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A b s t r a c t :  We describe a hierarchical Bayesian 
model to analyze multinomial nonignorable nonre- 
sponse data from small areas. We use Dirichlet prior 
on the multinomial probabilities and beta prior on 
the response probabilities which permit a pooling 
of the data from different areas. This pooling is 
needed because of the weak identifiability of the pa- 
rameters in the model. Inference is sampling based 
and Markov chain Monte Carlo methods are used to 
perform the computations. We apply our method to 
study body mass index (BMI) data from the third 
National Health and Nutrition Examination Survey 
and show that the model works reasonably well. 

1. I n t r o d u c t i o n  

The nonresponse rates in many surveys have been 
increasing steadily (De Heer 1999 and Groves and 
Couper 1998), making the nonresponse problem 
more important. For many surveys the responses 
are polychotomous. For example, the third Na- 
tional Health and Nutrition Examination Survey 
(NHANES) estimates the proportions of persons be- 
longing to the multilevel of body mass index (BMI). 

We consider a hierarchical Bayes model to study 
nonignorable multinomial nonresponse. Rubin 
(1987) and Little and Rubin (1987) describe two 
types of models according to the ignorability of non- 
response. In the ignorable model the distribution of 
the variable of interest for a respondent is the same 
as the distribution of that variable for a nonrespon- 
dent with the same values of the covariates. In addi- 
tion, the parameters in the distributions of the vari- 
able and response must be distinct (see Rubin 1976). 
All other models are nonignorable. Our model es- 
sentially incorporates both types, and is therefore 
nonignorable. 

Crawford, Johnson and Laird (1993) used nonig- 
norable nonresponse model to analyze data from the 
Harvard Medical Practice Survey. Stasny, Kadane, 
and Fritsch (1998) used a Bayesian hierarchical 

model for the probabilities of voting guilty or not 
on a particular trial when the views of nonrespon- 
dents might differ from those of respondents in var- 
ious death-penalty beliefs . Park and Brown (1994) 
used a pseudo-Bayesian method (Baker and Laird 
1988), and Park (1998) applied a method in which 
prior observations are assigned to both observed and 
unobserved cells to estimate the missing cells of a 
multi-way categorical table under nonignorable non- 
response. 

Stasny (1991) used an empirical Bayes model to 
study victimization in the National Crime Survey, 
and used the selection approach.  A related method 
was presented by Albert and Gupta (1985), they 
made an approximation to obtain a Bayesian ap- 
proach for a single area, see also (Kaufman and King 
1973). 

Since Bayesian approach can incorporate prior 
information about nonrespondents, the Bayesian 
method is appropriate for the analysis of nonignor- 
able nonresponse problems (Little and Rubin 1987 
and Rubin 1987). However the main difficulty is how 
to describe the relationship between the respondents 
and nonrespondents. Using the selection approach 
within the framework of Bayes empirical Bayes (see 
Deely and Lindley 1981), Stasny (1991) estimated 
the hyper-parameters by maximum likelihood meth- 
ods and then assumed them known. We extend this 
approach in two directions. 

First, we consider multinomial data from sev- 
eral areas. It is worthy to note that Basu and 
Pereira (1982) considered multinomial nonresponse 
data from a single area using a multinomial Dirich- 
let model when the hyperparameters are assumed 
known. Recently, Forster and Smith (1998) used 
graphical multinomial Dirichlet loglinear models to 
analyze data from the panel survey in British general 
election. Again the hyper parameters are assumed 
known, and one area model is used. Secondly, we 
obtain a full Bayesian approach for multinomial non- 
ignorable nonresponse data from several areas. 

The rest of the paper is organized as follows. In 
Section 2 we describe the NHANES. In Section 3 we 
discuss the Bayesian model for nonignorable nonre- 
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sponse. In particular, a three-stage Bayesian hierar- 
chical multinomial model is applied to the NHANES 
data to investigate nonresponse problem. In Section 
4 we describe an empirical analysis and a simula- 
tion study to assess the performance of our model. 
Finally, Section 5 has the conclusion. 

2. N H A N E S  D a t a  a n d  N o n r e s p o n s e  

The NHANES is one of the periodic surveys used 
to assess the status of health of the U.S: popula- 
tion. Our research is motivated by the presence of 
nonresponse in the NHANES data of Body Mass In- 
dex (BMI). The data for our illustration come from 
this survey, and were collected October 1988 and 
September 1994. 

