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1. Introduction 
Statistics Canada's National Population Health 

Survey (NPHS) is a longitudinal household survey 
conducted by Statistics Canada, instituted in 1994 to 
survey the health of Canadians along with its 
determinants. Wave 1 of the survey provided a panel of 
approximately 17,000 respondents to be contacted every 
two years for up to twenty years. Data are collected 
during four collection periods in each survey year. Panel 
respondents were chosen by randomly selecting one 
person per surveyed household. The sample design of the 
NPHS is mostly based upon the Labour Force Survey 
(LFS) sampling methodology. The LFS design generally 
selects a stratified two-stage sample of dwellings selected 
within clusters (except in some rural, remote, and 
apartment strata) with six clusters selected in each 
stratum. NPHS strata were created by grouping LFS 
strata, keeping some or all of the LFS selected clusters, 
but selecting flesh sample dwellings within those clusters. 
In Quebec the NPHS sample is taken from households 
that participated in the Enqudte Sociale et de Santo (ESS), 
a health survey conducted by Sant6 Qu6bec in 1992-93. 
Its design was similar to that of the LFS. For more details 
on the NPHS design, see Tambay and Catlin (1995). 

Estimation weights for NPHS are derived from the 
basic inverse probability of inclusion sampling weights 
by adjusting for survey nonresponse and calibrating to 
known population totals for age-sex categories by 
province. In a very small number of cases extreme 
weights are adjusted in an adhoc manner. 

In order to provide estimates of sampling variances 
for statistics and analyses, the NPHS uses a version of the 
bootstrap method described in Rao, Wu and Yue (1992) 
and Yung (1997). Variance estimation for complex 
surveys such as the NPHS typically use a resampling 
method such as the bootstrap or jackknife, or methods 
based on Taylor expansions. Resampling methods have 
some advantages over the Taylor method in that the 
Taylor method requires deriviation of an appropriate 
Taylor approximation for each new type of statistic or 
analysis. On the other hand, resampling methods 
typically require much more computational power; 
however, recent advances in computer power have made 
resampling methods feasible even for complicated, 

iterative estimation procedures. Another advantage of 
resampling methods is that the variance estimation can 
conveniently be divided into two parts: (1) derivation of 
the replicate estimation weights, which only needs to be 
done once, and (2) calculation of replicate estimates and 
their variance. Thus analysts can be supplied with a file 
containing the sets of replicate weights, and need not 
know any of the details of the complex design in order to 
derive valid variance estimates for their analyses. In 
resampling methods it is also easy, in principle, to 
account for variability due to various adjustments to the 
weights, such as nonresopnse (NR) adjustments and 
calibration, simply by applying the same adjustment 
procedures to each individual set of replicate weights. 
For these reasons we decided to use a replication 
procedure. We chose the bootstrap over the jackknife for 
two reasons: (1) the bootstrap yields valid variance 
estimators from a reasonable number of replicates (e.g., 

500), whereas the jackknife requires a replicate for each 
sample cluster, and (2) as developed by Rao et al. (1992) 
the bootstrap has better properties for non-smooth 
statistics such as quantiles or the low income cutoff 
(LICO - see Kova6evi6 and Yung, 1997) 

In this paper we describe enhancements to the 
bootstrap method used for variance estimation in the 
NPHS. In particular, we describe how the effects of 
estimation of NR adjustment factors are incorporated into 
the bootstrap weights for the third wave of the survey 
(this was not done for the second wave), and compare 
bootstrap variance estimates derived from the enhanced 
method to those obtained with the old method. Section 2 
describes the bootstrap variance estimation method used 
in the NPHS. Section 3 describes the NR adjustment 
procedures, and how they were included in the bootstrap. 
Section 4 presents an analysis of the effects of having 
excluded these adjustments from the bootstrap. 

