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A b s t r a c t  
We analyze binary nonresponse data on doctor 

visits at a household level by state in the in the 
National Health Interview Survey (NHIS). We di- 
chotomize the number of doctor visits to zero or 
at least one doctor visit, by a household in the fifty 
states and the district of Columbia. There is sub- 
stantial nonresponse in NHIS. 

The proportion of households with doctor visits 
might, be misleading when the nonrespondents are 
ignored. The main issue we address here is that  
nonresponse should not be treated the same way as 
response because respondents and nonrespondents 
can differ. Thus, we begin by assuming that  nonre- 
sponse is nonignorable~ but in our model we also ac- 
commodate the case in which the nonresponse may 
be considered ignorable. 

We consider a nonignorable nonresponse model 
that  expresses uncertainty about ignorability. We 
use a hierarchical Bayesian model in which the hy- 
perparameters are assumed fixed but unknown, and 
these hyperparameters are estimated by the EM 
algorithm. Thus, our method is [3ayes empirical 
Bayes, but we still have to fit the rest of our model 
using a small-scale sample based method. Our main 
result is that  for some of the states the nonresponse 
mechanism is ignorable, and that  95% credible in- 
tervals of the probability of a household doctor visit 
and the probability that  a household responds shed 
important  light on the NHIS. 

1. I n t r o d u c t i o n  

There has been much activity in estimating survey 
nonresponse. For many of the health surveys the 
response is binary, and this method is easily appli- 
cable. For example, the National Health Interview 
Survey (NHIS) estimates the proportion of house- 
holds with at least one doctor visit during the past 

year. 

The NHIS executes the surveys on chronic and 
acute condition, doctor visit, hospital discharge, and 
medical care and utilization, disability, and other 
health topics. This survey finding helps to formu- 
late improved health care policies. We study doctor 
visit as an indicator of health. We dichotomize the 
number of doctor visits to zero or at least one doc- 
tor visit by a household in the fifty states and the 
district of Columbia. 

The NHIS questionnaire is divided into two sec- 
tions: core and supplemental questions. The core 
part  includes the basic health questions on condi- 
tion, doctor visit, hospital discharge, and personal 
information, while the supplemental part includes 
different topics solicited annually from the general 
public, and it encompasses a wide range of top- 
ics such as prescription medicine, hypertension,~ dia- 
betis, high blood pressure, HIV, and other.s. There 
are many possible biases such as those associated 
with questionnaire, interviewer, proxy respondent, 
recall and sample, we focuss only on the problem of 
nonresponse bias. 

The Bayesian approach appears to be particularly 
suitable for such nonresponse problems (e.g., Little 
and Rubin 1987). A full Bayesian analysis is diffi- 
cult. We consider the Bayes empirical Bayes model 
(Deely and Lindley 1981) to study nonignorable non- 
response. We estimate the hyperparameters using 
the EM algorithm, and afterward we assume that  
these estimates are known. The analysis is still com- 
plicated, even modal estimates using the EM algo- 
rithm are difficult to obtain, but there is some sim- 
plification and indeed an underestimation of vari- 
ability. Although the Bayesian method is appro- 
priate for the analysis of nonignorable nonresponse 
problem, the main difficulty is to model the relation- 
ship between the respondents and nonrespondents. 

Stasny (1991) used a hierarchical Bayes model to 
study victimization in the National Crime Survey. 
Assuming that  the hyperparameters are fixed but 
unknown, she used the selection approach developed 
primarily to study sample selection problerrLs. Our 
approach is an extension of hers. 
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We use a nonignorable model that  is centered on 
ignorable model with centering parameter 3,. Here 
"y is the odds of a doctor visit among responding 
households relative to the odds of that  among all 
households. Like Stasny (1991) we use small area 
estimation techniques where the states are assumed 
to follow a common stochastic process. We note 
that  a model with a centering parameter was de- 
scribed by Forster and smith (1998) who used a 
Bayesian graphical nonresponse model within the 
pattern mixture approach to analyze data from the 
British general election polling. However, the prob- 
lem described is not within the small area context. 