The NHANES consists of two parts, first part is 
the interview of the sampled person for their per- 
sonal information and second part is the examina- 
tion of those sampled. The persons from the sample 
of households were grouped into a number of sub- 
groups depending on the age, race and sex. Some 
subgroups were sampled at different rates. Sampled 
persons were asked to come to station for physical 
examination. Those who did not come were visited 
by the examiner for the same purpose. Details of 
the NHANES sample design are available (Vital and 
Health statistics, Series 2, Number 113, 1992) 

One of the variables of interest in the NHANES 
is BMI, a convenient index of weight adjusted for 
height (Kg/rn 2) that  can be used to broadly catego- 
rize bodyweight within age-race-sex groups (Kucz- 
marski et al. 1997) as low body fat (level 1' BMI 
< 20), healthy body fat (level 2" 20 _< BMI < 25), 
hefty or unhealthy (level 3: BMI >_ 25). We use this 
classification for the each of 8 age-race-sex groups. 

NHANES data are adjusted by multistage of ra- 
tio weightings for the data to be consistent with the 
population (Leyla et al. 1994). The ratio is the 
proportion of persons in the sample to the number 
of persons who completed interview and examina- 
tion. Weighting with nonresponse ratio is one of 
these stages. In this paper we investigate an alter- 
native method to the nonresponse ratio weighting. 

NHANES nonresponse also occurs at several levels 
in the survey: interview and examination. The in- 
terview nonresponse arises from sample persons who 
did not respond for the interview. Some of those who 
were already interviewed did not come to station, 
missing all or part of the examinations. 

When the nonresponse of sample persons is ad- 
justed by the ratio estimation within the same 
adjustment class, the distributions of the respon- 
dents and nonrespondents are assumed to be same. 

Clearly, this ratio estimation can be incorrect when 
these two groups are different. Therefore there is a 
need to consider the adjustment by a method other 
than ratio adjustment. We present Bayesian method 
as a possible alternative to impute the NHANES 
nonresponse. 

Table 1 shows the number of respondents for each 
B MI level by age-race-sex group for 34 counties 
(population at least 500,000). The pattern of re- 
spondents differs greatly by age groups (young: age 
< 45 years ; old: age _> 45 years). The nonresponse 
rate for old age group is negligible. Therefore the 
main consideration about nonresponse is given to 
the young age group. There is also higher response 
rate among females than males. 

Table 1' N u m b e r  of  i n d i v i d u a l s  in each B M I  
level a n d  n u m b e r  of  n o n r e s p o n d e n t s  by  age,  
race  a n d  sex over  all 34 coun t i es .  

BMI 
Age Race Sex 1 2 3 Nonresponse 

Y 

O 

W M 1098 651 597 558 
F 845 434 380 233 

Ot M 1198 713 665 574 
F 745 463 524 214 

W M 46 439 1014 3 
F 51 223 365 4 

Ot M 79 470 942 8 
F 48 169 552 6 

Note Y: Young, O" Old, W: White, Ot 'Others 

We develop a methodology to analyze the three 
category BMI data by age, race (white and others) 
and sex, although our methodology applies generally 
to any number of cells in several areas (counties in 
our application). 

3. M e t h o d o l o g y  for Hierarchical  
M u l t i n o m i a l  Mode l  

In this section we describe the Bayesian model for 
old and young age groups. We use a two part hi- 
erarchical model for the BMI data. The first part 
of the model is for the old individuals. Since their 
nonresponse rate is very low, it is ignorable. The 
second part of the model is for the young individ- 
uals, since their nonresponse rate is high and differ 
from respondents, it is nonignorable. Note that  we 
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consider inference for each age-race-sex group sep- 
arately. We will show how to combine them later 
using logistic regression although this is not the key 
issue of the paper. 

For each age-race-sex group, an individual k in 
county i belongs to one of J B MI levels, then for k th 

individual in county i, characteristic variable BMI 
level j is defined as follows, 

! 
x i k - - ( x i l k ,  . . . , x i jk , . . . ,  x i j k )  , i = l , . . . , c ;  

j = 1,..., J; k = 1,...,n~ 

where each xiyk - 0 or 1 and ~ J = l  xijk - 1. 

The response variable, yijk is defined for each age- 
race-sex group 

Y i j  ~: - -  

1, if individual k belonging to B MI level j 
in county i responded 

0, if individual k belonging to BMI level j 
in county i did not respond. 

We use a probabilistic structure to model the xik 
and yijk. 