2. Bootstrap Method 
In this section we describe in some detail the 

bootstrap method used in the NPHS. The bootstrap 
resampling method for the lid case has been extensively 
studied. (See Efron, 1982.) It was extended by Rao and 
Wu (1988) to stratified multistage designs and again by 
Rao, Wu and Yue (1992) to include nonsmooth statistics. 
It is this Rao, Wu andYue version of the bootstrap that 
was implemented in the NPHS. It assumes L design strata, 
where stratum h contains Nh clusters of which n~, >_ 2 
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clusters are sampled with replacement. Typically the 
clusters are actually selected without replacement, but the 
without replacement assumption is usually a reasonable 
approximation. There is no restriction on subsampling 
within clusters. We let wh~k denote the inverse sampling 
probability weight for the kth sample individual from the 
ith sample cluster of stratum h. 

The bootstrap variance estimator for an estimator f) 
is calculated as follows: 

(i) Weighting: Independently for each stratum, select a 
simple random sample with replacement of mh 

, 

clusters from the n h sampled clusters. With m h~ 

denoting the number of times the (hi)- th cluster is 
, 

selected ( ~ m m - m h )  , the bootstrap weights are 
defined as 
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For the NPHS, mh was set to n h- 1, a commonly used 
value, ensuring that the bootstrap weights, Whik, are 
nonnegative, and reducing the above equation to 

* h * 

W - m 
h i k  Fl - 1 h i  W h i k "  

h 

(ii) Estimation" Calculate 0", the bootstrap replicate of 
estimator 0, by replacing the survey weights w,i  k by 
the bootstrap weights w£. k in the formula for 0. 

(iii) Independently replicate steps (i) and (ii) a large 
number of times, say B, and calculate the 

~* O* . The corresponding replicate estimates, 0 1F..., (8) 
bootstrap variance estimator for {) is then given by 

.9 

. 

where 0(.~ - (l/B) E 0[b). 

For the NPHS, as for most other surveys, the 
sampling weights are adjusted to account for 
Nonresponseand then calibrated to known population 
totals. Logically these adjustments to the weights ought 
to be considered part of the estimation process, i.e., step 
(ii) above. However, it is practically convenient to 
consider them separately, and to include them as part of 
the weighting process, since they are identical for all 
estimates derived from the survey. The survey weights 
provided with the NPHS microdata files incorporate these 
adjustments. The files of bootstrap weights are similarly 
adjusted. 

For the bootstrap weights derived for waves 1 and 2 
of the NPHS, the bootstrap weight adjustment was 
applied after the NR adjustment, for simplicity. In other 
words, it was the NR-adjusted sampling weights that were 
adjusted for bootstrap subsampling as in step (i) above. 
These bootstrap-adjusted weights were then calibrated to 
population totals in the same way that the estimation 
weights were. Thus there is a component of the overall 
variance, that due to estimation of the NR adjustment 
factors, that is not reflected in variance estimates derived 
from these bootstrap weights. For cycle 3 of the survey, 
some of the NR adjustments were included in the 
bootstrap procedure, and it is the aim of this paper to 
analyse the effects of this enhancement. 
Note 2.1. When the bootstrap subsampling is done 
before the NR adjustment, sample units are eligible to be 
selected in the bootstrap sample regardless of their 
response status. If the subsampling takes place after the 
NR adjustment, it is only the respondent units that are 
included in the bootstrap samples. There are a small 
number of clusters, generally smaller clusters, which are 
completely nonrespondent. Such clusters may still be 
included in the bootstrap sample of clusters in step (i) 
above when NR adjustment takes place after the 
subsampling, but not if it takes place before the 
subsampling. This means that the samples of clusters 
available for subsampling were slightly different for the 
two bootstrap procedures. For the longitudinal file there 
were 3,264 sample clusters available for the bootstrap 
when the NR adjustment was included, and 3,194 when 
it was not. For the health file the numbers were 4,266 
and 4,114. The importance of this fact will be discussed 
further in Section 4. 