We use an empirical hierarchical Bayese approach 
to study the proportion possessing a characteristic 
for nonignorable nonresponse when there is uncer- 
tainty about ignorability. In Section 2, the National 
Health Interview Survey is briefly described. In See- 
tion 3 we fit the NHIS nonignorable nonresponse to 
an expansion model with the parameter ~. Section 
4 includes an analysis of NHIS data. Section 5 has 
a summary. 

2. N a t i o n a l  H e a l t h  I n t e r v i e w  S u r v e y  

The National Health Interview Survey (NHIS) has 
been conducted every year since 1957 by the Na- 
tional Center for Health Statistics to measure one 
aspect of health status of the U.S. noninstitutional- 
ized civilian population. Through this sample sur- 
vey, NCHS monitors the nation's health by check- 
ing the chronic and acute conditions, doctor visits, 
hospital episodes, disability, other special aspects of 
health of U.S population. One of the variables of in- 
terest in the NHIS is the number of doctor visits by 
an entire household in the past year° As an example 
in this research, we use the binary variable, visit, to 
be 0 if the number of doctor visits by all members 
of an household is 0, and 1 otherwise. 

The NHIS nonrespondents are mainly refusals, 
non contacts, those households with language dif- 
ficulties, or households not qualified. They may 
arise nonrandomly. For example, the language prob- 
lem may be confined to recent immigrants, who are 
not representative households, and therefore, nonre- 
sponse from this source can be considered nonran- 
dom nonresponses. We observed that  the average 
NHIS nonresponse rate was about 2-3 percent un- 
til the 1980's and has been increasing annually and 
reached 8-12 percent in 1995. 

The NHIS frame is basically a two stage sample 
survey design of probability proportional to popu- 
lation size. The first stage is the selection of pri- 
mary sampling units, and the second stage is the 

selection of segments. On the average each segment 
includes about 4-12 households, and all the sample 
households in the segment are interviewed. Weight- 
ing in the NHIS is a multi-stage scheme, and one of 
the stages is ratio adjustment for nonresponse at the 
segment level. This ratio is the proportion of all sam- 
ple persons to the respondents in the segment. This 
ratio estimator is adequate when respondents and 
nonrespondents are similar. However, this method 
can fail badly when these two groups differ accord- 
ing to important  characteristics which an investiga- 
tor wants to study. 

We address the nonignorable nonresponse prob- 
lem by expanding the method of random weighting, 
and the Bayesian method is introduced as a possible 
alternative to impute the NHIS nonresponses. 

For our illustration we use the 50 states and the 
District of Columbia from the 1995 household sur- 
vey. States with at least 8% nonrespondents are 
Colorado, Delaware, District of Columbia, Florida, 
Louisiana, Maryland, New York, South Carolina and 
West Virginia. Hawaii and Maine reported the high- 
est proportions of doctor visits of 38% (see Table 1). 

3.  N o n i g n o r a b l e  N o n r e s p o n s e  M o d e l  

In this section we describe a nonignorable model cen- 
tered on an ignorable model, and we call it the ex- 
pansion model. In a way we expand ignorable model 
to nonignorable one via an additional parameter "y. 

Let the binary characteristic be 

household j in state i has doctor visits 
otherwise 

and the response variable 

f , 

Y i j -  ~ O, 
household j in state i responded 
otherwise 

where i - 1 , . . . , g  is the number of states, and 
j = 1 , . . . , n i  where n~ is the number of sample 

households. 
We use a probabilistic structure to model xi j  and 

Yij . 

3.1 Expans ion  M o d e l  

The expansion model for nonignorable nonresponse 
is 

i i d  
xi j  [ Pi ~ Bernoulli (Pi) 

- 0 BCrnouni  

Yi j iTr i ,  "~i, x i j -  1 'id Bernoulli ('/iTri) 
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If "y~ -- 1, the  model  becomes ignorable model  and 
the re  is no difference between respondents  and non- 
respondents .  The  3,/ are the  rat io of the  odds  of 
success among  respondents  to the  odds of success 
among  all individuals  in the  ith s tate .  The  "yi show 
the  ex tent  of nonignorabi l i ty  of the  nonrespondents  
and incorpora te  t he  uncer t a in ty  abou t  ignorabi l i ty  
into the  model .  The  probabi l i ty  of responding in 
area i is 5~ = 7ri (~/ipi + (1 - pi)). Assuming  all ar- 
eas are similar,  we take  the  pa ramete r s  (pi, 5i,-yi) to 
have a common  dis t r ibut ion.  