3.1 M o d e l i n g  t h e  Old  a n d  Y o u n g  I n d i v i d u -  
als 

where xijk - 1 or xiyk - O, for j = 1 ,2 , . . . , J .  

Letting 1'3 - (#31, P32, . . . ,  P3J)' ,  at the second stage 
we also take 

l id  
Pi 1/.3, 7"3 ~ Dirichlet (/*373) (6) 

and 

i id 
7rij [ # 4 j ,  T4j  ,.v Beta ( # 4 j T 4 9 ,  (1 - # 4 j ) T 4 j )  (7) 

Like (3) and (4), the assumptions (6) and (7) express 
similarity among the counties. However the response 
p a r a m e t e r s  7rij are weakly identifiable in this case, 
and (7) helps in the estimation of the rcij. 

To ensure a full Bayesian analysis, at the third 
stage we take the prior for the hyper-parameters as 
follows. For the ignorable part  of the model, the 
.joint prior distribution is 

/.1 ~-, Dirichlet (1, 1, ..., 1), ~21 ~'-, Beta (1, 1), 

Tlr"J r ( ~ 0 ) ,  /.2~0)), 7"21 "v F (~7~ 0) /2~0)) 

where the gamma density is given by 
t ~ r  (a,b) means f ( t ) -  b a t a - l e - b t / F ( a ) ,  t > O. 

For each age-race-sex group we have 

i id 
xik I Pi ~ Multinomial (1, p/) (1) 

For the old age group we use the ignorable model 

l id 
Yijk I rci ~ Bernoulli (rri), (2) 

and at the second stage we take 

i id 
Pi I/.1, T1 ~ Dirichlet (#1rl) ,  (3) 

i id 
71" i 1#21,721 "-' Beta (p21T91, (1 -- P21)r21) (4) 

f_  tx i jr i -1/D(/*lWl ) where P(Pi I/.1,7-1)-- H 1 Pij 
J 

0 < p ~ j  < 1, ~ j = l P # - -  l a n d  

>1 - ( # 1 1 , P 1 2 , . . . , p l J ) '  with D(>~r l )  = 

J J I I j = l C ( P l j r l ) / P ( r l  ), 0 < P l j  ( 1, E j = I  Plj  - 1. 

The corresponding part  of the nonignorable model 
is 

t, aN Dirichlet (1, 1, ..., 1), #4s ew Beta (1, 1), 

r a~  F (~7~°),v~ °)) and 

, (0) (0) 
r4,"~ F 714, , u4, ), s -  1, 2.., J. 

(o) . i o )  , _ The hyper-parameters ~o),  v~o) ~74s 
1, ..., J,  are to be specified. 

Let ri be the number of respondents in county i 
and yij the number of respondents for the j th  BMI 
level in county i. Then ri and Yij are random vari- 
ables, n i - r i  is the number of nonrespondents. Since 
the number of respondents for j th  BMI level for tile 
nonrespondents is unknown, we denote them by the 
latent variables z# .  

The likelihood function for ignorable nonresponse 
is 

Assumptions (3) and (4)express  similarity among 
the c counties. 

For the young age group we have a nonignorable 
model. Thus, for the response variable we take 

i id 
Yijk I xik,  rrij ~ Bernoulli (rr#) (5) 

f ( y , r , p i , T r i )  -- I £ I { (  ni ) T v ~ ( 1 - T r i )  ~i 
i=1  /'i 

--ri  

r i  y i j  + h i  - r i  
X .1.1 P i j  • 

i=1 Yil , .., YiJ j=l  
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Letting Z = {z • zij - -  O , .  . . , n i  -- ri, E ziJ - -  

j = l  

ni - ri, i = 1 , . . . , g } ,  the likelihood function for 
the nonignorable model is proportional to f ( y , r  I 

p,~/,zr) where f ( y , r  I P,~/,Tr) -- E f ( Y ' r ' z  I 
z: zE Z 

P, "7, 7r) and 

x( 
f ( y , r ,  z i p ,  T r ) _ 1 2 i { (  n~ ) ( r~ ) 

ri Yil ~ . .  ~ Yi J 
i=1 

ni ri ) H { (Trijpij)Y~ ((1 - 7rij)pij)z'J } 
Z i l  ~ Z i J  

"" j = l  

Using Bayes' theorem the joint posterior density 
of all the parameters  are constructed for each non- 
response model. We consider inference about pi. 

We use Markov chain Monte Carlo algorithm to 
obtain the posterior distribution of the pi and 7ri. 
Our plan is to obtain Metropolis-Hastings (MH) 
sampler to get samples from the joint posterior den- 
sities and then to use these samples to make poste- 
rior inferences about  pi. 