3. Nonresponse Adjustment 
In this section we describe the NR adjustments and 

how they were incorporated into the bootstrap. 
Generally speaking, the approach taken to NR 

adjustment for the NPHS is to form NR adjustment 
classes which are thought to be homogeneous with 
respect to propensity to respond to the survey. Within 
adjustment classes the weights of the respondents are 
simply multiplied by a factor to make the sum of the 
adjusted weights for the respondents equal to the sum of 
the unadjusted weights of both respondents and 
nonrespondents. The NR classes are formed using 
variables that are available for both respondents and 
nonrespondents and that are good predictors of response 
status. For a cross-sectional survey the information 
available for formation of NR adjustment classes is 
usually quite limited. In a longitudinal survey, the survey 
variables observed for respondents to one wave of the 
survey can be used as potential predictors of 
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Nonresponseto subsequent waves of the survey. This is 
the approach taken for NPHS, using a CHAID (chi-square 
automatic interaction detection) algorithm to find good 
NR adjustment classes when such predictors are available 
from previous waves of the survey. To be more specific, 
the Knowledge-Seeker software was used to help 
determine the NR adjustment classes. When response 
predictors from previous waves are not available, as in 
the case of top-up samples, simple geographic classes are 
used. A more detailed description of NR adjustment for 
NPHS can be found in Tambay, ~chiopu-Kratina, Mayda, 
Stukel and Nadon (1998). 

For the third wave of the NPHS, we can distinguish 
two different types of data file: longitudinal and cross- 
sectional. The longitudinal file contains data for all 
waves of the survey, but only for individuals who were 
fully respondent to all waves (alternative definitions are 
possible, and indeed used, allowing varying degrees of 
partial response or nonresponse to different waves of the 
survey). The cross-sectional file includes all respondents 
to the third wave of the survey, regardless of their 
response status for previous waves of the survey. This 
includes the top-up samples that were added specifically 
to improve cross-sectional representativity. 

For the bootstrap, the NR adjustment classes were 
taken as fixed and it is only the adjustment factors that 
were recalculated and reapplied for each bootstrap 
sample. However, this was not possible when a bootstrap 
sample included some nonrespondents but no respondents 
from a particular adjustment class since there were then 
no respondents to absorb the weight of the 
nonrespondents. In that case the problem class would be 
collapsed with one or more other NR adjustment classes. 
Normally the NR adjustment classes would be carefully 
chosen in light of the survey data; however, in the context 
of a resampling method like the bootstrap a more 
automated solution is required. We handled this problem 
by prespecifying, for each NR adjustment class, how it 
would be collapsed with others in case this problem arose. 
In actual fact the problem occured only a few times in 
500 bootstrap samples. 

3.1. Adjustment classes for the longitudinal file. For 
the longitudinal file, adjustments for nonresponseare 
cumulative. At the first wave of the survey, simple 
classes based on stratum and season of data collection 
were used. Nonrespondents to wave 1 were then 
excluded from the sample for wave 2 and the NR 
adjustment classes for wave 2 were based on wave 1 
variables available for both respondents and 
nonrepondents to wave 2. Similarly, the NR classes for 
wave 3 were based on variables from waves 1 and 2. The 
overall wave 3 longitudinal NR adjustment factors were 

then just the products of the factors calculated for the 
three waves of nonresponse. 

Only the last two of these three NR adjustments was 
included in the bootstrap procedure. Recovering the 
information needed to include the first adjustment into the 
bootstrap would have been too difficult and error-prone. 
Effective inclusion of such weight adjustment procedures 
into the bootstrap requires some advance planning, so that 
the information needed to replicate the procedure is 
available. After the NR adjustment, final calibration of 
the weights was done for each bootstrap sample as it had 
been for the complete sample. 

