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This paper reports the results of  research and analysis 
undertaken by Census Bureau staff'. It has undergone a 
more limited review than official Census bureau 
publications. This report is released to infi)rm 
interested parties of  research and to encourage 
discussion. 

distributions. Let p (or) be a prior density on the 

(multivariate) parameter a and let L (or; f~) be the 

likelihood of a given data f~. Let f l ( a )  be an 

analytic function of a .  In the paper, fl (or) is always 

a power of a .  Then, let 

1. Introduction 

The method of Laplace is an analytical tool to 
approximate intractable posterior expectations. It 
trades the problems of ambiguous convergence in time 
associated with asymptotic computational procedures 
(such as MCMC's) for an analytical challenge. The 
advantage of the method of Laplace is that, once the 
analytical difficulties are resolved, then, unlike 
asymptotic computational procedures, the method of 
Laplace can be applied repeatedly, and virtually 
instantaneously, with a quantifiable error. The natural 
question: is it worth the extra analytical burden? 

A~(o"ff2) = l o g ( f l ( O c ) ) +  l o g ( p ( c r ) )  

+ log(L(cr;  ~ ) )  
(1) 

: log(p( )) 

+ log(L(, , n)) 
( 2 )  

The second order Laplace approximation is defined 

implicitly through the formula 

The paper outlines a systematic approach to apply the 
method of Laplace to build inference based on 
categorical responses embedded in a hierarchical log- 
linear model, in presence of unreported items. As 
expected our approach is rather tedious, but it is also 
fairly general. We give an example from the 1998 
dress rehearsal, where the inferential difficulties caused 
by the unreported items are typically addressed by 
supplying item imputations (Fay and Town, 1998). For 
this example we take advantage of the particular nature 
of the problem, e.g. some categorical variables are 
always reported. But, we think that this situation is 
representative of many "real" cases, and the example 
reveals the method of Laplace as a viable option to 
construct inference a postiori for a broad class of 
problems involving categorical data. 

2. The method of Laplace for Approximating 
Posterior Expectations 

Tierney and Kadane (1986), Tierney, Kass, and Kadane 

(1989), and Thibaudeau (1988) use the method of 

Laplace to approximate posterior expectations of 

1 

/ 
= i1_  I 

× e x p { A L ( t ~ ' "  ) - A 2 ( t ~ ' " )  } 

× (1 + O(n-2  1) 

( 3 )  

where o? and c? are the maxima of A~ ( a ;  f~ ) and 

A 2 (a" ~ )  respectively. Z~ (c~) is the Hessian of 

A, ( a ;  ~ ) with respect to the derivand a ,  evaluated 

at c~, and a similar definition applies for Z 2 (t~).  

]l ]1 denotes the determinant. 

analytical functions under intractable posterior 
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We propose to use (3) to evaluate the posterior moment 

of multinomial parameters constrained by hierarchical 

log-linear models. We define the general form of the 

likelihood function and, implicitly, of the density 

associated with the natural conjugate prior, in the next 

section, and we exemplify the accuracy of (3) in later 

sections. 

3. The Hierarchical Constrained Multinomial 
Likelihood 

Let A represents a set of D categorical variables, with 

numbers of categories M~ .. . . .  M,, respectively. Then 

M = I I  M i is the number of categories in A × , where 
i ~ A  

A X represents the Cartesian product of the categorical 

variables in zS. Let a multivariate category in A ~ be 

represented by the vector v = Iv, ,  v . . . . . .  v~,], where 

v~ = 1 . . . . .  M r indicates the category for categorical 

variable j .  Also, let p = [p(v )] be the probability 

vector whose components characterize the events 

corresponding to the v ' s .  Given these definitions we 

introduce operational notation to define the basic 

concepts of the paper. Let v i i , =  Iv, . . . . .  v i i ,  and 

v ( i ) = [ v j . 1  . . . . .  vl)] .  Thus v( j ,  and v( ; !  denote the 

vector v with ending and leading components 

truncated, respectively. In addition, let [ be the 

concatenating operator, and so v = v ~;~ ] v Then, 

define 

n , ( , )  = 

rl . , ( . )  

p(v) 
p([1]lv"' ) 

n ( . )  

( 4 )  

With the notation in (4), we can present the central 

concepts of the paper. 