3.2 Computations 

For the ignorable nonresponse model it is convenient 
to represent the posterior density function as 

f (p ,  7r, ~t l ,  T1, ~21,7-21 I Y, r) 

= 1-5I {f l (Pi  I Y,r,  Pt1,rl)f2(Tri I Y,r,#21,~-21)} 
i=1 

X f3  (~tl, T1, #21,7"21 I Y, r) 

where f l  (') is Dirichlet density, f2(') is beta density 
and f3(') is joint posterior. Hence fl  and f9 are 
obtained through the Gibbs kernel, while for f3 we 
use the MH algorithm of Nandram (1998). 

For nonignorable nonresponse model it is conve- 
nient to represent the posterior density flmction as 

f (P ,  7r, z, #3,73, #4, "r4 l Y, r) 

= fj  (Trij I Y, r, z, P4j, T 4 j )  

i = l  j = l  

x f J + l ( p i  l y, r , z ,  tta,Ta)} 

× fj+2(tt3,7-3, tt 4, "r4, z [ y, r), 

where f l ( ' ) ,  ..., f j ( ' )  are beta  dens i t i e s ,  fJ+l( ')  
is Dirichlet density and f J+2(') is joint posterior. 
Thus, f l , . . . ,  fJ+l are obtained through the Gibbs 
kernel, while f J+2 is obtained using the MH algo- 
r i thm of Nandram (1998). 

4. A n  E m p i r i c a l  A n a l y s i s  

In this section we illustrate our methodology using 
the NHANES data. Since Pij a r e  similar for each 
county, we s tudy the weighted posterior mean of Pij, 

qj -- ~ n i p i j / ~ n i ,  j - - 1 , 2 , 3  
i = 1  i=1 

by age, race and sex for both the young and old age 
groups. 

4.1 Data Analysis 

First, we perform a sensitivity analysis to assess 
the specifications of ~7 (°) and u (°). We compared 
4 choices of hyper-priors ft = (r](°),u (°)) to check 
its sensitivity to inference. For choice 1, we use 
4 times ft, i.e., 4gt = (4~7(°),4u(°)). For choice 
2, we use the hyper-prior without any change, i.e., 
[2 = (~7(°), u(°)). For choice 3, we use tile one fourth 
of [2, i.e., [2/4 = (~7(°)/4, u(°)/4) and fourth choice 
is ~2 = (0,0). The simulation results for the sen- 
sitivity to the inference of qj shows that  the point 
estimates and s tandard  deviations of the proportion 
are very similar over the four choices of hyper-priors 
for young age group. For old age group there are 
some changes in point est imates and s tandard devi- 
ations. Generally tile nonignorable model performs 
better  than the ignorable model, as the nonignorable 
model is not sensitive to choices of hyper-priors. 

In Table 2 we present 95% credible intervals for 
the weighted posterior means, qj. For tile young age 
group, the weighted posterior mean is the highest for 
ql of B MI level 1, and q2 of B MI level 2 is the lowest. 
The lower bounds for ql and q3 are similar for the 
young age group except white male, and those for 
q2 are similar except non-white male group. For old 
age group, the weighted posterior mean is highest for 
q3 of BMI level 3, and ql of BMI level 1 is lowest. 
Specifically ql, q2 are high and q3 is low for white- 
female group. 

4.2 Linear and Nonlinear Logistic Regres- 
sion Model 

It is possible to relate the Pijl to age, race and sex 
using a linear or nonlinear logistic regression model. 
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Table 2' 95% c red ib le  
the weighted posterior 

i = l n i P i J / ~ i = l  ni by age,  
for each  age g r o u p  

in t e rva l s  for 
m e a n s ,  qj = 

race  a n d  sex 

Age Race Sex ql 
95% credible interval 

q2 q3 

Y W 

Ot 

M (.382.470) (.174 .252)(.314 .412) 
F (.425 .525)(.171 .269)(.243 .371) 
M (.381 .455)(.176 .241)(.333 .419) 
F (.385 .482)( .130.230) (.329 .442) 

0 w 

Ot 

M (.022.041) (.255.326) (.643 .710) 
F (.059 .068)(.431 .451)(.486 .505) 
M (.085.076) (.282.852) (.592 .670) 
F (.040.093) (.206.265) (.661 .731) 

Note Y: Young, O" Old, W: White, Ot:Others 

Table 3' C o m p a r i s o n  of  95 % c red ib le  in te rva l s  
for 01, 02 a n d  31,c~2,...,c~8 by  r eg re s s io n  t ype .  