The average longitudinal NR adjustment factor for 
wave 2 was 1.115 at the Canada level. Provincial 
averages ranged from 1.070 to 1.145, while individual 
NR adjustment classes had adjustment factors as high as 
1.830. For wave 3 the response rates were generally 
better, with the average adjustment being 1.081, 
provincial averages ranging from 1.046 to 1.092, and the 
largest individual adjustment factor being 1.538. 

3.2. Adjustment classes for the cross-sectional file. For 
the cross-sectional file the NR adjustments were done 
separately for the longitudinal panel and for the top-up 
samples. The panel part of the sample included all 
respondents to the first wave of the survey, regardless of 
response status for the second wave. Variables collected 
at wave 2 were used as potential predictors of 
nonresponse, but when these were not available wave 1 
variables were used as proxies if possible. There were 
three different top-up samples: a general top-up sample 
for attrition, and samples of newborns and of immigrants 
to account for new entrants to the population. The first 
stage of the top-up sample for attrition consisted of the 
nonrespondent dwellings from the first wave of the 
survey; thus there was no need to apply a wave 1 NR 
adjustment to the panel part of the sample. NR 
adjustments were done separately within each of the top- 
ups. Because of small sample sizes, the NR adjustments 
for the top-ups used simple classes based on province. 

For the cross-sectional files there was the additional 
problem of extreme weights which could arise when a 
longitudinal panel member moved from a province where 
the sampling rate was relatively low/high to one where it 
was high/low. In these cases, which were very few in 
number, adhoc adjustments were made to the weights for 
these units. In the bootstrap the same adhoc adjustment 
factors were applied to these problem cases. Finally the 
weights were calibrated as for the complete sample. 

The average NR adjustment for the cross-sectional 
file was 1.143 at the Canada level, while provincial 
averages ranged from 1.081 to 1.188. The largest 
individual adjustment factor was 2.441 which occured in 
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one of the top-up samples. The largest adjustment factor 
for the panel part of the sample was 1.881. 

4. Empirical investigation. 
In this section we investigate the effects of including 

and not including the estimation of the NR adjustment 
factors in the bootstrap. We compare variance estimates 
derived from the two bootstrap methods, and also look at 
the effects on the NR adjustment factors and on the 
weights. We tried to compare the variance estimates 
analytically using approximate variance expressions 
based on Taylor linearization; however, the expressions 
are very complex and no real insight was gained by this. 
Comparison of the expressions may be possible by 
considering the asymptotic order of different terms, but it 
is not clear what the most appropriate asymptotic 
framework is, and the result can depend on the 
framework chosen. However, we are considering the 
question further. In the meantime, a small empirical 
comparison is presented here. 

4.1. Comparison of variances. To compare variances 
we calculated coefficients of variation (CVs) for 51 totals 
using the two different versions of the bootstrap for both 
the longitudinal and health files. We also conducted 
logistic regression analyses to regress the probability of 
onset of back problems onto several potential predictors 
(34 predictors for the longitudinal file, 8 for the cross- 
sectional). 

We had expected that inclusion of the NR 
adjustments in the bootstrap would increase the bootstrap 
estimated variances, since an extra source of variability 
was being accounted for. To our surprise this seemed not 
to be the case. The adjusted bootstrap variance estimates 
were sometimes smaller than the unadjusted estimates. In 
addition, the differences turned out to be fairly small. 

We speculated that these unexpected results may 
have been due to the fact that the sets of bootstrap 
samples for the two procedures had been selected 
independently. They had to be selected independently 
since the samples of clusters available for subsampling 
were slightly different for the two procedures, as 
explained above in Note 2.1. We then decided to 
compare results of the two procedures when they were 
based on the same bootstrap sample of clusters. We 
therefore selected a bootstrap subsample of clusters 
restricting to those sample clusters that had at least one 
respondent, and applied the two different weighting 
procedures. The differences between the two sets of 
variance estimates were now smaller, as expected, but the 
adjusted estimates were still sometimes smaller than the 
unadjusted estimates. 