Definition 1 - Hierarchical Constraint 

Let v" : [v, ' ,  v." . . . . .  v,; ] represents the same category 

in N as v does, but allow for the order of the 

components of v" to be permuted relative to v .  A 

hierarchical constraint on the probability vector p is a 

constraint of the form 

n -- i ( s )  

for all values of v" such that vj ~: 1 whenever 

j = 1 . . . . .  m.  Agresti, (1990, pp. 149-150) gives 

insight on hierarchical constraints. In effect, (5) 

disallows interactions of order higher than the n-th 

order between the categories represented by 

v, ' ,  . . . .  vo~. Lower order interactions are allowed, 

provided another hierarchical constraint does not 

stipulate the contrary. 

Definition 2 - Hier'archJca! Ix)g-Linear Mode) 

We say that ®,  the parameter space of p ,  is a 

hierarchical log-linear model, whenever O is 

unambiguously defined by a set of hierarchical 

constraints as defined in (5), and the constraints 

Z ) -   ,and ) > O.fo  . x 
~ , e A  × 

Definition 3 - Hierarchical Constrained Multinomial 

Likelihood 
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Let Z c W be a subset of E < D categorical 

variables, and let u=[u~,u~ ..... u~.] represent a 

category in Z × , the Cartesian product of the variables 

in Z.  Let o ' (W,  Z, u ) c W× be the subset containing 

all the values of v ,  such that v agrees with u on the 

categorical variables in Z. Let N ( Z , u )  be the 

number of occurrences of event u s Z × . Then, p has 

a hierarchical constrained multinomial likelihood if its 

likelihood is 

N ( Z . , ,  ) 

Z c  ~I' u~  Z x , , ~ a ( ' f ' . z . , )  

p e 0 

(6 )  

where 0 is a hierarchical log-linear model. The 

representation in (6) accounts for situations where data 

are missing at random (Little and Rubin, p. 17). Then, 

only the variables represented by u are observed, for 

arbitrary instances of the subset Z. 

4. Homogeneous Associations 

Let m = 3 in (5), for each permutation v of v .  

Schafer (1997) refers to the corresponding hierarchical 

log-linear models as homogenous associations models 

(containing all two-way interactions, but no higher). 

We investigate homogeneous association models with 

the intention of developing a systematic method to 

apply the method of Laplace in this situation. In order 

to deduce general principles, we investigate the first 

non-trivial instance of this situation, that is the case D 

= 4. Then p in definition 2 is a M 1 x M 2 x M 3 x M 4 

probability vector, and its parameter space 19 is 

defined by setting 1-I 3 (v*)  = 1, for 

V* ~ [ V l , ] ' y  ],7 ] , [ V l  ]'73 ~2 V 4 ]  ~ . ' 3 '  V4 ' ' ' 

[ V I , V 4 , V 2 , V 3 ] ,  I V 2 ,  V 3 ,  V l ,  ] } 4 ] ,  [ V 2 , V 4 , ] ' Y I , V 3 ] ,  

[v 3, v~, v,, v2] in (5). To implement the method of 

Laplace we must identify a set of free parameters to 

represent p under the constraints that define t 9 .  

Because of the dimensionality of O ,  p can be 

represented by 

(M r - 1 ) x ( M j - 1 )  + ~ (M i - l )  free 
/=1.4  i=1.4  
j = l . 4  

parameters. To define a complete set of free 

parameters, we first define a set of free parameters to 

represent the marginal space generated by the first two 

categorical variables. We set 

~,,,, = ~_~ p ( v )  ( 7 )  
v ~ A x 

v I = a 
,.-~ = h  

Let ~ be the set containing ~ ,~  . . . . .  I//M,. M2 - 1" 

Then ~ is a set of M, × M 2 - 1 free parameters. We 

shall define additional free parameters to represent the 

parameter space of the conditional probability obtained 

by conditioning on the first two categorical variables. 

We can construct sets of free parameters by layers. 