For p~, we take  

lid 
Pi I~1,7-1 ~'~ Beta  (#17-1, (1 - #1)7-1). 

The  pa rame te r s  (Tri, ~/i) are joint ly  independent  with 

• iid 
7ri I 112, 7-2 ~ Be ta  (P2T2, (1 -- 112)T2) and  

lid 
"7i ] z/ ~ V(u, u) 0 < % < 1/Tri and  0 < 7ri < 1. 

Let B ( u ,  v) - F ( u ) F ( v ) / F ( u  + v) be the  be ta  func- 
tion. Then,  the  joint  prior densi ty for (Tri, "Yi) is given 
by p(Tri, 7i [ #2, 7--2, u)" 

71"~ 2r2-1 (1 - 71-i) (1-~2)r2-1 
p,,,[~,-1 exp(_v,,7i ) B (~22T2; ( i  -- 112)7-2) Ii(112, 7-2, u) 

w h e r e  Ii(#2,7-2, u) is (1) 

~ 1  JO 1 {7l"; lexp(-~i /TFi)  } v  k (7Fi, ~i  I l])dTFi dOi 
1 ,  

and, forO < rri, Oi < 1, 

~ , . . ~ -1  (1 - 7r~)( 1-":)~-1  
fl(Tri, ¢i ] u) -- u¢~,-1 B(1127-2 , (1 -- 112)T2) " 

The  joint  prior d is t r ibut ion  for (Tri, ¢i 7i) is the  prod- 
uc t  of p(pi I 111,7-1) and p(Tri, 7i I 112, 7-2, u). 

The  ignorable model  is a special case of the  ex- 
pans ion  model  wi th  % - 1. Note  t ha t ,  if 3'/ follow 
F (u ,u ) ,  E('yi I v )  - 1 and Var( 'y i  I u) - 1 /u .  
T h a t  is, we have centered the  expansion model  on 
the  ignorable model  and t h a t  3'/ f luctuates  about  
un i ty  wi th  a s t anda rd  deviat ion l / x / - ,  a priori. 

We take  uniform prior on 111 and #2, and the  
proper  priors p(u) -- 1 / (u  + 1) 2 for u > 0, P(7-r) -- 
1/(7-~ + 1)2 for % _> 0 and r - 1, 2. However, we use 
the  E M  a lgor i thm to es t ima te  the  hype rpa rame te r s  
directly. The  E M  a lgor i thm is a general approach 
to i te ra te  the  compu ta t i on  of m a x i m u m  likelihood 
es t imat ion  when the  observat ion can be viewed as 
incomple te  data .  

Let ri --  Ejni___l Yij be the  number  of responding 
ni households in the  i th s ta te  and xi - )-~j=l x i j  t he  

number  of households wi th  at  least one doctor  visit 
in the  ith s tate ,  and ni - r i  is the  number  of non- 
respondents .  Since the  number  of visits among  the  
nonrespondents  is unknown,  we denote  it by the  la- 
ten t  variable zi, and hence, the  number  of non-visi ts  
among  t h e m  is ni - ri - &. 

Then  it is easy to show t h a t  the  likelihood 
function is propor t ional  to f ( x ,  r, z [ p, ~, 7r), 

g ~--~ni --ri 
which is [I/=1 z__,=,=o f (xi ,  ri, zi I Pi, %, 7ri), where 
f ( x i ,  ri ,  zi ]Pi, > ,  7ri) is 

(::)( ~)( n, - ~, ) (~,~,p,)~, (~,(~_p,))~,_~, 
Xi Zi 

)<((1 - "yiTri)pi) ~' ((1 - 7r~)(1 - p~))~ ' -~ ' -~ ' .  

