number x, let I- x-I be the smallest integer that is greater 

than or equal to x and let r(x) = [- x- I - x.  Then let 

a(./+3M +l) j  = r(a./2 ), 

a(j+3m +i)(./+2N+l) = r(a(j+2N+i)2), J = 1 ..... N (3.7) 

and let the cell value be 0 for all other internal cells in 
row j +  3M +! of A. It is established in the Appendix 

m N 

that m j2 =aj2 and illustrated in the full paper why 
m m 

(3.7) is needed to force m./2 =a./2 . 

The entries in the final M internal columns of A are 
defined analogously to entries in the final N internal 
columns, that is 

3N+I 

' E all = aij, i = I ..... 3M + 1 (3.8) 
./=1 

ai(i+3N+! ) = r(a~l ), 

a(i+ZM +I)(i+3N+I) = r(a(i+ZM +1)1 ) ,  i = 1 ..... M (3.9) 

and the cell value is 0 for all other internal elements in 
column i + 3N + I of A. (3.8), (3.9) are needed to force 

the number of  units in Dil selected to be in S i for the 

first possible sample to be nil, i = I ..... M .  

This completes the definition of the internal 
elements of A. The remaining elements are the 
marginals. M is any controlled rounding of A 

I 
2 
3 

A =  4J 
1t3 
II 
12 
1." 

! 2 3 4 6 7 
0 0 0 
.4 .6 0 
0 .6 0 

ildilZiiiiOiil....o... 
.,2 ..... .0 ....... 2 
.4 0 0 
0 .8 0 

.4 .2 .4 
0 0 0 
0 0 0 

....6 ...... .2. ...... ..4... 
0 0 0 
0 .6 0 
0 0 .2 

I 2 .2 I I I 

I0 !1 
0 I 
0 I 
.4 I 
0 i.2 
.6 I 
0 I 
0 I 
I 7.2 

3.2. Selection of  a Sample Given M 
We now describe how to select a single sample, 

t t t t 

that is a set of units in SI ,S2 ,S  3,S" 4 given M, which 

will be the first sample in the solution. For cell (i, j )  in 
* I 

A3, select any m(i units in Dq nT~ to be in S 3, with 

the additional requirements that any unit (i, j , k )  for 

which //'/jk3 = I must be selected and no unit for which 

tr/jt3 = 0  may be selected. Such a selection can always 

be made if there are at least mq units in D,j n T  3 for 

which ~(/k3 > 0 and no more than mq units in D o ~ T  3 

for which n'/jk3 = I. It can be shown that the first of 

these conditions is met by combining (3.1) and 

m 0 <[ao] ,  while the second condition follows from 

(3.1) and Laij J <_ mij. We select the units in S.] from 

the corresponding cells of  A Ic, A Is, A 2c, A 2s in the 

same way. 

After all the units to be in S.~ are selected, units are 

selected corresponding to the cells in the last row of 

A z c ,  Azs to be in S 2 as follows. For cell j of  A 2c in 

this row, which is cell (M + I, j + N + I) of A, choose 
g 

any m(,u+l)(j+N+l ) units in D y 2 n T 2 c  to be in S 2 

among those units in D j2 ~T2c  not selected to be in 

S~. Units are selected similarly corresponding to cells 

in the last row of Azs .  In the Appendix we show that 

this selection of  units in D j z n T 2 c  and in Dj2 ~ T z s  

to be in S~, avoids problems 1 and 2 in Section 2. It is 

here that we make use of the fact that that the columns 
containing elements of A2c ,  A2s do not contain 

elements of any other subarray. 
The selection of  the units corresponding to the cells 

in the last column o fA  Ic, A is to be in S~ is analogous 

to the selection of the units corresponding to the last 

row in A2c ,  A2s to be in S 2 . 