In order to explore this phenomenon further we 
replicated the entire procedure 50 times, and for 
comparison we also considered the bootstrap weights 
before the final calibration to age/sex/province population 
totals. Thus we obtained 50 replicate sets of four 
bootstrap weight files, each set being based on common 
bootstrap subsamples of clusters. The four files in each 
set were as follows: ADJCAL - NR adjustment factors 
recalculated for each bootstrap sample and final 
calibration applied; NOACAL - NR adjustment factors 
fixed and final calibration applied; ADJNOC - NR 
adjustment factors recalculated for each bootstrap sample 
but no calibration of the weights; NOANOC - NR 
adjustment factors fixed and no calibration. Each 
bootstrap weight file contained 500 bootstrap weights. 

We calculated the mean differences between pairs of 
sets of CV estimates, as well as the mean relative 
differences, i.e. the mean of the difference divided by the 
unadjusted estimate, and histograms of both of these. For 
the regressions we also looked at whether a decision on 
the significance of a regressor, at the 5% or 1% 
significance level, would be different for the adjusted and 
unadjusted procedures, though not even one such 
difference was found in 50 replicates. 

Summary results of the simulations are presented in 
Tables 4.1 and 4.2. We still found that the adjusted 
variance estimates for some of the parameters were 
smaller than the unadjusted estimates, and the Monte 
Carlo errors now indicated that most of these differences 
were statistically significant. 

The first row of these tables, labelled ADJCAL- 
NOACAL, summarize the differences between the new 
bootstrap procedure and the old one, i.e., with final 
calibration applied after the NR adjustments. It can be 
seen that, although the differences between the two 
procedures are statistically significant, these differences 
are small both absolutely and relatively, and the direction 
of the differences does not consistently favour either the 
adjusted or the unadjusted bootstrap. The practical 
insignificance of the differences is underlined by the fact 
that in 50 replicates, not a single difference in 
significance of any of the regressors was found, either at 
the 5% or the 1% level. 

A possible heuristic explanation for the unadjusted 
variance estimates to be sometimes larger is that the NR 
adjustments and final calibration adjustments may interact 
in such a way that when the NR adjustment factors were 
not included in the bootstrap, the variability due to the 
calibration adjustment factors was exagerated. 

In an attempt to more clearly see the effect of 
recalculating the NR adjustment factors on the estimates 
of variance, the third row of the tables compares the 
adjusted and unadjusted procedures leaving out the final 
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calibration of the weights. However, results are very 
similar to those observed in the first row, with very small 
differences and no consistent direction. 

The effect of final weight calibration on the variances 
of estimators is summarized in the second and fourth 
rows of the tables, ADJCAL-ADJNOC and NOACAL- 
NOANOC, which compare compare the variances of 
estimates using calibrated weights to those of estimates 
using uncalibrated weights, both with and without 
recalculation of the adjustment factors included. The 
effects of calibration are much larger and more significant 
than those of recalculation of the NR adjustment factors, 
generally, but not always, leading to a reduction in the 
variance of totals. In some cases the variance is reduced 
by a factor of two or more. For the logistic regressions 
calibration is less likely to lead to a reduction of the 
variance, but the effect of calibration is still much larger. 

4.2. Other comparisons. In order to get another 
perspective on the effects of adding calculation of the NR 
adjustment factors into the bootstrap procedures, we 
looked at the means and variances of the recalculated NR 
adjustment factors over 500 bootstrap replicates. 

For the cross-sectional file the average bootstrap CV 
of the adjustment factors, weighted by the total sample 
weight within each class, was about 3.3%, while the 
average absolute relative bias was about 0.3%. CVs and 
biases for some of the individual NR adjustment factors 
were much larger, particularly for some of the adjustment 
classes in the top-up which sometimes contained just a 
few sample elements. For the panel part of the survey the 
largest CV was 17.7% and the largest absolute relative 
bias was 3.1%. Overall then, the variability in the 
adjustment factors was not very large, though there were 
small pockets of high variability. 