By Bayes'  t heo rem the  joint  poster ior  densi ty fol- 
lows, but  it is convenient  to make  the  t r ans fo rmat ion  

~i  = ~iTTi " 

Let A~=x ,  + z~ + 1117-1, Bi  = n ~ -  x,  - z~ + 
(1 - 111)7-1), C i = r i  + xi  + #2T2, and Di = ni - 
ri - & + (1 - 112)T2)- The  joint  poster ior  den- 
sity of all the  pa ramete r s  (p, zr, (;b) for given da t a  
(x, r)  is f ( p ,  ¢ ,  zr, ] x,  r, z) which is porpor t iona l  to: 

p(L/)p(111)P(#2)p(T1)p(T2) >( 

H ni -- ri 

i=1 Zi 

pA, - I  (1 - pi) B ' - '  

B(#17-1, (1 - 111)w,) 

&~'+~- 1 (1 _ ¢i)~', X Ti 
71-/Ci-1 (1 - 7ri) Di-1 

B(112T2, (1 - 112)T2) 

X {7~i 1 e x p ( - - o i l ~ , )  } - I i  1 (112, T2,/J) }" (2) 

3 . 2  C o m p u t a t i o n s  

Because the  poster ior  densi ty is not accessible di- 
rectly, we use a sampl ing  based m e t h o d  to ob- 
t a in  samples  from the  poster ior  densi ty  to pe rmi t  
an inference. We marginal ize  out the  pa rame te r s  
(Pi, 7ri, ¢~) from the  joint  poster ior  densi ty to obta in  
the  posterior  densi ty f ( # l ,  T1, P2, T2,/J, Z [ X, r) .  

Because it is difficult to obta in  samples  from this  
poster ior  density, we obta in  the  poster ior  mode  for 
the  h y p e r p a r a m e t e r s  #1, 7-1, #2, 7-2, and u. For sim- 
plicity, we use the  E M  a lgor i thm to ob ta in  the  es- 
t ima te s  of the  hype rpa rame te r s  (Dempster ,  Laird, 
and Rubin,  1977). Then  we assume t h a t  these esti- 
m a t e d  values are the  t rue  values. (This is the  Bayes 
empirical  Bayes procedure,  Deely and Lindley 1981.) 
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The EM algorithm is init iated with the values of z, 
Pl ,  7-1, P2, T2, and u obtained by the method of mo- 
ments. 

Let fa (#1, ~1, #2, 72, u I x, r, z) be proport ional  

t o  × II =, 

B(Ai ,  B~) 
B(/t171, (1 - pa)r~) 

The probabil i ty mass function of zi is g3(zi 
xi, ri).  Also observe tha t  

ga(zi t I x, r) wt --  --  ni--ri  t --  O, ..., n i  -- r i ,  
E t = 0  0dr 

where wt is proportional  to 

Wt B(Ai ,  Bi) & 

B(C~,Di) 

B(p2r2, (1 - p2)r2) 

× u S ( x i + ~ , z i + l )  }. 

The posterior density f(Px,  r l ,  P2, r2, u, z l x  , r) is 
proport ional  to 

g 

L(]£1' TI' ~2' T2'/]' Z I x ' r )  H {R,, (,~, ~ , , ) }  
i=1 

where Rz~ (#2, "r2, u) is 

and f2(rc~, ¢i ]u, &, x,, r i ) i s  

O~'+~- ' (1  - 0i) *~ 71-/Ci-1 (1 - 7r~) D ' - I  

B(x, + z,,, z, + 1) B(Ci, Di) 

Observe tha t  R~,(p2, r2, v) is the ratio of the ex- 
pectat ions of {Tr(lexp(-¢i/Tri)}" over f2(Tri, Oi i 
u, z,, x~, ri) and fl  (Try, ¢i u) in the numerator  
and denominator,  respectively, and f l ( . )  is given 
in (1). Wi th  the known hyperparameters ,  we can 
obtain samples from the joint posterior density 
f (z , ,  p~, 7ri, O i [ x ,  r) which is given by 

gl(Pi I zi, xi, ri) 92(7h,0i [ zi ,x,  r) g3(& [ x, r). 