The top layer corresponds to the parameter space of the 

probabilities associated with category 4 conditional on 

categories 1, 2, and 3, simultaneously. We define the 

free parameters of the top layer with the following 

formula: 

p ( [ a , b , c , d ] )  ( 8 )  

, , ~ A  x 
v 1 =a 
v,~ =b 
v 3 =c 
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We select the values of a, b, c, d in (8) to define a set 

of M 4 - 1  free parameters corresponding to the 

M 4 - 1 degrees of freedom associated with category 4, 

and to define sets of ( M , - 1 ) × ( M  4 - I ) ,  

( M 2 - 1 ) × ( M ~ - I ) ,  and ( M ~ - I ) x ( M 4 - 1 )  free 

parameters corresponding to the ( M , -  l ) x  (M 4 - 1 ) ,  

( M 2 - 1 ) x ( M 4 - 1 ) ,  and ( M 3 - 1 ) x ( M , - 1 )  

degrees of freedom associated with the second-order 

interactions between categories 4 and 1, between 

categories 4 and 2, and between categories 4 and 3, 

respectively. Let ~p be the set of ~,.b.,..~ 's for these 

values of a, b, c, d defining the free parameters. Then, 

for any values of a, b, c, d ,  0°.~.c.a can be expressed 

as a function of ¢p, in conjunction with the hierarchical 

constraints in (5). 

The next layer in the construction of a complete set of 

free parameters corresponds to the probability 

associated with category 3, conditional on categories 1 

and 2 simultaneously, for an arbitrary fixed value for 

category 4. Consider the following conditional 

probabilities: 

y , , . , , . , .  = ]) (9) 
Z P (  v ) 

~, ~ A × 

v4--I 

We choose values of a, b, c in (9) to define M 3 -1  

free parameters corresponding to the M 3 - 1  degrees 

of freedom associated with category 3, and to define 

sets 

(M~ 
to 

(M~ 

of ( M , - 1 ) x ( M  3 - 1 ) ,  and 

- 1 ) x (  M 3 - 1 ) free parameters corresponding 

the (M~ - 1 )x (M,  - 1 ) ,  and 

- 1 ) x (  m 3 - 1 ) degrees of freedom associated 

with the second-order interactions between categories 3 

and 1, and between categories 3 and 2, respectively. 

Let 7 be the set of Y~.~.c's for the values of a, b, c 

yielding the free parameters. Then, the value of Ya.~.c 

for any selection of a, b, c can be expressed as a 

function of 7 ,  in conjunction with the hierarchical 

constraints in (5). Note that in (9) category 4 is 

arbitrarily set to 1, since second-order interactions not 

involving category 4 do not depend on the values of 

category 4. 

We can define p strictly as a function of the free 

parameters in ¥ ,  ¢, and 7.  We can generalize the 

layered approach of this section to define a complete set 

of free parameters for any hierarchical log-linear model. 

Then, based on the parametrization given by the free 

parameters, we can implement the method of Laplace. 

5. Example 

We give an example of inference by proxy. At the 

1998 dress Rehearsal of Census 2000 in Sacramento 

(Kostamich, 1999), race and tenure were requested 

from each householder. For our example race has four 

categories (White, Black, Asian, Other) and tenure has 

two (Owner, Renter). Race and tenure are unreported 

by for approximately 3 % and 7 % of the householders 

respectively. The traditional approach to deal with 

unreported items is to substitute them with the 

corresponding items for a neighbor who acts as a proxy. 

This method is called the hot-deck. The method of 

Laplace allows us to infer on the unreported items 

conditional on the values of the proxy, without actually 

imputing these values. Note that it is assumed that for 

each householder there are recorded proxy values. We 

center our attention on the corresponding 4 by 2 by 4 by 

2 table defined by the items of the householders and 
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their proxy values, for tract X in Sacramento, which has 

1583 householders. 

Let proxy race, proxy tenure, race, and tenure be 

categorical variables 1, 2, 3, 4. We specify the 

homogeneous associations log-linear model to define 

O,  the parameter space of p ,  the vector of the 

multinomial probabilities. We parameterize p in terms 

of the free parameters in ~ ,  ~0, and 7 ,  as defined in 

the previous section, and so ~ contains 7 free 

parameters, ~ contains 8, and ), contains 15. Since 

we assume that the proxy values are always recorded, 

the joint likelihood of t/t, tO, ~, , or equivalently the 

posterior density under a uniform prior distribution can 

be writen as 

L(Q,R,  S, T" ~, tp, 7) 

" l  • "'2 

~4" 1 . w 2 . u 3 , w 4  

,v 1 n u 3 . w .  

H 
wl . w 2 , w4  

p W3 ' W4 W 1 , W2 
u 4 

I N 1 w I . u. 2 , w 4 

~ 3  

( 1 4 )  

In (14) p(w~, w 4 I w~, w:) is the conditional 

probabillity of observing race w~, and tenure w~, 

conditional on having observed proxy race %, and 

proxy tenure w 2. Q, R, S, T are the sets of counts 

for the multivariate categories represented by the 

arguments of the exponents on the RHS. Note that 

p(w~, w 4 1%,  w 2) is strictly a function of ~a and 7.  