Linear Nonlinear 

01 (-1.743-1.469) (-1.731-1.466) 
02 (0.028 0.196) (0.025 0.193) 

0/1 
OZ2 
OL3 
OL4 

(-1.167-0.751) (-1.159-0.751) 
(-1.395-0.939) (-1.385-0.937) 
(-1.127-0.723) (-1.119-0.728) 
(-1.112-0.659) (-1.103-0.658) 

38 (1.198 1.514) (1.188 1.498) 
c~6 (0.513 0.689) (0.506 0.685) 
c~7 (0.715 1.210) (0.725 1.225) 
8~8 (0.809 1.310) (0.803 1.300) 

Let Pijl denote the probability that a respon- 
dent in I th (/=1,...,8) age-race-sex group in county 

i responds in the j th  BMI level and let ~ = l P i s z  
be the cumulative probability. Letting Y i j l  - -  

log { ~ : = 1 P i s t / ( 1 -  ~ i = 1 P i ~ t ) } ,  we take 

= (0j - + (8) 

subject to the constraints ~ c  8 i = l  # i  - 0, ~ l = l  c~t - 0, 

and ~-~.iC__lln¢i- 0. In (8)Oj, #i, c~t and ¢i have 
posterior distributions whose properties are inher- 
ited from the posterior distributions of Pijl. Each 
iterate of the MH algorithm provides a value for Pijl 
which is used in (8), and a nonlinear least squares 
problem is solved by using an iterative method to 
get values of 0j, #i, az and ~i. Alternatively, we 
can also use the much simpler linear logistic model 
in which the ~i in (8) are taken equal to unity. In 
this case at the h th iteration of MH algorithm the 
least squares estimators of 0j, ¢i, #i and c~z exist 
in closed form. Specifically, for ¢i = 0, we have 
least squares estimates /;i = Y. . . -  9i.., 0j - 94., 

c 

&t = Y...-  Y..t, where Y... = E i = l  EjJ----1 E 8 Yi j l /ScJ ,  

fli.. - E j J 1  Ezs_=l y i j , / 8 J ,  fl.j. - E i ~ I  E,S=l y~j, /8c 

9 , -  EL1E '_-I y j,/cJ, nonlinear 
squares problem is solved by using an iterative 
method to get values of 0j, ¢i, fii and &t. 

We present 95% credible intervals for 01, 02 and 
a l ,  . . . ,  38 for the young and old age group by regres- 
sion type in Table 3. For cut-points 0j (01 < 02), 01 
gives large negative effect compare to 02. The rela- 
tive measure at (1 = 1, .., 4) of young age group gives 

negative effect, while the relative measure c~t (l - 
5, ..,8) of old age group give positive effects. The 
95% credible intervals for linear and nonlinear esti- 
mates are essentially the same. 

5. C o n c l u s i o n  

We have discussed the problem of nonignorable non- 
response for the estimation of the BMI proportions. 
Our main issue was to get an efficient alternative 
method to estimate BMI in the NHANES in such 
a way as to incorporate nonignorability. We intro- 
duced a three stage hierarchical model to solve the 
nonresponse problem. We have extended the model 
of Stasny (1991) in two directions. First we consider 
multinomial data other than binomial data and sec- 
ond we study a full Bayesian analysis. We applied 
our model to the NHANES data, and have shown 
that  the nonresponse was reasonably addressed by 
our model. The MCMC method allowed us to as- 
sess the complex structure of the multinomial non- 
response estimation. Our empirical analysis indicate 
good performance of the model for this data. Thus, 
the method of ratio estimation currently used in 
NHANES may be replaced by our Bayesian method 
as the nonrespondents'  characteristics might differ 
from those of the respondents. 

For the NHANES there are substantial differences 
in the proportion of individuals in the 3 BMI lev- 
els for males versus females and young versus old. 
While we have shown that inference about BMI is 
not sensitive to prior specification, we might want to 
use other prior densities for the sum of the Dirichlet 
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or beta parameters (i.e., a uniform shrinkage prior) 
or an improper prior for vector of means for the 
Dirichlet or the one mean for the beta distribution. 

It is feasible to use a nonignorable model that in- 
corporates the extent of nonignorability from the ig- 
norable model. 