The posterior of pi I zi, xi, ri is 

g, (P~ ] x~, r~, z~) ~ Beta (A~, B~). 

from which the samples for pi are obtained. 
The joint posterior 7ri, ¢i I xi, ri, zi is g2(Tri, ¢i I 

xi, ri, zi) which is proportional to 

where ga (Tci, 0i [ &, xi, ri, u) is 

¢xi+v- l ( l  -- 0 i )  zi 71"/C'-I (1 - ~ ) D , - ,  

U(xi + u, zi + 1) U(Ci, Di) 

× U ( x i + ~ ,  z i + l )  x U(Ci, Di) x Iz,(p2, r2, u) 

where 

~ 0 1 ~ 0 1  { e x P ( - - ¢ i / T r i ) }  v 
I~, (~2, r2, u) - x 

7r¢ 

¢~i+v- 1 (1 _ ¢i)zi 

B(xi  + u, zi + 1) 

71 "Ci-1 (1 - 7ri) D'-I  

B(Ci, Di) 
dTri d¢i. 

We first obtain zi from equation zi I x ,  r. Then  
for each & we fill in the  (Pi, 7ri, ¢i) with draws from 
ga (.) and g2(-). We draw 1000 values for zi i =  1,...,g 
from the equation ga(zi I x , r ) .  To draw samples 
from g2(.), we use the Metropolis algorithm with 
proposal density ga (Th, ¢i I xi, ri, zi, u). Assum- 
ing the chain is at the sth iterate, then the jump- 
ing probabil i ty to the (s + 1)st i terate is As,s+1 
----min{l~ (9(7r} ~+l),md)(s+l) )/~)(7ri(s) , ¢~) ) )} ,  where 

= 

, Ti ) are obtained independently from 

ind 4)~S) l ri, xi, zi, u ~ Beta (xi + u,& + 1) 

and 

iF(s) lid i I r i ,  xi, zi,P2, r2 ~ B e t a ( C i ,  Di). 

We ran the  Metropolis step 100 times and we took 
the last one. 

We finally obtain a sample (71-} h) , (~}h), ,),}h)) by 

taking ~(i h) - n~(h)~'(h)i ~i , h -  1, ..., M. Inference can 
now be made in s tandard  way. 

4. Analys is  of NHIS  data 

In this section we assess the fit of the  expansion 
model to the NHIS data.  Then,  we discuss poste- 
rior inference about  the parameters  of the expansion 
model. We note tha t  the EM algori thm converges 
within 10 steps and the est imates of the hyperpa- 
rameters  are #1 = 0.309, T1 = 1237.408, P2 = 0.864, 
r2 = 2.846, and u = 526.223. 
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4.1 M o d e l  A s s e s s m e n t  

We assess our model by using a Bayesian cross val- 
idation analysis. Let qi - ~/iPi/(PiTi + (1 - Pi)). 
Using Bayes theorem, it is easy to show tha t  for the 
respondents 

i id  
xi ] Pi, 7ri, r~ ~ Binomial (ri, qi). 

Let pi=xi/ri and x(i) and r(i) be vectors of all xi and 
ri with the i-th s tate  deleted. For the M iterates 
from the sampling based method we compute the 
weights 

OJih - -  
{qiX£ (1 - qih)r i -x , }  -1 

~h% xi ) r i  - :c  i - 1 { q i h (  1 - -  q i h  } 1 

where 

(h) (h) (h) (h) _(h) 
qih -- "Yi Pi / { (Pi 7i + (1 - -  Pi )} 

and (~/~h) _(h) , P i  ) h - -1 ,  ..., M, i - -  1 , . . . , ga re i t e r a t e s  
from the sampling based method.  

Then we compute 

dresi  = Pi -- E(pi  ] x(,), r(o ) i -- 1 , . . ° , e  
Std(p i  I x(i), r(o ) ' 

where E(pi  ] x( i ) ,r( i ) )  - ~Mh= ,coihqih -- (7~ and 
Std(p~ ] x(0 , r(0) is 

M 
{ ~ ~o~h { (q~h - q~)2 + q~h ( 1 - q~h) } }~/2 

7" i 
h = l  

We use the dresi  to assess the model fit. When 
we plotted dresi  versus E(pi  ] x( i ) ,r( i ) ) ,  all the 
points are between -2.5 and 2.5, dresi  is symmet- 
ric about  the horizontal line at zero (i.e., of the 51 
points, 25 points are above the line). Colorado is 
a state among the ones with the smallest propor- 
tions of doctor visits. Yet this s tate  has the largest 
E(pi  I x(i), r(i)). For further exploration we compute 
Pi = P r ( %  _< 1 Ix ,  r). For Colarodo the Pi is 0.002 
(i.e., the extent of nonignorability is extreme). 