So we write 

L(Q,R,  S, T" ¥,  ~p, 7) 

: - ( 0  ; x (n , s ,  r) 
(15) 

Our ojective is to infer on the cases with unreported 

race and/or unreported tenure. In that respect, 

p ( w  3 , w,, [wi, w 2) tells us everything we can hope to 

learn with this model. For instance, let X '¢" be the 
W l ,  w2  • ~ 3  

number of householders who did not report tenure, but 

who reported race w~, and proxy race w 1 , and proxy 

. '~° be the tenure w~ were observed. Let Y,,,41w,,.~...~ 

number of householders among those whose tenure is in 

fact w~. Then 

...., ] 
w'1 I " l  • w2  ' " 3  

w 4 

Similar formulae are available for variances and 

covariances of the Y . . . . . .  s and they involve 
w4 [ "1  • u 2  • ~3  

computation based on the condtional posterior means, 

variances, and covariances of the 

p (w~ ,  w~ [w I , w 2)'s. The good news is that we can 

use the method of Laplace in (3) to approximate the 

conditional posterior means and variances of the 

p ( w  3 , w~ 1%'  % ) ' s  Our task is simplified because 

H ( Q  " ~ ) in (15) factors out on the numerator and 

the denominator in (3), and thus it can be ignored. As it 

turns out, for the approximation of the condtional 

posterior means and second order moments, the 

integrands on both the numerator and denominator in 

(3) are always of the form K ( R , S ,  T ;  ~p, 7)  in 

(15). We can get approximation of the posterior means 
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and variances by systematically finding the maximum 

of functions of the form K ( R , S ,  T" tp, ? ) ,  with 

respect to ~p, and 7- This can always be done with the 

EM algorithm (Dempster, Laird, Rubin, 1977). We 

obtain an approximation for the variance by taking the 

difference between the Laplace approximation of the 

second order moment, and the square of the Laplace 

approximation of the mean. 

6. Preliminary Results 

We give preliminary results for the Sacramento 
inference by proxy example. As a reference point we 
also evaluate posterior expectations using 10,000 
iterations of Bayesian iterative proportional fitting 
(BIPF), (Schafer, 1997, p. 357). We assume that for a 
householder in tract X, only the race and tenure of the 
neighbor is known. We approximate the mean of the 
posterior probability that the householder is 
respectively a White owner, a Black owner, and an 
owner, conditional on the information that the neighbor 
is a White renter. We also approximate the standard 
errors of these posterior conditional probabilities. The 
results, under a uniform prior, are shown in table 1. 

Table 1 - Posterior Means and Standard Errors for 
Householder Race-Tenure Probabilities when the 

Neighbor is a White Renter 

House- 
holder . . . . . . . . .  

White 
Owner 
Black 
Owner 
Owner 

Renter 

Mean 

Laplace 

.0613 

.00659 

'0817 
. . . . . .  

.918 

- M e a n  

BIPF 

.0646 

. 0 0 6 3 8  

S . E o  

Laplace 

• 00710 

.00170 

l 

.0856 .00907 

.914 

S . E o  

BIPF 

.00714 

.00184 

.00868 

7. Discussion 

We have represented a hierarchical log-linear model 
with a set of Hierarchical constraints in order to 
delineate an explicit non-degenerate parameterization 
for the model. We use the parameterization to 
implement the method of Laplace, as suggested in (3). 
The particular form of the likelihood in (14) and (15), 

allows us to compute the maxima d and c~ in (3) 

with the EM algorithm. Then we can apply the method 
of Laplace to approximate a posterior expectation, 
whenever the expectant fl(o~) implicit in (3) is a 

power of the conditional probability for a category 
given another category, and the conditional category is 
always observed• This in turn allows us to approximate 
the posterior variance by subtracting two power- 
moment approximations. 

At this point, the results are encouraging (table l). But 
we hope to develop direct Laplace approximations for 
the posterior variance, e.g. not by subtracting two 
power-moment approximations, which can increase the 
relative error. It appears that such an endeavor requires 
using maximization techniques other than the EM 
algorithm and thus further complicates the problem. 
Nevertheless, it may be worth pursuing, as it could lead 
to a systematic procedure to build inference based on 
categorical data in presence of unreported items for an 
important class of problems, without the disadvantages 
of computational simulation based on asymptotics. 
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