The situation for the longitudinal file was similar. 
For the wave 2 NR adjustments the average CV was 2.3% 
and the average absolute relave bias was 0.1%. The 
largest CV was 21.8% and the largest relative bias was 
3.1%. For wave 3 the corresponding averages were 2.5% 
for the CVs and 0.2% for the relative biases, while the 
maximum values were 38.2% and 7.2%, respectively. 
Again it can be said that the overall variability of the 
adjustment factors is not very large. 

Finally, we compared directly the new bootstrap 
weights (ADJCAL) to the old weights (NOACAL) for the 
longitudinal file. We looked at relative differences of the 
weights, i.e., (w *-w )/w , where the subscript i indicates 

0 o 
the sample unit and j denotes the jth bootstrap replicate. 
We found the overall mean of the absolute values of these 
quantities to be 0.027, and the mean of the within sample 
unit standard deviations to be 0.048. Thus incorporating 
the adjustment had an appreciable, though not very large, 
effect on individual weights. 

4.3. Conclusion. In summary, the effect of including 
calculation of NR adjustment factors in the bootstrap 
seems to be practically insignificant, at least for the 
empirical examples considered here for Statistics 
Canada's National Population Health Survey. In contrast, 
the effects of final calibration are larger by an order of 
magnitude. 
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Table 4.1. Differences of average percentage CVs for 51 totals 

Longitudinal File Cross-sectional File 

mean mean ave max. ave no. sig mean ave mean ave max. ave no. sig 
ave diff ~ rel diff 2 rel diff diff 3 diff rel diff rel diff diff 

pos/neg pos/neg pos/neg pos/neg 
...................................................................................... a .  ......................................................................................... 

ADJCAL- 0.0078 9 
-0.0051 -0.0028 

NOACAL -0.0198 26 

0.0125 22 
-0.0020 -0.0002 

-0.0109 21 

ADJCAL- 0.0573 11 
-0.1184 -0.0822 

ADJNOC -0.5519 37 

0.0164 7 
-0.1321 -0.1452 

-0.6607 38 

ADJNOC- 0.0116 8 
-0.0113 -0.0064 

NOANOC -0.0248 40 
0.0107 15 

-0.0029 -0.0051 
-0.0430 33 

NOACAL- 0.0587 11 0.0152 8 
-0.1245 -0.0860 -0.1330 -0.1499 

NOANOC -0.5648 38 -0.7053 39 
................................................................................................................................................................................ 

1. mean ave difference: mean over 51 totals of average differences over 50 replications 

2. rel diff: (CV1- CV2)/CV2 
3. no. sig diff-  number of totals (out of 51) for which the average difference divided by the Monte Carlo 

standard deviation of the differences was greater than 2. 

AD,JCAL- 
NOACAL 

ADJCAL- 

ADJNOC 

ADJNOC- 

NOANOC 

NOACAL- 

NOANOC 

Table 4.2. Differences of average percentage CVs for logistic regression parameters 

Longitudinal File (34 parameters) Cross-sectional File (8 parameters) 

mean mean ave max. ave no. sig mean ave mean ave max. ave no. sig 
ave diff ~ tel diff tel diff diff diff rel diff rel diff neg diff 

pos/neg pos/neg pos/neg 
...................................................................................... a ......................................................................................... 

0.0051 19 0.0013 2 
0.2025 0.001 I -0.0000 -0.0004 

-0.0030 7 -0.0038 3 

0.8094 17 
-22.08 -0.0176 

-0.6579 17 

0.0940 6 
1.2849 0.0374 

-0.0621 2 

0.0036 13 
0.1311 0.0003 

-0.0028 8 

0.0023 2 
-0.0155 -0.0009 

-0.0066 4 

0.8057 17 0.0939 6 
-22.15 -0.0183 1.2694 0.0371 

-0.6564 17 -0.0628 2 
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