4.2 P o s t e r i o r  I n f e r e n c e  

Our main results are presented in Table 1. 
The second column of Table 1 contains the ob- 

served proport ions t5 of households with at least one 
doctor visit. The third column contains the 95% 
credible for the population proport ion p of house- 
holds with at least one doctor visit. For fourteen 
of the states the credible intervals do not contain 
the observed proport ions (the/?i are marked with a 

+).  This implies tha t  the  observed values may be 
unreasonable estimates for the t rue proportions.  

The fourth column of Table 1 shows tha t  the 95% 
credible intervals of 7 for each state. The fifth col- 
umn contains p, the  posterior probability tha t  7 is 
less than one. Recall tha t  when 7 = 1, the expan- 
sion model is an ignorable model. For seven states 
the intervals do not include 1. These are Colorado, 
Georgia, Lousiana, Massachusetts, South Carolina, 
Virginia, and Washington. For these seven states, 
Pi are very small with values of 0.002, 0.007, 0.003, 
00025, 0.012, 0.006, and 0.021, respectively, which 
are extremes. Thus, the nonresponse mechansims 
for these states should be t reated as nonignorable. 

We have performed a sensitivity analysis to assess 
how inference is affected by the choice of the hyper- 
parameters  7-1, 7-2 and u. We kept #1 and #2 at the 
modal estimates, and set 7-1 at 500, 1000, 2000, 7-2 at 
3, 6, 12, and u at 250, 500, 1000. For each of the 27 
combinations, we obtained the modal estimates and 
computed the 95% credible interval for p, 7, and 6. 
We found tha t  inference is virtually unchanged for p 
and 6. There were some changes for 7 as v changes, 
but  this is small. 

Finally we observed the relation between ignor- 
ability and goodness of fit using dres described in 
Section 4.1. A cross tabulat ion of the standardized 
deleted residuals at the two levels (I dresi  1<_ 2) and 
(] dresi  ]> 2), and Pi at two levels (< 0.05) and (> 
0.05) for ignorable and nonignorable states. Fisher's 
exact test from S A S  (R) PROC FREQ gives a p- 
value of 0.978 (left-tail), 0.292 (right or two-level). 
Thus, the expansion model fits the states with ig- 
norable and noningorable nonresponse equally well. 

5.  S u m m a r y  

We have presented a Bayes empirical Bayes method 
to estimate the proport ion of doctor visits and the 
probability tha t  a household responds in the NHIS, 
incorporating a degree of uncertainty about the 
ignorability of the nonresponse mechanism. Our 
method  assumes tha t  the hyperparameters  are fixed 
but  unknown, and they are est imated using modal 
estimates from the EM algorithm. However, we have 
shown tha t  nonreponse is nonignorable and as such 
it needs to be t reated accordingly. 

We found tha t  moderate  misspecifications of the 
parameters  T1, T2 and u have little consequence on 
inference about  Pi and 6/ as well as ~'i. 

Our method is potentially useful to incorporate 
uncertainty about  ignorability of the nonresponse 
mechanism. We have shown tha t  it is possible to 
decide for which states the nonresponse mechanism 
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can be treated as ignorable. For these states it is 
possible to use the ratio method for nonresponse ad- 
justment. For the other states one must be reluctant 
to use the ratio method. In either case our method 
provides adjusted estimates for Pi and 6i based on 
the extent of ignorability. 