3.3. Recursively Selecting a Set of  Samples 

265 



The selection of the f samples Slu, S2u, S3u,S4u 

and associated probabilities Pu, u =  I ..... e, is done 

recursively as follows. Sample I is simply the sample 
obtained in Section 3.2. To obtain sample u and Pu we 

begin with a set of probabilities Pl ..... Pu-I for u >1 
I 

and a set of probabilities nijt, ~ ,  ( i , j , k ) e  T, 

fl = 1,2,3,4, for u > I, satisfying: 
t 

0 < trijt,3, , < I (3.10) 

4 

Enijt,3,, = I (3.11 ) 
3=1 

If nij~3 = 0 or ~rijk3 = I, then nij~#,, = nij~3 (3.12) 

M tij 

E E n 0 *  2,, = n j2, J = i ..... N ,  and 
i = l k = l  

N to 

Z Eni jk l , ,  = nil' i = I ..... M (3.13) 
j=~t=~ 

where 
r • 

nqkoa , = nqkoa , + nqk3u, ct = 1,2 (3.14) 
I t 

For u = I we have trip,31 = nqk 3 for all i , j , k , f l , a n d  
p 

hence the set of trij,31 satisfy (3.10)-(3.13). For 
I t 

general u, using n0t,0,, in place of nOt, O, an array A u is 

constructed exactly as A was constructed in Section 3.1. 

In particular, for sample u, Tic and the other four 

subsets that form a partition of T depend on 

tr0,~,,,n;i,2, ,, not n0,~,nii~, 2. Therefore, a unit can be 

in different subsets for different Uo Table 2 in the full 
paper lists the subset for each unit and sample for our 
example. 

A controlled rounding M u of A u is then 
¢ t l p 

obtained and the sample Slu, S2u, S3u,S4u selected 

exactly as sample I was selected in Section 3.2, except 
g ¢ 

M,, replaces M and nij/,.3~ , replaces trijt, 3 . In 

particular, A I = A and M I = M .  

After sample u is selected we compute Pu as a 
I 

function of sample u, the trijk3,,, and Pz ..... P , - I ,  and 

then recursively compute nijk3t,,+j) as follows. For 

(i, j, k) e T, fl = 1,2,3,4, let 
N I # N P 

nqk~, = nqkt~ , if (i, j , k  )e  S~, ,  nqk~, = I-nqkt~ , if 

(i, j , k ) ~  S'#,, (3.15) 

N 

p~ = min{nqt,3 " "( i , j ,k)~.  T,/3 = 1,2,3,4} (3.16) 

Pl = p ;  i f u = l ,  Pu = I -  Pr i f u > l  (3.17) 
y=l 

~'jktl,, = 1 if (i, j,k)~_ S'~ and 20k,~ = 0  if 

(i, j , k  )~ S'I~ , (3.18) 

and finally, if Pu < I, let 

• nijk~, - )'.ifl,~Pu (3.19) 
n i j k f l t u + l )  "- I -  Pu 

In the Appendix, we show that if (3.10)-(3.13) are 
satisfied for u then they are satisfied for u + I. 

Finally, we need to explain how the recursive 
process terminates. Eventually, as is established in the 
Appendix, 

t 

there is an integer g for which trijk3 t =1 for 
p 

exactly one fl and nqkflt = 0 for the other three fl 

for each (i, j , k  )e  T (3.20) 

Then there is only one possible sample e, namely the 
sample for which 

t 

J~ikflt = nqkflt for all i, j , k ,  fl (3.21 ) 

Then Pt = 1 by (3.15), (3.16); consequently, 

¢-I 

Pt = I -  ~_~Pu (3.22) 
u=l 

which ends the algorithm. It is established in the 
Appendix that this set of e samples satisfies 

t 

)qjt,#r Pr = nok# " (i, j , k  ) e; T, fl = 1,2,3,4 (3.23) 
),=1 

which is equivalent to (2.4). 
The results of using the recursive algorithm for the 

example are presented in the full paper. Here e = 4 .  
Arrays Au, M,,,  u = 1,2,3,4, are presented, along with 

the samples in Table 3 and the zrijj,#,, in Table 4. We 

also have that the p,, are .4,.33,.5,1, respectively, and 

that the Pu are .4,.2,.2,.2, respectively. 

Any opinions expressed in this paper  are those o f  
the authors and do not constitute pol io '  o f  the Bureau 
o f  Labor Statistics. 

Table 1. Selection Probabilities f o r  Examp!e 
( i , j , k )  

( I , ! ,1)  (1,1,2.) (1,2,1) (2,1,1) (2,2,1) (2,2,2) (3,1,1) (3,2,1.) 
nokl o4 .2 .4 .4 .4 .2 .4 .6 

nok2 1.0 .4 .8 .4 .4 .2 .2 .6 
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