R e f e r e n c e s  

Albert, J. H. and Gupta, A. K. (1985), "Bayesian 
Methods for Binomial Data with Applications to 
a Nonresponse Problem," Journal of the American 
statistical Association, 80, 167-174. 

Baker, S. G. and Laird, N. M. (1988), "Regression 
analysis for categorical variables with Outcome Sub- 
ject to Nonignorable nonresponse," Journal of the 
American statistical Association, 83, 62-69. 

Basu, D. and Pereira, C. A. (1982), "On the 
Bayesian Analysis of Categorical Data: The Prob- 
lem of Nonresponse," Journal of Statistical Planning 
and Inference, 6,345-362. 

Crawford, S. L., Johnson, W. (3. and Laird, N. M. 
(1993), "Bayes Analysis of Model-Based Methods for 
Nonignorable Nonresponse in the Harvard Medical 
Practice Survey (with discussions)," In Case Studies 
in Bayesian Statistics. Catsonis C., Hodges, J.S., 
Kass, R.E. and Sinpurwalla, N.D. (eds.) Springer- 
Verlag: New York, pp. 78-117. 

De Heer, W. (1999), "International Response 
Trends: Results of an International Survey," Journal 
of Official Statistics, 15, 129-142. 

Deely, J. J. and Lindley, D. V. (1981), "Bayes Era- 
pirical Bayes," Journal of the American Statistical 
Association, 76, 833-841. 

Forster, J. J. and Smith, W. F. (1998), "Model-based 
inference for categorical survey data subject to non- 
ignorable nonresponse," Journal of the Royal Statis- 
tical society, Series B, 60, 57-70. 

Groves, R. M. and Couper, M. P. (1998), Nonre- 
spouse in Household Interview Surveys, New York: 
Wiley. 

Heckman, J. (1976), "The Common Structure of 
Statistical Models of truncation, sample selection 
and limited dependent variables and a simple esti- 
mator for such models," Annals of Economic and 
Social Measurement, 5, 475-492. 

Kuczmarski, R. J., Carrol, M. D., Flegal, K. M. 
and Troiano, R. P. (1997), "Varying Body Mass In- 
dex cutoff points to describe overweight prevalenco 

among U.S. adults: NHANES III (1988 to 1994)," 
Obesity Research, 5, 542-548. 

Kaufman, G. M. and King, B. (1973), "A Bayesian 
Analysis of Nonresponse in Dichotomous Processes," 
Journal of the American Statistical Association, 68, 
670-678. 

Little R. J. A. and Rubin D. B. (1987), Statistical 
Analysis with Missing Data, New York: Wiley. 

Mohadjar, L., Bell, B. and Waksberg, J. (1994), 
"National health and Nutrition Examination Survey 
III-Accounting for item nonresponse bias," National 
Center for Health Statistics. 

Nandram, B. (1998), "A Bayesian Analysis of 
the Three-Stage Hierarchical Multinomial Model," 
Journal of Statistical Computation and Simulation, 
61, 97-126. 

National Center for Health Statistics (1994), "Plan 
and Operation of the Third National Health and 
Nutrition Examination Survey," Vital and Health 
Statistics Series 1, 32. 

National Center for Health Statistics (1992), "Third 
National Health and Nutrition Examination Sur- 
vey," Vital and Health Statistics Series 2, 113. 

Olson, R. L. (1980), "A Least Squares Correction 
for Selectivity Bias," Econometrica, 48, 1815-1820. 

Park, T. (1998), "An Approach to Categorical Data 
Nonignorable Nonresponse," Biometrics, 54, 1579- 
1590. 

Park, T. and Brown, M. B. (1994), "Models for 
Categorical Data with Nonignorable Nonresponse," 
Journal of the American Statistical Association, 89, 
44-52. 

Rubin D. B. (1976), "Inference and Missing Data," 
Biometrika, 63,581-590. 

Rubin D. B. (1987), Multiple Imputation for Nonre- 
spouse in Surveys, New York: Wiley. 

Stasny, E. A. (1991), "Hierarchical Models for the 
Probabilities of a Survey Classification and Nonre- 
spouse: An Example from theNational Crime Sur- 
vey," Journal of the American Statistical Associa- 
tion, 86, 296-303. 

Stasny, E. A., Kadane, J. B., and Fritsch, K, S. 
(1998), "On the Fairness of death Penalty Jurors: A 
Comparison of Bayesian Models with Different lev- 
els of Hierarchy and Various Missing-Data Mecha- 
nisms," Journal of the American Statistical A ssoci- 
ation, 93, 464-477. 

214 