It is possibly to do a full Bayesian approach by 
using the algorithm of Nandram (1998). One other 
important extension is to p01ychotomous data that 
are so prominent in many complex surveys. It is also 
possible to do Bayesian predictive inference for the 
finite population mean of each state. 
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Table 1: Cred ib le  In terva ls  and  P robab i l i t y  

state /) Inter(p) Inter(7 ) p 
A1 
Ak 
Az 
Ar 
Ca 
Co* 
Ct 
De* 
DC* 
Fl* 
Ca 
Hi 
Id 
I1 
In 
Ia 
Ks 
Ky 
La* 
Me 
Md* 
Ma 
Mi 
Mn 
Ms 
Mo 
Mt 
Ne 
Nv 
NH 
NJ 
NM 
NY* 
NC 
ND 
Oh 
Ok 
Or 
Pa 
RI 
SC* 
SD 
Tn 
Tx 
Ut 
Vt 
Va 
Wa 

0.34 (0.298,0.341) (0.965,1.079)0.135 
0.34+ (0.285,0.336) (0.998,1.107)0.036 
0.29 (0.280,0.324) (0.981,1.093)0.083 

0.26+ (0.276,0.322) (0.965,1.062)0.264 
0.31 (0.290,0.323)(0.971,1.049)0.170 

0.27+ (0.271,0.315) (1.035,1.156)0.002 
0.31 (0.283,0.327) (0.971,1.086) 0.123 

0.37+ (0.288,0.338) (0.968,1.149)0.139 
0.32 (0.285,0.334) (0.980,1.160) 0.084 
0.31 (0.282,0.333)(0.933,1.078)0.239 
0.30 (0.280,0.319) (1.011,1.097)0.007 

0.38+ (0.294,0.345) (0.966,1.111)0.180 
0.29 (0.283,0.333) (0.985,1.029)0.496 
0.28 (0.268,0.325) (0.872,1.028)0.446 
0.31 (0.287,0.328)(0.987,1.077)0.068 

0.36+ (0.297,0.345) (0.968,1.068)0.230 
0.30 (0.283,0.328) (0.970,1.091)0.133 

0.34+ (0.294,0.338) (0.987,1.105) 0.058 
0.32 (0.285,0.329) (1.022,1.138)0.003 

0.38+ (0.293,0.342) (0.964,1.110)0.184 
0.33 (0.289,0.346) (0.892,1.132)0.078 
0.29 (0.279,0.320) (1.000,1.092)0.025 
0.34 (0.301,0.359) (0.892,1.045)0.368 
0.34 (0.294,0.340) (0.971,1.081) 0.116 
0.29 (0.280,0.328) (0.969,1.072) 0.213 
0.30 (0.284,0.326) (0.980,1.071)0.102 
0.28 (0.280,0.331) (0.982,1.059)0.114 
0.33 (0.288,0.336) (0.974,1.104)0.144 

0.35+ (0.287,0.338) (0.969,1.124)0.134 
0.31 (0.284,0.334)(0.975,1.086)0.147 
0.31 (0.285,0.347)(0.882,1.043)0.371 

0.28+ (0.281,0.326) (0.960,1.069)0.216 
0.30 (0.276,0.321) (0.962,1.085) 0.134 
0.30 (0.283,0.335) (0.901,1.088)0.119 
0.32 (0.283,0.336) (0.982,1.084)0.095 
0.34 (0.301,0.352) (0.914,1.061)0.167 
0.31 (0.284,0.331)(0.981,1.100)0.080 

0.27+ (0.276,0.320) (0.967,1.043)0.340 
0.34 (0.301,0.357) (0.889,1.033)0.410 

0.28+ (0.281,0.330) (0.974,1.076)0.234 
0.33 (0.287,0.334) (1.005,1.135)0.012 
0.29 (0.281,0.331) (0.990,1.063)0.140 
0.32 (0.289,0.332) (0.987,1.088)0.062 
0.29 (0.276,0.318) (0.926,1.035) 0.411 

0.26+ (0.278,0.326) (0.961,1.084)0.231 
0.32 (0.286,0.334) (0.973,1.089)0.216 
0.33 (0.293,0.334) (1.016,1.108)0.006 
0.33 (0.294,0.336) (1.002,1.099)0.021 

WV* 0.32 (0.286,0.336) (0.951,1.136)0.101 
Wi 0.33 (0.295,0.338) (0.956,1.055)0.229 
Wy 0.36+ (0.286,0.336) (0.985,1.081)0.188 

NOTE. * States with 8% or more nonrespondents 


